变形煤物理模拟与吸附—解吸规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤田地质条件复杂,变形煤(构造煤)分布广泛。变形煤具有瓦斯放散快、易突出、透气性差等特点,一直是矿井瓦斯灾害防治和煤层气勘探开发研究的重点和难点。针对不同类型变形煤形成的关键力学参数与物理机制、吸附-解吸规律及其控制机理存在的问题,在借鉴前人已有研究成果的基础上,采集平顶山矿区和焦作矿区的原生结构煤及不同类型的变形煤作为研究煤样,分析研究区的成煤地质史和区域构造演化史;模拟变形煤形成时期构造物理环境,对原生结构煤样进行高温高压煤变形实验,探寻不同类型变形煤形成过程中的关键物理参数和力学机制。对不同含水率未变形和变形煤样,进行高温高压纯甲烷气体吸附-解吸实验,探寻高温高压三相介质条件下变形煤吸附-解吸瓦斯的特性和动态控制机理。论文研究取得了以下主要进展:
     (1)开展了不同类型变形煤形成的高温高压物理模拟实验,初步确定了不同类型变形煤形成的应力-应变条件,分析了不同类型变形煤形成的力学机制。
     ①模拟成煤后的构造物理条件表明,在温度100~150℃之间,围压100~200MPa条件下,大应变量和低应变速率下,煤岩可以发生脆-韧性变形。
     ②除温度、围压条件和煤本身因素外,应变量和应变速率对煤岩变形性质和不同煤体结构特征的形成具有重要影响。在一定高温高压条件下,不同的应变量和应变速率会形成不同的煤体结构组合,且靠破裂面的位置越近,煤体结构破坏越严重。
     ③对比分析了实验变形煤与自然变形煤的孔隙结构参数、孔隙形态、孔隙分形维数、微晶结构参数和吸附-解吸特征等,实验研究表明:应变量不同的实验变形煤,CH4吸附量不同,可以推知,高温高压变形实验条件下,由于应变量的不同而改变了煤孔隙结构,进而影响了煤的吸附性能。说明可以应用实验变形煤来研究部分自然变形煤的吸附性能,为深部未开采煤层变形煤吸附特性的研究提供了一定的可能性。
     (2)通过高温高压平衡水分条件下变形煤吸附-解吸实验,发现了高温高压平衡水分条件下变形煤吸附-解吸新特性,并且分析了控制机理。
     ①高温高压平衡水分条件下,变形煤表现出吸附-解吸新特性,即随煤的破坏程度增加,朗格缪尔体积VL(无灰基)具有先减小,后增大,再减小的趋势,呈波浪状。
     ②50℃条件下,随煤的破坏程度的增加,煤的平衡水分含量有增大的趋势。
     ③高温高压平衡水分条件下,变形煤表现出的吸附-解吸新特性,是变形煤特有的孔隙结构和水分含量的差异综合作用的结果。
     ④高温高压平衡水分条件下,变形煤吸附-解吸不可逆,解吸滞后;随着煤的破坏程度增加,煤的吸附-解吸不可逆程度加大。因此,在开展实验研究煤、特别是变形煤的解吸特性时,不能用吸附实验数据简单代替。
There are complex geological conditions on coal fields in China, so the deformedcoal (tectonic coal) is distributed widely. Deformed coals have the characteristics ofquick diffuse, easy outburst and poor permeability. So, it has been the focus of the studyand difficulty of the mine gas disaster prevention and CBM exploration. For the existingproblem of the key physical parameters and the physical mechanisms, adsorption-desorption law and its control mechanism of the formation of different types of tectoniccoal, coal samples with primary structure and different deformed structure were selectedfrom Pingdingshan and Jiaozuo mining area. And the history of coal geology andregional tectonic evolutionary history of the study area on the basis of previous researchresults were analyzed. Coal deformation experiments were carried out in hightemperature and high pressure to converse the primary structure coal samples intoexperiment deformed tectonic coals and to explore the key physical parameters and themechanical mechanism of the formation of different types of tectonic coals. Throughhigh temperature and high pressure CH4adsorption-desorption experiments of differentmoisture content of undeformed and deformed coal samples, the CH4adsorption-desorption characteristics and dynamic control mechanisms of deformedcoal were studied under the high temperature and high pressure and three phase media.There are many research results for this studies.
     (1)The stress-strain conditions of formation of different deformed coals wasascertained preliminarily and its mechanical mechanisms was analyzed by hightemperature and high pressure physical simulation experiment of formation of differentdeformed coals
     ①Simulation of structure physical conditions after coal formation show that coalrock can happen brittle-ductile deformation under the condition of temperature of100~150℃and confining pressure100~200MPa and big dependent variable and lowstrain rate.
     ②In addition to some factors such as temperature, confining pressure conditionsand coal itself, dependent variable and strain rate have important influence on the coalrock deformation properties and the formation features of different defmormed coals. Under the certain conditions of high temperature and high pressure, different dependentvariable and strain rate can form different coal body structure, especially the position isthe closer by failure surface, the damage of coal body structure is the more serious.
     ③The pore structure parameters, pore forms, the pore fractal dimension,microcrystalline structure parameters and adsorption-desorption features onexperimental deformed coals and natural deformed coals were contrasted and analyzedto show that the different dependent variable experimental deformed coals havedifferent adsorption on CH4. So, it can be infered that the coal pore structure is changedbecause of the different variables by high temperature and high pressure condition ofcoal deformation experiments and the adsorption performance of the deformed coals isinfluenced. It shows that the experimental deformed coals can be applied to studyt theadsorption performance of the natural experimental deformed coals. And it provides thecertain possibility to study the adsorption of deformed coals in deep not mining coalseam.
     (2)The new characteristics on adsorption–desorption of the deformed coals wasfound and its control mechanism was analyzed by the adsorption-desorptionexperiments of deformed coal under the condition of high temperature and highpressure equilibrium moisture.
     ①Under the conditions of high temperature and high pressure equilibrium water,there are the new features on the adsorption–desorption of deformed coal thatLangmuir volume of the VL(ash-free basis) first decreases and then increases, and thendecreases.
     ②The experiment results show that the equilibrium moisture of coal samplesincrease with increasing extent of the damage coal in the conditions of50℃.
     ③Tthe characteristical results of this adsorption–desorption experiments are dueto the combined effects of the unique pore structure of deformed coal and water content.
     ④The adsorption-desorption isotherms of deformed coal are irreversible, and thisirreversible degree increases with increasing extent of the damage of coal. The datas ofshoud not be selected by adsorption datas to carry out desorption experiments on coaland especially deformed coal
引文
[1]国家自然科学基金委员会中国科学院能源科学学科发展战略研究组.2011~2020年我国能源科学学科发展战略报告.2010.
    [2]叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [3]车长波,杨虎林,李富兵等.我国煤层气资源勘探开发前景[J].中国矿业大学学报.2008,17(5):1~4.
    [4]彭苏萍.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤,2008,17(2):1~12.
    [5]张泓,夏宇靖,张群,晋香兰等.深层煤矿床开采地质条件及其综合探测——现状与问题[J].煤田地质与勘探,2009,37(1):1~12.
    [6]高凌蔚,窦廷焕,苗康运.煤系中常见的碎裂变质岩[J].煤田地质与勘探,1979(2):75~87.
    [7]陈善庆.鄂、湘、粤、桂二叠纪构造煤特征及其成因分析[J].煤炭学报,1989,14(4):1~9.
    [8]侯泉林,李培军,李继亮.闽西南前陆褶皱冲断带[M].北京:地质出版社,1995.37~63.
    [9]袁崇孚.构造煤和煤与瓦斯突出[J].瓦斯地质,1985(创刊号):45~52.
    [10]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.30~95.
    [11]琚宜文,姜波,侯泉林,王桂梁.构造煤结构-成因新分类及其地质意义[J].煤炭学报,2004,29(5)513~517.
    [12]王恩营,殷秋朝等.构造煤的研究现状与发展趋势[J].河南理工大学学报(自然科学版),2008,27(3):278~281.
    [13]张子敏等.瓦斯地质学[M].徐州:中国矿业大学出版社,2009.
    [14]姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业.2004,11(05)27~29.
    [15]陈昌国,鲜学福.煤结构的研究及其发展,煤炭转化,1998,21(2):7~13.
    [16]姜波,秦勇.变形煤的结构演化机理及其地质意义.徐州:中国矿业大学出版社,1998.
    [17]琚宜文,姜波,侯泉林等.构造煤13C NMR谱及其结构成分的应力效应.中国科学, D辑,地球科学,2005,5(9):847~861.
    [18]琚宜文,姜波,侯泉林等.煤岩结构纳米级变形与变质变形环境的关系.科学通报,2005,50(17):1884~1892.
    [19]郭德勇,韩德磬,冯志亮.围压下构造煤的空隙度和渗透率特征实验研究[J].煤田地质与勘探,1998,26(4):31~34.
    [20]郭德勇,韩德磬.构造煤的电子瞬磁共振研究[J].中国矿业大学学报,1999,28(1):94~97.
    [21]傅雪海,秦勇,薛秀谦.分形理论在煤储层物性研究中的应用[J].煤,2000,9(4):1~3.
    [22]彭苏萍,高云峰,彭晓波等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报,2004,29(2):177~181.
    [23]缪奋.中国东部煤的构造应力变质作用[J].煤炭学报,1988(2):1~11.
    [24]何继善,吕绍林.瓦斯突出地球物理研究[M].北京:煤炭工业出版社,1999:7~8.
    [25]中国矿业学院瓦斯组.煤和瓦斯突出的防治[M].北京:煤炭工业出版社,1979:27~69.
    [26]曹代勇,张守仁,任德贻.构造变形对煤化作用进程的影响[J].地质论评,2002,48(3):313~317.
    [27]王恩营,刘明举,魏建平.构造煤成因-结构-构造分类新方案[J].煤炭学报,2009,34(5):656~660.
    [28]周建勋.影响煤层构造变形特性与机理的关键因素[J].煤田地质与勘探:1999,27(3):1~6.
    [29]李涛,高凌蔚,刘天林.煤岩流变分析.煤炭科学院地质勘探分院文集(第一集).西安:陕西人民出版社,1987:81~85.
    [30]王桂梁,朱炎铬.论煤层流变.中国矿业学院学报,1988;17(3):16~25.
    [31]姜波,秦勇,琚宜文等.构造煤化学结构演化与瓦斯特性耦合机理[J].地学前缘,2009,16(2):262~271.
    [32]曹运兴,彭立世,侯泉林.顺煤层断层的基本特征及其地质意义[J].地质论评,1993,39(6):522~528.
    [33]郭德勇,韩德磬,张建国.平顶山矿区构造煤分布规律及成因研究[J].煤炭学报,2002,27(3):249~253.
    [34] JU Y W,WANG G L, JIANG B, et a1. Microscosmic anaysis of ductile shearing zones ofcoal seams of brittle deformation domain in superficial lithosphere[J]. Science in China Ser.D Earth Sciences,2004,47(5):393~404.
    [35]朱兴珊,徐风银.南桐矿区破坏煤发育特征及其影响因素[J].煤田地质与勘探,1996,24(2):28~32.
    [36]朱兴珊,陈建平.破坏煤形成的微观机理及其与瓦斯突出及煤层气开采的关系.[J].煤矿现代化,1999(3):26-29.
    [37]姜波,秦勇,琚宜文等.煤层气藏的构造应力场研究[J].中国矿业大学学报,2005,34(5):564~569.
    [38] Gregg S J,Sing K S. Adpsorption, surface area and Porosity,2nd ed.,.London: Academic press,1982.242~257.
    [39]余申翰.煤层内瓦斯的赋存状态.煤炭学报,1981(2):1~4.
    [40]胡国艺,刘顺生等.沁水盆地晋城地区煤层气成因[J].石油与天然气地质,2001,22(4):319~321.
    [41]欧成华,李士伦,杜建芬等.煤层气吸附机理研究的发展与展望[J].西南石油学院学报.2003,5:34~38.
    [42]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学,2008.
    [43] Brehner D. Microscopic in-situ studies of the solvent-included swelling of their section ofcole. Fuel.1984,63:1324~1328.
    [44] Bruhauer S. Emment P H. Teller, E.J Amer. Chem. Soc.1938,60:309.
    [45] Bruhauer S. Deming L.S. Deming S.W,et al,J Amer. Chem. Soc.1940,62:1723.
    [46]严继民,张启元,高敬琮.吸附与凝聚:固体的表面与孔(第二版).北京:科学出版社,1986.
    [47] Moffat. D H,Weale K E.Sorption by coal methane at high pressure. Fuel,1995,34:417~428.
    [48] Yang R T, Saunders J T.. Adsorption of gases on coal and heat-treated coals at elevatedtemperature and pressure. Fuel.1985,64:314~327.
    [49]陈昌国,鲜晓红,张代均.无烟煤及其炭化样吸附甲烷的动力学研究.重庆大学学报,1995,18(3):76~79.
    [50]陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理的研究[博士学位论文].重庆:重庆大学,1995.
    [51]何学秋.交变电磁场对煤吸附瓦斯特性的影响.煤炭学报,1996,21:63~67.
    [52] Langmuir I. The constitution and fundamental properties of solids and liquids. Journal ofAmerican Chemical society,1916,38:2221~2295.
    [53] Ettinger I, Zimakov B, Yanovskaya. Natural factors influencing coal sorption propertiesPetro-graphy and the sorption properties of coals[J]. Fuel,1966,45:243~259.
    [54]张力,何学秋,聂百胜等.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1~4.
    [55]张力,何学秋,王恩元等.煤吸附特性的研究.太原理工大学学报,2001,32.4:450~452.
    [56] Ruppel T C. Adsorption of methane on dry coal at elecated pressure[J]. Fuel,1974,53:152~162.
    [57] Rvthven D M. Principles of Adsorption and Adsorption Processes. New York: John Wiley andSons,1984:115~118.
    [58] Dubinbin M M, Stoecki H F. Homogeneous and Heterogeneous Micropore Structure inCarbonaceous Adsorbents. Journal of Colloid&InterfaceSci,1980,75(1):34~42.
    [59] Dubinbin M M. The potential theory of adsorption of gases and vapors for adsorbents withenergetically nonunform surface[J]. Chem Rev,1960,60:235~241.
    [60] Dubinin M M. Chemistry and Physics of Carbon. Carbon,1966,2:51~100
    [61] Stoeck H F. Microporous Carbons and Their Characterization-the Present State of the Art.Carbon,1990,28:1
    [62]王曾辉,高晋生.炭素材料[M].上海:华东化工学院出版社,1991,10:453.
    [63]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1):18~20.
    [64]张时音,桑树勋,刘长江等.煤储层固–液–气相间作用的等温吸附实验研究[J].中国煤田地质,2005.17(2):16~17.
    [65]李宝芳.煤层气及生储原理略述[J].中国煤田地质.1996,8(1):89~94.
    [66] Yee D, Seidle J P.Gas sorption on coal and measurement of gas content[J]. Hydrocarbonfrom coal-AAPG studied in Geological Science,1993,38:203-218.
    [67] Greaves K H,Bowen L.Multi-component gas adsorption—desorption Behavior ofcoal[A].International coalbed methane symposium[C]. USA: Alabama,1993:197~205.
    [68] RADOVIC L R, MENON V C, I EONY, et a1. On the porous structure of coals: Evidence foran interconnected but constricted micropore system and implications for coalbed methanerecovery[J]. Adsorption,1997,3(3):221~232.
    [69] KARACAN C O, OKANDAN E. Assessment of energetic heterogeneity of coals for gasadsorption and its effect on mixture predictions for coalbed methane studies[J]. Fuel,2000,79(15):1963~1974.
    [70] BUSCH A, GENSTERBLUM Y. KROOSS B M. et al. Methane and carbon dioxideadsorption-diffusion experiments on coal: Upscaling and modeling[J]. International Journal ofCoal Geology,2004,60(2-4):151~168.
    [71] CLARKSON C R, BUSTIN R M, Effect of pore structure and gas pressure upon the transportproperties of coal: A laboratory and modeling study.1. Isotherm s and pore volumedistributions [J]. Fuel,1999,78(11):1333~1344.
    [72] CLARKSON C R, BUSTIN R M, Effect of pore structure and gas pressure upon the transportproperties of coal: A laboratory and modeling study.2. Adsorption rate modeling[J]. Fuel,1999,78(11):1345~1362.
    [73] CIARKSON C R. Application of a new multicomponent gas adsorption model to coal gasadsorption systems[J]. SPE Journal,2003,8(3):236~250.
    [74] Busch A, Gensterblum Y, Kcross B M. Methane and CO2sorption and desorptionmeasurement on dry Aargone premium coals: pure component and mixture [J].Int. J.CoalGeol,2003.55:206~224.
    [75] Harpalani S and Pariti U M. Study of coal sorption isotherm using a multi–component gasmixture [J]. International Coal bed Methane Symposium,1993.
    [76] Greaves K H, Bowen L. Multi–component gas adsorption–desorption Behavior of coal [A].International coal bed methane symposium[C] USA: Alabama,1993.197~205.
    [77] Chaback Joseph J, Morgan Don, Yee Dan. Sorption irreversibility and mixture compositionalbehavior during enhanced coal bed methane recovery processes [A]. Gus technologyconference[C]. Calgary, Alberta Canada,1996.
    [78]张遂安,叶建平,唐书恒等.煤对甲烷气体吸附–解吸机理的可逆性实验研究[J].天然气工业,2005.25(1):44~46.
    [79]张遂安,霍永忠,叶建平等.煤层气的置换解吸实验及机理探索[J].科学通报,2005.增刊I:143~146.
    [80]唐书恒,韩德馨.煤对多元气体的吸附与解吸[J].煤炭科学技术,2002.30(1):58~60.
    [81]张庆玲,张群,崔永君等.煤对多组分气体吸附特征研究[J].天然气工业,2005.25(1):57~60.
    [82]于洪观,范维唐,孙茂远等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化,2005.28(1):43~47.
    [83]于洪观,范维唐,孙茂远等.煤对超临界甲烷的吸附与解吸特性研究[J].煤炭转化.2004.27(2):37~40.
    [84]谢勇强.低阶煤煤层气吸附与解吸机理实验研究[D].西安:西安科技大学采矿工程,2006.34~39.
    [85]张子戌,刘高峰,张小东,杨晓娜. CH4/CO2不同浓度混合气体的吸附-解吸实验研究[J].煤炭学报,2009,34(4):551~555.
    [86]琚宜文,姜波,王桂梁等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [87] CLARKSON C R,BUSTIN R M. Variation in micropore capacity and size distribution withcomposition in bituminous coal of the Western Canadian Sedimentary Basin: Implications forcoalbed methane potential[J]. Fuel,1996,75(13):1483~1498.
    [88] LAXMINARAYANA C. CROSDALE P J. Controls on methane sorption capacity of Indiancoals[J]. AAPG Bulletin,2002,86(2):201~2l2.
    [89] Yee D,Seidle J P.Gas sorption on coal and measurement of gas content[J].Hydrocarbonfrom coal-AAPG studied in Geological Science,1993,38:203~218.
    [90]钟玲文.张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990;27(4):29~35.
    [91]苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业.2005,25(1):19~20.
    [92]钱凯,赵庆波,汪泽成等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社.1997:129~132,119~128.
    [93] Ettinger I L,Dmitriev A, Lanrba E.Natural factors influencing coal Sorptionproperties.5.Some special features of sorption of anthracite Coal of the Eastern Donbas[J].Fuel,1966,45:363~371.
    [94] Lamberson M N, Bustin R M. Coalbed methane characteristics of Gate Formation coals,Northeastenr British Columbia: effect of maceral composition[C].AAPG,1993,77(12):2062~2076.
    [95] BUSTIN R M, CLARKSON C R Geological controls on coalbed methane reservoir capacityand gas content [J]. International Journal of Coal Geology,1998,38(1~2):3~26.
    [96] LAXMINARAYANA C. CROSDALE P J. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology,1999,40(4):309~325.
    [97]姚艳斌,刘大锰.华北重点矿区煤储层吸附特征及其影响因素[J].中国矿业大学学报.2007,36(3):308~314.
    [98] Levy, J., Day, S.J., Killingley, J.S. Methane capacity of BowenBasin coals related to coalproperties. Fuel,1997,74:1~7.
    [99]陈富勇,琚宜文等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195~201.
    [100]刘高峰,张子戌,张小东,吕闰生.气肥煤与焦煤的孔隙分布规律及其吸附–解吸特征[J].岩石力学与工程学报,2009,28(8):1587~1592.
    [101] ALEXEEV A D, VASILENKO T A, ULYANOVA E V. Closed porosity in fossil coals[J]. Fuel,1999,78(6):635~638.
    [102] ALEXEEV A D, FELDMAN E P. VASILENKO T A. Alteration of methane pressure in theclosed pores of fossil coals [J]. Fuel,2000,79(8):939~943.
    [103] LI H, OGAWA Y. Pore structure of sheared coals and related coalbed methane[J].Environmental Geology,2001,40(1112):1455~1461.
    [104] Ll H, OGAWA Y, SHIMADA S. Mechanism of methane flow through sheared coals and itsrole on methane recovery[J]. Fuel,2003,82(10):1271~1279.
    [105]周荣福,傅雪海,秦勇.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探,2000,28(5).23~26.
    [106] Joubert J I, Grein C T, Bienstock D. Efect of moisture on the methane capacity of Americancoals[J]. Fuel,1974,53:186~191.
    [107] Krooss B M,B ergenF,G ensterblum Y,et al.High-pressure methane and carbon dioiddeadsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. Int.J.Coal Geol.,2002,51:69~92.
    [108] Laxminarayana C, Corsdale P J.Role of coal type and rank on methane Sorptioncharacteristics of Bowen Basin, Australia, coals[J]. International Journal Coal Geol,1999,40(4):309~325.
    [109]刘曰武,苏中良等.煤层气的解吸/吸附机理研究综述[J].油气井测试,2010,19(6):37~44.
    [110]张庆玲,崔永君,曹利戈.煤的等温吸附实验中各因素影响分析[J].煤田地质与勘探.2004,32(2):16~19.
    [111]陈润,秦勇等.煤层气吸附及其地质意义[J].煤炭科学技,2009,37(8):103~107.
    [112]张小东,刘炎昊等.焦作煤田煤储层物性特征及控气因素[J].天然气地球科学,2009,20(3):446~453.
    [113]秦勇.高煤级煤的显微岩石学特征与结构演化[J].中国矿业大学学报,1995,32(9):34~36.
    [114]吴国代,桑树勋等.地应力影响煤层气勘探开发的研究现状与展望[J].中国煤炭地质,2009,21(4):31~34.
    [115]谭学术,鲜学福.煤的渗透特性研究棚.西安矿业学院学报,1994,14(1):22~25.
    [116]梁冰,章梦涛,王泳嘉.煤层瓦斯与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135~142.
    [117]赵阳升,胡耀青,杨拣等.三维应力下吸附作用对煤岩体气体洛流规律影响的试验研究[J].岩石力学与工程学报,1999,18(6):65l~653.
    [118]唐巨鹏,潘一山,李成全等.有效应力对煤层气解吸渗流影响的试验研究[J].岩石力学与工程学报,2006,25(8): l563~1568.
    [119] Enever J R E, Henning A. The relationship between permeability and effective stress forAustralian coal and its implications with respect to coalbed methane exploration and reservoirmodelling[M]. Proceedings of the1997International Coalbed Methane Symposium.1997:13~22.
    [120] McKee C R, Bumb A C, Koenig R A. Stress Dependent permeability and porosity of Coal[M].Rocky Mountain Association of Geologist,1998:143~153
    [121]何伟钢,唐书恒,谢晓东.地应力对煤层渗透性的影响[J].辽宁工程技术大学学报.2000.19(4):353~355.
    [122] Ramsay J G.1967. Folding and Fracturing of Rocks McGraw Hill, New York..
    [123]苏现波,谢洪波,华四良.煤体脆-韧性变形微观识别标志[J].煤田地质与勘探,2003,31(6):18~21.
    [124] Frodsam K, Gayer R A. The impact of tectonic deformation upon coal seams in the SouthWales coalfield, UK. International Journal of Coal Geology,1999,38(3-4)297~332.
    [125]邵震杰,任文忠,陈家良.煤田地质学[M].徐州:中国矿业大学出版社,1993.
    [126]杨起.中国煤变质作用[M].北京:煤炭工作出版社,1996.
    [127]琚宜文,谭静强,侯泉林等.煤层流变研究现状及发展趋势[J].中国煤炭地质,2008,20(10):7~10.
    [128]王绳祖.高温高压岩石力学发展中的若干问题.第一届高温高压岩石力学学术讨论会议文集.北京:学术期刊出版社,1988.
    [129]周建勋.煤的变形与光性组构的高温高压变形实验研究—及煤田构造中石英的显微构造与组构[D].徐州:中国矿业大学,1991.
    [130]苏现波,陈江峰,孙俊民等.煤层气地质学与勘探开发[M].科学出版社,2001.
    [131]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26~29.
    [132] Gan H, Nandi S P, Walker P L. Nature of porosity in American coals [J]. Fuel,1972,51:272~277.
    [133]张慧,王晓刚.煤的显微构造及其储集性能[J].煤田地质与勘探,1998,26(6):33~36.
    [134] ΧoдoтB B.;宋世钊,王佑安译.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [135]秦勇,徐志伟,张井.高煤级煤孔径结构的自然分类及其应用[J].煤炭学报,1995,20(3):266~251.
    [136]翟光明,何文渊.中国煤层气赋存特点与勘探方向[J].天然气工业.2010,11:1~3.
    [137]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994.
    [138]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [139]严继民,张启元.吸附与凝聚——固体的表面与孔隙[M].北京:科学出版社,1979.
    [140] Gregg S J, Sing K S.Adpsorption,surface area and Porosity,2nd ed.,.London: Academic press,1982.242~257.
    [141]严继民,张启元.吸附法研究固体表面与孔结构[J].石油化工,1977,16:561~573.
    [142]许亚坤.构造煤的围观和超微观结构特征分析[D].焦作:河南理工大学,2010.
    [143] M.Jaroniec,R Madey.非均匀固体上的物理吸附[M](加璐等译).北京:化学工业出版社,2001.
    [144]孙波,王魁军,张兴华.煤的分形孔隙结构特征的研究[J].煤矿安全,1999,1:38~40.
    [145]亓中立.煤的孔隙系统分形规律的研究[J].煤矿安全,1994,6:2~5.
    [146]徐龙君,张代钧,鲜学福.煤微孔的分形结构特征及其研究方法[J].煤炭转化,1995,18(1):31~38.
    [147]傅雪海,焦宗福,秦勇等.低煤级煤平衡水条件下吸附实验[J].辽宁工程技术大学学报,2005,24(2):161~164.
    [148]徐龙君,张代钧,鲜学福.煤微孔表面的分形维数及其变化规律的研究[J].燃料化学学报,1996,24(1):81~86.
    [149]王荣杰,陈义胜,李保卫,徐龙君.用气体吸附法研究煤的分形维数[J].包头钢铁学院学报,1997,16(3):188~192.
    [150] Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Chemical model of coal devolatilisationusing percolation lattice statistics. Energy Fuels1989,3:175~186.
    [151] Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Chemical percolation model fordevolatilisation II: temperature and heating rate effects on product yields. Energy Fuels,1990;3:54~60.
    [152] Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM. Chemical percolation modelfor devolatilisation-3. Direct use of13carbon NMR data to predict effect of coal type. EnergyFuels1992;6:414~31.
    [153] Hirsch, P.B., A. Howie, R.B. Nichloson. Electron Microscopy of Thin Crystals. Butterworths,London,1965.
    [154] Riley, D.P., Proc. Conf. Ultrafine Structure of Coals and Cokes. B.C.U.R.A., London,194~232.
    [155] Warren, B.E., Phys. Rev.,1941,59:693.
    [156]郭盛强,煤体变形对煤层气储层特性的影响[D].焦作,河南理工大学,2006.
    [157]宋党育,张晓逵,苏现波,张小东.应用XRD对煤的微晶结构研究[J],河南理工大学学报,2011.
    [158]翁成敏,潘志贵.峰峰煤田煤的X衍射分析.地球科学,1981,6(1):214~221
    [159]秦勇,徐志伟,张井.高煤级煤孔径结构的自然分类及其应用[J].煤炭学报,1995,3:266-271.
    [160]姜波,秦勇,琚宜文等.构造煤化学结构演化与瓦斯特性耦合机理[J].地学前缘.2009,11(02):262~271.
    [161]降文萍,崔永君,钟玲文等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576~579.
    [162] Levy, J. H., Day, S.J., Killingley, J.S., Methane capacities of Bowen basin coals related tocoal properties. Fuel,1997,76(9):813~819.
    [163]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566~570.
    [164]陈振宏,王一兵,宋岩等.不同煤阶煤层气吸附、解吸特征差异对比[J].天然气工业.2008,3:30~32