铁在谷氨酸兴奋性毒性中的重要作用及运动神经元保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌萎缩侧索硬化(ALS)是中枢神经系统常见的一种慢性神经退行性疾病,以脑和脊髓中选择性的运动神经元变性为特征,临床表现为缓慢起病,进行性发展。ALS是一种致死性疾病,患者多在首次出现症状后的3~5年内死亡。目前,该病病因不清、发病机制不明、缺乏有效的治疗方法。目前证据提示ALS运动神经元的丢失是由于一些复杂的相互作用的机制所致,包括氧化应激、兴奋性毒性作用、细胞骨架异常和蛋白聚集以及遗传因素等。诸多研究表明这些机制之间并不是相互排斥的,在最终导致ALS的运动神经元死亡的不同机制中氧化应激可能起中心作用。
     氧化应激是指活性氧簇(ROS)和活性氮簇(RNS)及其代谢产物产生过多引起的细胞损伤。神经系统氧耗量大,多不饱和脂肪酸含量丰富,抗氧化能力相对较弱。与其他器官相比,神经系统更易受到氧化损伤。中枢神经系统含有非血红素铁,并且在特定部位如黑质和基底节中铁含量非常丰富。诸多研究表明,铁与氧化应激关系密切。铁离子如果不能以适当方式与蛋白或其它配体结合,其可以通过Fenton反应催化形成具有代谢毒性的ROS,攻击生物大分子,从而引起神经元变性。大量临床研究发现,在多种神经退行性疾病中都存在氧化应激和异常铁积聚的现象,如包括帕金森病和阿尔茨海默病在内多种神经退行性疾病病人脑内呈现病理性、区域性铁沉积。据此我们推测,铁过载导致的氧化应激在ALS的发病中可能发挥重要作用。
     我们应用谷氨酸转运体抑制剂苏-羟天冬氨酸(THA)诱导的脊髓体外器官型培养谷氨酸兴奋性毒性模型,探讨铁在谷氨酸兴奋性毒性中的作用,以及绿茶多酚EGCG和莱菔硫烷(SF)对运动神经元的作用和机制。采用免疫组织化学方法观察运动神经元的数目和形态,用Western blot方法检测标本蛋白水平的变化,用多功能酶标仪检测乳酸脱氢酶、丙二醛和谷氨酸的变化。研究发现,在谷氨酸兴奋性毒性模型中,转铁蛋白受体和二价金属离子转运体蛋白表达升高,铁蛋白表达降低,组织内总铁含量增加,氧化应激水平升高,运动神经元数目减少,给予铁螯合剂去铁敏可以有效阻止THA导致的氧化应激,保护运动神经元。绿茶多酚EGCG作用机制复杂,我们研究表明,EGCG可以通过降低细胞间隙的谷氨酸来对抗THA引起的兴奋性毒性,减轻氧化应激,保护运动神经元。莱菔硫烷是一个非常有效的Ⅱ相酶诱导剂,在肿瘤研究中,诸多学者对其进行了深入地探讨。我们发现莱菔硫烷可以通过诱导Ⅱ相解毒酶有效对抗THA引起的运动神经元死亡。另外,我们对谷氨酸兴奋性毒性模型进行了深入地分析研究,为进一步应用此模型进行实验研究夯实了基础。通过上述一系列实验研究,我们阐明了铁在谷氨酸兴奋性毒性中的重要作用以及EGCG和莱菔硫烷通过不同的机制保护运动神经元。这对于研究肌萎缩侧索硬化的发病机制和筛选有效的治疗药物提供了坚实的理论依据。
     第一部分铁在谷氨酸兴奋性毒性中的重要作用
     目的:在脊髓体外器官型培养谷氨酸兴奋性毒性模型中,观察铁转运、储存蛋白和铁含量的变化,并且应用铁螯合剂去铁敏,观察其对运动神经元是否具有保护作用。
     方法:应用脊髓体外器官型培养模型,随即分成3组:对照组、THA组和DFO+THA组。应用Western blot方法检测铁转运和储存蛋白水平的变化,用原子吸收光谱法测量组织中铁含量的变化,用免疫组化方法检测运动神经元数目,用多功能酶标仪检测组织中丙二醛的变化以及培养液中谷氨酸和乳酸脱氢酶的变化。
     结果:100μmol/L THA处理3周后,TfR、DMT1-IRE和DMT1+IRE蛋白表达升高,而Ft-H蛋白表达下降,组织中总铁含量增加。给予铁螯合剂DFO可以有效阻止THA引起的兴奋性毒性,保护运动神经元。但是DFO对于培养液中的谷氨酸没有影响。
     结论:铁在谷氨酸兴奋性毒性中起到重要作用,螯合铁可以有效阻止谷氨酸兴奋性毒性引起的运动神经元损伤。
     第二部分绿茶多酚EGCG对运动神经元的保护机制探讨
     目的:探讨绿茶多酚EGCG对运动神经元的作用和机制,为寻找肌萎缩侧索硬化的治疗药物提供理论依据。
     方法:应用脊髓体外器官型培养模型,随机分成3组:对照组、THA组和EGCG+THA组。用免疫组化方法检测运动神经元数目,用Westernblot方法检测Ⅱ相酶蛋白水平的变化,用多功能酶标仪检测组织中丙二醛的变化以及培养液中谷氨酸和乳酸脱氢酶的变化。
     结果:100μmol/L THA干预后运动神经元数目较正常对照组明显减少(P<0.05),而用5μmol/L EGCG预处理48小时,再给予5μmol/L EGCG+100μmol/L THA联合处理3周后运动神经元数目较THA组明显增加(P<0.05)。EGCG+THA组培养液中谷氨酸的含量较THA组明显降低,同时检测MDA水平也显著下降(P<0.05)。与Ⅱ相酶诱导剂SF保护运动神经元不同,EGCG+THA处理3周后Ⅱ相解毒酶NQO-1和HO-1表达较THA组下降。
     结论:EGCG通过降低细胞间隙的谷氨酸,可以阻止THA引起的兴奋性神经毒性,保护运动神经元。
     第三部分莱菔硫烷诱导Ⅱ相酶表达保护大鼠脊髓运动神经元目的:探讨Ⅱ相酶诱导剂莱菔硫烷(SF)对运动神经元的作用和机制。
     方法:应用SD乳鼠脊髓体外器官型培养模型,随机分成3组:对照组、THA组和SF+THA组。用免疫组化法检测运动神经元数目,用Western blot法检测Ⅱ相酶蛋白水平,用多功能酶标仪检测培养液中谷氨酸的变化。
     结果:THA干预后运动神经元数目较对照组明显减少(P<0.05),而应用SF预处理48 h,再给予SF和THA联合处理3周后运动神经元数目较THA组明显增加(P<0.05),同时Ⅱ相酶NQO-1和HO-1表达明显升高(P<0.05)。
     结论:SF通过诱导Ⅱ相酶NQO-1和HO-1的表达,可以有效预防THA引起的运动神经元损伤。
     第四部分谷氨酸兴奋性毒性模型的研究
     目的:探讨谷氨酸兴奋性毒性模型-THA诱导的脊髓器官型培养模型培养液各成分中谷氨酸的含量及模型培养前后培养液中谷氨酸的变化。
     方法:应用脊髓体外器官型培养模型,随机分成2组:对照组、THA组。用免疫组化法检测运动神经元数目,用多功能酶标仪检测培养基中谷氨酸的含量。
     结果:最小基础培养基(MEM)和马血清(HS)中均含有谷氨酸。经过4周培养后,THA组培养液中谷氨酸的含量明显高于对照组,运动神经元数目较对照组减少。
     结论:THA诱导的脊髓器官型培养模型作为谷氨酸兴奋性毒性模型,我们在应用它时一定要严格检测培养液中谷氨酸的含量,对于每一个处理因素都要考虑其对谷氨酸的影响。
Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive and lethal neurodegenerative disease, characterizing by the degeneration of motor neurons from cortex, brainstem, and spinal cord. ALS is one of the most common neurodegenerative disorders, occurring both sporadically (sALS) and as a familial disorder (fALS) with inherited cases accounting for about 10% of patients. Using the current standard therapy, the typical survival time for patients after diagnosis is three years, although large deviation has been observed. Present evidence indicates that loss of neurons in ALS results from a complex interplay among oxidative injury, excitotoxic stimulation, aggregation and/or dysfunction of critical proteins and genetic factors. Recent investigations support that these mechanisms are not mutually exclusive but are activated as a communal response that may be coordinated by oxidative stress.
     Reactive oxygen species (ROS), such as superoxide anion (O2–), hydrogen peroxide (H2O2), and hydroxyl radical (OH?), are continuously generated during oxidative metabolism in biological systems. ROS are prominent toxic intermediates, potentially damaging all types of biological molecules. Although cellular antioxidants act in concert to detoxify these species, an increase in the production of ROS and/or a decrease in the antioxidant capacity of cells can cause oxidative stress.
     CNS is particularly vulnerable to oxidative damage, due to a high level of oxidative capacity, high concentrations of polyunsaturated fatty acids. In addition, the CNS contains non-haem iron and certain brain structures are particularly rich in iron.
     Iron is essential for normal physiology, and it is implicated in many pathological processes, including neuron degenerative disorders. Iron is known to play an important role in Alzheimer disease, including accelerating amyloid-βaggregation and promoting oxidative damage. We suspected that iron might play an important role in glutamate excitotoxicity and neuronal death. Iron is known to potentiate the toxic effects of ROS by catalyzing the formation of highly reactive hydroxyl radicals from hydrogen peroxide through the Fenton chemistry.
     In the present study, we studied effect of iron on glutamate excitotoxicity and the strategies to protect motor neurons. We measured tissue iron levels and tissue levels of transferrin receptor, divalent metal-ion transporter 1 and ferritin in organotypic culture of rat spinal cord with and without THA-induced glutamate excitotoxicity. Moreover, the role of iron in glutamate excitotoxicity was assessed by measuring the protective activity of iron chelator deferoxamine. Moreover, we studied the mechanisms of EGCG and sulforaphane protects motor neurons in organotypic culture of rat spinal cord.
     We found: 1. THA could increase tissue iron level in the spinal cord tissue, with concomitant modulation of several iron transport and storage proteins, including transferrin receptor, divalent metal-ion transporter 1 and ferritin. More significantly, iron chelator deferoxamine was able to prevent THA-induced motor neuron degeneration completely. 2. EGCG could protect motor neurons via regulating glutamate levels in organotypic culture of rat spinal cord. 3. SF could prevent motor neuron death caused by THA toxicity via inducing the expression of phaseⅡenzymes.
     Part I Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons
     Objective:To study effect of iron on glutamate excitotoxicity. Methods:Organotypic spinal cord cultures were prepared using lumber spinal cord slices from 7-day-old rat pups. The cultures were divided into three groups at random: control, 100μmol/L THA group, DFO plus THA group. The number of motor neurons was assessed by immunohistochemistry, the expression of transferrin receptor, divalent metal-ion transporter 1 and ferritin were assayed with western blot, the level of lactate dehydrogenase, malondialdehyde and glutamate was assayed with ELIASA, the iron level in the explants was assayed with atomic absorption spectrometry.
     Results:At the end of the 3-week THA treatment, we found that the expression levels of TfR, DMT-IRE and DMT1+IRE were all increased significantly after THA treatment, whereas the level of ferritin decreased significantly, total iron content in the explants increased 21.4%. DFO prevented THA-induced neuron death, the number of motor neurons per ventral horn was higher in explants treated with 100μmol/L DFO plus 100μmol/L THA than in the control. Moreover, DFO could prevent the increase of lactate dehydrogenase and malondialdehyde induced by THA. But DFO had no effect on the medium glutamate.
     Conclusion: Iron is a potential key mediator of motor neuron excitotoxicity in organotypic culture of rat spinal cord. Blocking THA-induced iron rise alone may be sufficient for prevention of glutamate excitotoxicity.
     PartⅡThe mechanisms of green tea polyphenol protecting motor neurons
     Objective: To study the mechanisms of green tea polyphenol, EGCG, protecting motor neurons in organotypic culture of rat spinal cord. Methods: The SD rat pups spinal cord organotypic cultures were divided into three groups at random: control, 100μmol/L THA group, EGCG plus THA group. The number of motor neurons was assessed by immunohistochemistry, and the expression of phaseⅡenzymes and EAAT2 were assayed with western blot, the level of malondialdehyde and glutamate was assayed with ELIASA.
     Results: At the end of 3-week treatment, the motor neurons number in the group treated with THA was less than the control group (P<0.05). However, the motor neurons number in the group treated with 5μmol/L EGCG plus 100μmol/L THA was more than group treated with THA at the end of 3 weeks (P<0.05). 5μmol/L EGCG could prevent the increase of glutamate induced by THA (P<0.05). The level of MDA decreased after treated with 5μmol/L EGCG plus 100μmol/L THA. Interestingly, the phaseⅡenzymes (NQO-1 and HO-1) in the group treated with 5μmol/L EGCG plus 100μmol/L THA expressed less than group treated with THA only.
     Conclusions: EGCG could prevent motor neuron death caused by THA toxicity via decreasing the synaptic cleft glutamate level in organotypic culture of rat spinal cord.
     PartⅢSulforaphane protects motor neurons of rat spinal cord via inducing phase II enzymes
     Objective: To investigate whether sulforaphane (SF) protects motor neurons via inducing phaseⅡenzymes.
     Methods: The SD rat pups spinal cord organotypic cultures were divided into three groups at random: control, 100μmol/L THA group, SF plus THA group. The number of motor neurons was assessed by immunohistochemistry, the expression of phaseⅡenzymes were assayed with western blot, and he level of glutamate was assayed with ELIASA.
     Results: At the end of 3-week treatment, the motor neurons number in the group treated with THA was less than the control group (P<0.05). However, the motor neurons number in the group treated with 10μmol/L SF plus 100μmol/L THA was more than group treated with THA at the end of 3 weeks (P<0.05). Meanwhile, the phaseⅡenzymes (NQO-1 and HO-1) in the group treated with 10μmol/L SF plus 100μmol/L THA expressed more than group treated with THA only (P<0.05). But SF had no effect on the medium glutamate.
     Conclusions: SF could prevent motor neuron death caused by THA toxicity via inducing the expression of phaseⅡenzymes.
     PartⅣStudy the model of glutamate excitotoxicity
     Objective: To study the levels of glutamate in medium of THA-induced spinal cord organotypic culture.
     Methods: The SD rat pups spinal cord organotypic cultures were divided into two groups at random: control and 100μmol/L THA group. The number of motor neurons was assessed by immunohistochemistry and the level of glutamate was assayed with ELIASA.
     Results: There is glutamate in minimal essential medium and horse serum. At the end of the 3-week THA treatment, we found that the medium glutamate level treated with THA is higher than the control, and the motor neurons number in the group treated with THA was less than the control group.
     Conclusions: It is important to assay the medium glutamate level in THA-induced spinal cord organotypic culture, and perfect results acquired from this model should be include the effect of treatment on the medium glutamate.
引文
1 Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1): 39-59
    2 Rothstein JD, Jin L, Dykes-Hoberg M, et al. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci, 1993, 90: 6591-6595
    3 Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433: 73-77
    4 Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1988, 1: 623-634
    5 Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamateinduced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15: 961-973
    6 Carriedo SG, Yin HZ, Sensi SL, et al. Rapid Ca2+ entry through Ca2+-permeable AMPA/Kainate channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production. J Neurosci, 1998, 18: 7727-7738
    7 Carriedo SG, Sensi SL, Yin HZ, et al. AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J Neurosci, 2000, 20: 240-250
    8 Casadesus G, Smith MA, Zhu X, et al. Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. J Alzheimers Dis, 2004, 6: 165-169
    9 Castellani RJ, Moreira PI, Liu G, et al. Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res, 2007, 32: 1640-1645
    10 Smith MA, Harris PL, Sayre LM, et al. Iron accumulation in Alzheimerdisease is a source of redox-generated free radicals. Proc Natl Acad Sci USA, 1997, 94: 9866-8
    11 Boldt DH. New perspectives on iron: an introduction. Am J Med Sci, 1999, 318: 207-212
    12 Gerlach M, Ben-Shachar D, Riederer P, et al. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem, 1994, 63: 793-807
    13 Youdim MB, Ben-Shachar D, Riederer P. The possible role of iron in the etiopathology of Parkinson's disease. Mov Disord, 1993, 8: 1-12
    14 Pantopoulos K, Hentze MW. Rapid responses to oxidative stress mediated by iron regulatory protein. Embo J, 1995, 14: 2917-2924
    15 Danzeisen R, Achsel T, Bederke U, et al. Superoxide dismutase 1 modulates expression of transferrin receptor. J Biol Inorg Chem, 2006, 11: 489-498
    16 Walden WE, Selezneva AI, Dupuy J, et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science. 2006, 314(5807):1903-1908
    17 Rouault TA. If the RNA fits, use it. Science, 2006, 314: 1886-1887.
    18 Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/Kainate receptor-mediated injury in vitro. J Neurosci, 1996, 16(13): 4069~4079
    19陈培榕,邓勃主编.现代仪器分析实验与技术.清华大学出版社,北京, 1999
    20 Graham LT, Jr Aprison MH. Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem, 1966, 15: 487-497
    21 Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol, 1990, 28(1): 18-25
    22 Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention.Neurochem Int, 2007, 51(6-7): 333-355
    23 Silani V, Braga M, Ciammola A, et al. Motor neurones in culture as a model to study ALS. J Neurol, 2000, 247(Suppl 1): I28-36
    24 Li CY, Liu XY, Bu H, et al. Prevention of glutamate excitotoxicity in motor neurons by 5,6-dihydrocyclopenta-1,2-dithiole-3-thione: implication to the development of neuroprotective drugs. Cell Mol Life Sci, 2007, 64: 1861-1869
    25 Nielsen P, Fischer R, Buggisch P, et al. Effective treatment of hereditary haemochromatosis with desferrioxamine in selected cases. Br J Haematol, 2003, 123(5): 952-953
    26 Britton RS, Leicester KL, Bacon BR. Iron toxicity and chelation therapy. Int J Hematol, 2002, 76(3): 219-228
    27 Kishi T, Hirooka Y, Kimura Y, et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation, 2004, 109: 2357-2362
    28 Park MJ, Lee SK, Lim MA, et al. Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Res, 2006, 1109: 176-182
    29 Qian ZM, Tang PL. Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta, 1995, 1269: 205-214
    30 Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388: 482-488
    31 Kishi F, Tabuchi M. Human natural resistance-associated macrophage protein 2: gene cloning and protein identification. Biochem Biophys Res Commun, 1998, 251: 775-783
    32 Lee PL, Gelbart T, West C, et al. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis, 1998, 24: 199-215
    1 Mandel S, Weinreb O, Amit T, et al. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem, 2004, 88(6): 1555-1569
    2 Yang CS, Wang ZY. Tea and cancer. J Natl Cancer Inst, 1993, 85(13): 1038-1049
    3 Agarwal R, Katiyar SK, Khan SG, et al. Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem Photobiol, 1993, 58(5): 695-700
    4 Wang ZY, Huang MT, Lou YR, et al. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene initiated SKH-1 mice. Cancer Res, 1994, 54(13): 3428-3435
    5 Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep, 2002, 7(3): 171-177
    6 Guo S, Yan J, Yang T, et al. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry, 2007, 62(12): 1353-1362
    7 Mandel S, Youdim MB. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med, 2004, 37(3): 304-317
    8 Mandel SA, Avramovich-Tirosh Y, Reznichenko L, et al. Multifunctional activities of green tea catechins in neuroprotection: modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 2005, 14(1-2): 46-60
    9 Yang CS, Sang S, Lambert JD, et al. Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res, 2006, 50(2): 170-175
    10 Sutherland BA, Rahman RM, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem, 2006, 17(5): 291-306
    11 Mandel SA, Amit T, Weinreb O, et al. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther, 2008, 14(4): 352-365
    12 Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1): 39-59
    13 Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet, 2007, 369(9578): 2031-2041
    14 Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, et al. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem, 2007, 101(5): 1153-1160
    15 Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet, 2007, 16(Spec No. 2): R233-242
    16 Kabashi E, Valdmanis PN, Dion P, et al. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol, 2007, 62(6): 553-559
    17 Rothstein JD, Jin L, Dykes-Hoberg M, et al. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA, 1993, 90(14): 6591-6595
    18 Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433: 73-77
    19 Silani V, Braga M, Ciammola A, et al. Motor neurones in culture as a model to study ALS. J Neurol, 2000, 247(Suppl 1): I28-36
    20 Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerableto AMPA/Kainate receptor-mediated injury in vitro. J Neurosci, 1996, 16(13): 4069~4079
    21 Graham LT, Jr Aprison MH. Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem, 1966, 15: 487-497
    22 Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol, 1990, 28(1): 18-25
    23 Abib RT, Quincozes-Santos A, Nardin P, et al. Epicatechin gallate increases glutamate uptake and S100B secretion in C6 cell lineage. Mol Cell Biochem, 2008, 310(1-2): 153-158
    24 Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15(4): 961-973
    25 Li CY, Liu XY, Bu H, et al. Prevention of glutamate excitotoxicity in motor neurons by 5,6-dihydrocyclopenta-1,2-dithiole-3-thione: implication to the development of neuroprotective drugs. Cell Mol Life Sci, 2007, 64: 1861-1869
    26 Yu J, Guo Y, Sun M, et al. Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons. Brain Res, 2009, 1257: 102-107
    27 Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol, 2008, 46(4): 1271-1278
    28 Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin, 2007, 28(9): 1343-1354
    1 Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1): 39-59
    2 Simpson EP, Yen AA, Appel SH. Oxidative Stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr Opin Rheumatol, 2003, 15(6): 730-736
    3 Shibata N, Yamada S, Uchida K, et al. Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis. Brain Res, 2004, 1019(1-2): 170-177
    4 Shibata N, Nagai R, Miyata S, et al. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation. Acta Neuropathol, 2000, 100(3): 275-284
    5 Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature, 1993, 362(6415): 59-62
    6 Wagner ML, Landis BE. Riluzole: a new agent for amyotrophic lateral sclerosis. Ann Pharmacother, 1997, 31(6): 738-744
    7 Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/Kainate receptor-mediated injury in vitro. J Neurosci, 1996, 16(13): 4069~4079
    8 Graham LT, Jr Aprison MH. Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem, 1966, 15: 487-497
    9 Rothstein JD, Jin L, Dykes-Hoberg M, et al. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci, 1993, 90: 6591-6595
    10 Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433: 73-77
    11 Silani V, Braga M, Ciammola A, et al. Motor neurones in culture as a model to study ALS. J Neurol, 2000, 247(Suppl 1): I28-36
    12 Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15(4): 961-973
    13 Li CY, Liu XY, Bu H, et al. Prevention of glutamate excitotoxicity in motor neurons by 5,6-dihydrocyclopenta-1,2-dithiole-3-thione: implication to the development of neuroprotective drugs. Cell Mol Life Sci, 2007, 64: 1861-1869
    14 Yu J, Guo Y, Sun M, et al. Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons. Brain Res, 2009, 1257: 102-107
    15 Prochaska HJ, Santamaria AB. Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal Biochem, 1988, 169: 328–336
    16 Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA, 1997, 94(19): 10367-10372
    17 Talalay P. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors, 2000, 12: 5-11
    18 Talalay P. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv Enzyme Regul, 1989, 28: 237-250
    19 Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin, 2007, 28(9): 1343-1354
    20 Trinh K, Moore K, Wes PD, et al. Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson's disease. J Neurosci, 2008, 28(2): 465-472
    21李哲,卜辉,刘晓云,等.Ⅱ相酶诱导剂CPDT抑制大鼠脊髓片内THA引起的运动神经元损伤.基础医学与临床, 2007, 27 (1): 44-48
    22 Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol, 2008, 46(4): 1271-1278
    1 Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int, 2007, 51(6-7): 333-355
    2 Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol, 1990, 28(1): 18-25
    3 Rothstein JD, Jin L, Dykes-Hoberg M, et al. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci, 1993, 90: 6591-6595
    4 Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/Kainate receptor-mediated injury in vitro. J Neurosci, 1996, 16(13): 4069~4079
    5 Graham LT, Jr Aprison MH. Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem, 1966, 15: 487-497
    6 Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci, 1990, 11(11): 462-468
    7 Pardo AC, Wong V, Benson LM, et al. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp Neurol, 2006, 201(1): 120-130
    8 Boston-Howes W, Gibb SL, Williams EO, et al. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem, 2006, 281(20): 14076-14084
    9 Maragakis NJ, Rothstein JD. Glutamate transporters: animal models to neurologic disease. Neurobiol Dis, 2004, 15(3): 461-473
    10 Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci, 2001, 2(11): 806-819
    11 Arriza JL, Fairman WA, Wadiche JI, et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci, 1994, 14(9): 5559-5569
    12 Kojima S, Nakamura T, Nidaira T, et al. Optical detection of synaptically induced glutamate transport in hippocampal slices. J Neurosci, 1999, 19(7): 2580-2588
    1 Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1): 39-59
    2 Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet, 2007, 369(9578): 2031-2041
    3 Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, et al. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem, 2007,101(5): 1153-1160
    4 Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet, 2007, 16(Spec No. 2): R233-242
    5 Kabashi E, Valdmanis PN, Dion P, et al. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol, 2007, 62(6): 553-559
    6 Simpson EP, Yen AA, Appel SH. Oxidative Stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr Opin Rheumatol, 2003, 15(6): 730-736
    7 Filipcik P, Cente M, Ferencik M, et al. The role of oxidative stress in the pathogenesis of Alzheimer's disease. Bratisl Lek Listy, 2006, 107(9-10): 384-394
    8 Calabrese V, Guagliano E, Sapienza M, et al. Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem, 2006, 55(3-4): 263-282
    9 Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience, 2007, 145(4): 1233-1248
    10 Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem, 1992, 59: 1609-1623
    11 Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radical generation: An update. FEBS Lett, 1992, 307: 108-112
    12 Qian ZM, Wang Q. Expression of iron t rans port proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Rev, 1998, 27: 257-267
    13 Liochev SI. The mechanism of‘Fenton-like’reactions and their importance for biological systems: A biologist’s view. Met Ions Biol Syst, 1999, 36: 1–39
    14 Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology, 2000, 149: 43–50
    15 Walden WE, Selezneva AI, Dupuy J, et al. Structure of dual function ironregulatory protein 1 complexed with ferritin IRE-RNA. Science, 2006, 314(5807): 1903-1908
    16 Pantopoulos K, Hentze MW. Rapid responses to oxidative stress mediated by iron regulatory protein. Embo J, 1995, 14: 2917-2924
    17 Rouault TA. If the RNA fits, use it. Science, 2006, 314: 1886-1887
    18 Danzeisen R, Achsel T, Bederke U, et al. Superoxide dismutase 1 modulates expression of transferrin receptor. J Biol Inorg Chem, 2006, 11: 489-498
    19 Shibata N, Yamada S, Uchida K, et al. Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis. Brain Res, 2004, 1019(1-2): 170-177
    20 Shibata N, Nagai R, Miyata S, et al. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation. Acta Neuropathol, 2000, 100(3): 275-284
    21 Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362: 59~62
    22 Beard JL, Connor JR, Jones BC. Iron in the brain. Nutr Rev, 1993, 51(6): 157-170
    23 Floor E. Iron as a vulnerability factor in nigrostriatal degeneration in aging and Parkinson's disease. Cell Mol Biol (Noisy-le-grand), 2000, 46(4): 709-720
    24 Collingwood J, Dobson J. Mapping and characterization of iron compounds in Alzheimer's tissue. J Alzheimers Dis, 2006, 10(2-3): 215-222
    25 Exley C. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of Aβ-42 in senile plaque cores in Alzheimer's disease. J Alzheimers Dis, 2006, 10(2-3): 173-177
    26 Yokel RA. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis, 2006, 10(2-3): 223-253
    27 Brass SD, Chen NK, Mulkern RV, et al. Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging, 2006, 17(1): 31-40
    28 Berg D, Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging, 2006, 17(1): 5-17
    29 Michaeli S, Oz G, Sorce DJ, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts. Mov Disord, 2007, 22(3): 334-340
    30 Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol, 2006, 13(3): 142-148
    31 Kaur D, Yantiri F, Rajagopalan S, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron, 2003, 37(6): 899-909
    32 Shachar DB, Kahana N, Kampel V, et al. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology, 2004, 46(2): 254-263
    33 Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci, 2004, 1012: 306-325
    34 Avramovich-Tirosh Y, Amit T, Bar-Am O, et al. Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer's disease. J Neurochem, 2007, 100(2): 490-502
    35 Weinberg ED, Miklossy J. Iron withholding: a defense against disease. J Alzheimers Dis, 2008, 13(4): 451-463
    36 Kurlander HM, Patten BM. Metals in spinal cord tissue of patients dying of motor neuron disease. Ann Neurol, 1979, 6(1): 21-24
    37 Mizumoto Y, Iwata S, Sasajima K, et al. Alpha particle excited X-ray fluorescence analysis for trace elements in cervical spinal cords of amyotrophic lateral sclerosis. Radioisotopes, 1980, 29(12): 585-589
    38 Markesbery WR, Ehmann WD, Candy JM, et al. Neutron activation analysis of trace elements in motor neuron disease spinal cord. Neurodegeneration, 1995, 4(4): 383-390
    39 Ince PG, Shaw PJ, Candy JM, et al. Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett, 1994, 182(1): 87-90
    40 Kasarskis EJ, Tandon L, Lovell MA, et al. Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci, 1995, 130(2): 203-208
    41 Mizuno Y, Amari M, Takatama M, et al. Transferrin localizes in Bunina bodies in amyotrophic lateral sclerosis. Acta Neuropathol, 2006, 112(5): 597-603
    42 Goodall EF, Haque MS, Morrison KE. Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients. J Neurol, 2008, 255(11): 1652-1656
    43 Olsen MK, Roberds SL, Ellerbrock BR, et al. Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Ann Neurol, 2001, 50(6): 730-740
    44 Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci, 2009, 29(3): 610-619
    45 Yu J, Guo Y, Sun M, et al. Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons. Brain Res, 2009, 1257: 102-107
    46 Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Mol Med, 2001, 7(3): 103-108
    47 Li H, Sun H, Qian ZM. The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends Pharmacol Sci, 2002, 23(5): 206-209
    48 Hentze MW, Caughman SW, Casey JL, et al. A model for the structureand functions of iron-responsive elements. Gene, 1988, 72(1-2): 201-208
    49 Rouault TA, Haile DJ, Downey WE, et al. An iron-sulfur cluster plays a novel regulatory role in the iron-responsive element binding protein. Biometals, 1992, 5(3): 131-140
    50 Koeller DM, Casey JL, Hentze MW, et al. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc Natl Acad Sci USA, 1989, 86(10): 3574-3578
    51 Casey JL, Hentze MW, Koeller DM, et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science, 1988, 240(4854): 924-928
    52 Haile DJ, Rouault TA, Harford JB, et al. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc Natl Acad Sci USA, 1992, 89(24): 11735-11739
    53 De Freitas JM, Liba A, Meneghini R, et al. Yeast lacking Cu-Zn superoxide dismutase show altered iron homeostasis: Role of oxidative stress in iron metabolism. J Biol Chem, 2000, 275(16): 11645-11649
    54 Liochev SI, Fridovich I. The role of O2- in the production of HO.: in vitro and in vivo. Free Radic Biol Med, 1994, 16(1): 29-33
    55 CarríMT, Ferri A, Cozzolino M, et al. Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull, 2003, 61(4): 365-374
    56 Haile DJ, Rouault TA, Tang CK, et al. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc Natl Acad Sci USA, 1992, 89(16): 7536-7540
    57 Beinert H, Kennedy MC. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J, 1993, 7(15): 1442-1449
    58 Keating DJ. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem, 2008, 104(2): 298-305
    59 Baron M, Kudin AP, Kunz WS. Mitochondrial dysfunction in neurodegenerative disorders. Biochem Soc Trans, 2007, 35(Pt5): 1228-1231
    60 Beal MF. Mitochondria and neurodegeneration. Novartis Found Symp, 2007, 287: 183-192; discussion 192-196
    61 Albers DS, Beal MF. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl, 2000, 59: 133-154
    62 Vielhaber S, Kunz D, Winkler K, et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain, 2000, 123 ( Pt7): 1339-1348
    63 Beal MF. Mitochondria and the pathogenesis of ALS. Brain, 2000, 123 (Pt7): 1291-1292
    64 Lederer CW, Torrisi A, Pantelidou M, et al. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics, 2007, 8: 26
    65 Siklos L, Engelhardt J, Harati Y, et al. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol, 1996, 39(2): 203-216
    66 Sasaki S, Iwata M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology, 1996, 47(2): 535-540
    67 Liu R, Li B, Flanagan SW, et al. Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J Neurochem, 2002, 80(3): 488-500
    68 Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev, 2004, 3(3): 265-301
    69 Takeda A, Itoyama Y, Kimpara T, et al. Heme catabolism and heme oxygenase in neurodegenerative disease. Antioxid Redox Signal, 2004,6(5): 888-894
    70 Schipper HM. Heme oxygenase-1: transducer of pathological brain iron sequestration under oxidative stress. Ann N Y Acad Sci, 2004, 1012: 84-93
    71 Suzuki H, Kanamaru K, Tsunoda H, et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest, 1999, 104(1): 59-66
    72 Liu Y, Zhu B, Luo L, et al. Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. Neuroreport, 2001, 12(9): 1841-1845
    73 Chen K, Gunter K, Maines MD. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem, 2000, 75(1): 304-313
    74 Schipper HM. Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol, 2000, 35(6-7): 821-830
    75 Curtis ARJ, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult onset basal ganglia disease. Nature Genet, 2001, 28: 350-354
    76 Zhou B, Westaway SK, Levinson B, et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nature Genet, 2001, 28: 345-349
    77 Merryweather-Clarke AT, Pointon JJ, Shearman JD, et al. Global prevalence of putative haemochromatosis mutations. J Med Genet, 1997, 34(4): 275-278
    78 Adams PC, Reboussin DM, Barton JC, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med, 2005, 352: 1769-1778
    79 Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci, 2004, 5: 863-873
    80 Wang XS, Lee S, Simmons Z, et al. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellularconsequences. J Neurol Sci, 2004, 227(1): 27-33
    81 Restagno G, Lombardo F, Ghiglione P, et al. HFE H63D polymorphism is increased in patients with amyotrophic lateral sclerosis of Italian origin. J Neurol Neurosurg Psychiatry, 2007, 78(3): 327
    82 Sutedja NA, Sinke RJ, Van Vught PW, et al. The association between H63D mutations in HFE and amyotrophic lateral sclerosis in a Dutch population. Arch Neurol, 2007, 64(1): 63-67
    83 Goodall EF, Greenway MJ, van Marion I, et al. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology, 2005, 65(6): 934-937
    84 Park MJ, Lee SK, Lim MA, et al. Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Res, 2006, 1109: 176-182
    85 Kishi T, Hirooka Y, Kimura Y, et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation, 2004, 109: 2357-2362
    86 Finefrock AE, Bush AI, Doraiswamy PM. Current status of metals as therapeutic targets in Alzheimer's disease. J Am Geriatr Soc, 2003, 51(8): 1143-1148
    87 Rogers JT, Randall JD, Cahill CM, et al. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem, 2002, 277(47): 45518-45528
    88 Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci, 2004, 1012: 306-325