转录因子Ss-Nsd1和Ss-Fox1调控核盘菌有性及无性发育的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)是一种具备广泛寄主,能造成至少75个科,278个属的400多种植物病害的植物病原真菌,通常能造成许多重要农作物如:向日葵、大豆、油菜、食用豆类、鹰嘴豆、干豌豆、扁豆及部分单子叶植物如:洋葱和郁金香等的严重病害。在分类学上,核盘菌属于同宗配合子囊真菌门,柔膜菌目,核盘菌科。在核盘菌的生长发育过程中,通过营养菌丝的聚集形成大量表面黑色、质地坚硬的多细胞组织结构,称之为菌核,这些结构使核盘菌在农田土壤中的存活及在传染性繁殖的持久性过程中起到非常重要的作用。菌核能在恶劣的生物及非生物环境如:低温、干燥及微生物刺激等环境中存活数年之久,在适合的环境条件下,菌核能从新萌发形成菌丝或者子囊盘,当子囊盘发育成熟时能释放出大量的子囊孢子开始新的侵染循环。由于核盘菌菌核能适应恶劣环境长期存活而保持长久致病性,所以核盘菌病害一直是世界上防治困难且每年造成巨大经济损失的农业病害之一。
     菌核的生长发育及萌发过程涉及到几个不同的阶段,且受到许多来自外源环境如:光照、温度、活性氧浓度、环境pH、机械因素和营养成分等的调控,同时也受到来自内源性遗传因子的严密调控,如:一些与菌核发育相关且独立和偶联的转录调控途径,特别是一些与AMP环化酶相关的磷酸化,类似ERK的磷酸化-丝裂原活化蛋白激酶链及丝氨酸/苏氨酸磷酸酶2A/2B等的调控途径相关,而且在核盘菌生长发育过程中,菌核还扮演着从无性发育到有性发育转变的关键角色。
     本研究从核盘菌的基因组和突变体库中分离得到两个与核盘菌生长发育调控相关的转录因子Ss-Nsd1和Ss-Fox1,阐明了编码GATA类IVb型锌指蛋白转录因子Ss-Nsd1和Forkhead蛋白家族类转录因子Ss-Fox1在核盘菌生长发育过程中的调控作用。转录因子Ss-Nsd1是一个与构巢曲霉的NsdD同源的蛋白,在核盘菌的子囊梗及子囊盘形成早期,Ss-nsd1是一个依赖于UV-A的组织特异性表达的基因。在Ss-nsd1的敲除突变菌株(ΔSs-nsd1)的培养过程中,其营养菌丝和菌核内部均能产生大量的分生孢子梗及分生孢子,而相反,在野生型菌株中只在菌核表面产生少量分生孢子。由于Ss-nsd1基因的敲除,影响了菌核结构发育的完整性及萌发过程中产囊体的形成,从而导致不能萌发形成子囊盘。同时研究还发现,Ss-nsd1基因的敲除菌株还影响侵染垫的形成,而Ss-fox1基因是一个编码Forkhead蛋白家族的基因。因此,在本研究中构建了Ss-nsd1和Ss-fox1基因的敲除载体,通过基因敲除研究表明Ss-nsd1基因的功能及特点与子囊菌中维持有性及无性发育平衡的功能基因nsdD相类似,主要是通过负调控分生孢子及正调控菌核的发育、侵染垫的形成及子囊盘的发育来维持核盘菌无性到有性发育的转变和平衡,而Ss-fox1的敲除菌株(ΔSs-fox1)则影响核盘菌子囊盘的发育。
     未来的研究工作主要关注与Ss-nsd1和Ss-fox1基因相偶联的一些信号通路及其下游基因的相关研究,旨在搞清楚丝状真菌在有性及无性发育过程中的一些共有的和独特的信号转导途径。
Sclerotinia sclerotiorum (Lib.) de Bary has host range comprises at least75families and278genera including more than400plant species, it is a devastatingnecrotrophic fungal plant pathogen of many agriculture crops including sunflower,soybean, oilseed rape, edible dry bean, chickpea, dry pea, lentils and monocotyledonsuch as onion and tulip. Taxonomically this fungus is a homothallic ascomycetebelonging to the family Sclerotiniaceae of the order Helotiales. Developmentally, ahallmark of this and related fungi is the production of hardy multicellular sclerotiaformed from the aggregation of vegetative hyphae and enclosed by a melanized rindlayer. These structures play a significant role in the survival and persistence ofinfectious propagules in agriculture fields. Sclerotia can survive under harshbiological and physical environments including low temperature, microbially activesoils, and dry environments for several years. Under suitable environmentalconditions, sclerotia germinate either into vegetative hyphae (myceliogenicgermination) or into apothecia (carpogenic germination), with the latter releasinglarge quantities of ascospores that initiate new disease cycles. With its adaptationsfor long-term survival and pathogenicity on a broad range of hosts, S. sclerotiorum isone of the most challenging agricultural pathogens to manage and causes largeglobal economic losses annually.
     The development and carpogenic germination of sclerotia involves severaldistinct stages and is affected by numerous exogenous factors such as photoperiod,temperature, oxygen concentration, ambient pH, mechanical factors and nutrients. Atthe same time, this process is also tightly regulated by intrinsic genetic factors.Independent and cross-talking pathways have been shown to be involved in sclerotium development; in particular, phosphorylative relay involving AMP cyclase,ERK-like mitogen-activated protein kinase and Ser/Thr phosphatases type2A and2B, and represention a transitional structure spanning asexual and sexualdevelopment during the S. sclerotiorum development. In this study, we isolated twotranscriptional factors Ss-Nsd1and Ss-Fox1from the S. sclerotiorum, and we reporton the regulatory functions of the S. sclerotiorum GATA-type IVb zinc-fingertranscription factor Ss-Nsd1and Ss-Fox1in these processes. Ss-Nsd1is orthologousto the Aspergillus nidulans NsdD (never in sexual development) proteins.TheSs-nsd1gene showed a strong UV-A light-dependent and tissue-specific transcriptaccumulation in stipe and early developing apothecium tissues. The Ss-nsd1deletionmutant strains (ΔSs-nsd1) produced phialides and phialospores promiscuously inboth vegetative culture and within sclerotia. In striking contrast, phialosporedevelopment occurred only on the sclerotium surface in the wild type. Loss ofSs-nsd1function affected sclerotium structural integrity and disrupted ascogoniaformation during conditioning for carpogenic germination. As a consequence,apothecium development was abolished. The Ss-nsd1deletion mutants were alsodefective in compound appressorium formation. However, the Ss-fox1is a Forkheadprotein family coding gene. In sum, We functionally and characterized the Ss-nsd1and Ss-fox1genes by gene deletion and demonstrate that the Ss-nsd1functionssimilarly as its ascomycete orthologs nsdD gene in balancing sexual and asexualdevelopments by both negatively regulating phialospore (spermatia) formation andpositively regulating sclerotium, compound appressorium and apotheciumdevelopment, however the Ss-fox1deletion mutant strains (ΔSs-fox1) affectapothecia development in S. sclerotiorum.
     Further study is for Ss-nsd1and Ss-fox1genes linking signaling pathways anddownstream genes have the potential to increase understanding of the common andunique pathways adopted for varying sexual and asexual development in filamentousfungi.
引文
[1] Boland G, Hall R: Index of plant hosts of Sclerotinia sclerotiorum. CanadianJournal of Plant Pathology1994,16:93-108.
    [2] Bolton MD, Thomma B, Nelson BD: Sclerotinia sclerotiorum (Lib.) de Bary:biology and molecular traits of a cosmopolitan pathogen. Molecular PlantPathology2006,7:1-16.
    [3] Whetzel HH: A synopsis of the genera and species of the sclerotiniaceae, afamily of stromatic inoperculate discomycetes. Mycologia1945,37:648-714.
    [4] Kohn LM: Delimitation of the economically important plant pathogenicsclerotinia species. Phytopathology1979,69:881-886.
    [5] Kohn LM: A monographic revision of the genus Sclerotinia. Mycotaxon1979,9:365-444.
    [6] Dumont KP, Korf RP: Sclerotiniaceae I. Generic nomenclature. Mycologia1971:157-168.
    [7] Willetts H, Wong JAL: The biology of Sclerotinia sclerotiorum, S.trifoliorum, and S. minor with emphasis on specific nomenclature. TheBotanical Review1980,46:101-165.
    [8] Backhouse D, Willetts H: A histochemical study of sclerotia of Botrytiscinerea and Botrytis fabae. Canadian journal of microbiology1984,30:171-178.
    [9] Carbone I, Kohn LM: Ribosomal DNA sequence divergence within internaltranscribed spacer1of the Sclerotiniaceae. Mycologia1993:415-427.
    [10] Holst-Jensen A, Kohn L, Jakobsen K, Schumacher T: Molecular phylogenyand evolution of Monilinia (Sclerotiniaceae) based on coding and noncodingrDNA sequences. American journal of botany1997,84:686-686.
    [11] Holst-Jensen A, Kohn LM, Schumacher T: Nuclear rDNA phylogeny of theSclerotiniaceae. Mycologia1997:885-899.
    [12] Willetts H: Morphology, development and evolution of stromata/sclerotia andmacroconidia of the Sclerotiniaceae. Mycological Research1997,101:939-952.
    [13] Adams P, Ayers W: Ecology of Sclerotinia species. Phytopathology1979,69:896-899.
    [14] BEANS EOFWMOF: Epidemiology of Diseases Caused by SclerotiniaSpecies.
    [15] Abawi G, Grogan R: Epidemiology of plant diseases caused by Sclerotiniaspecies. Phytopathology1979.
    [16] Lumsden R: Histology and physiology of pathogenesis in plant diseasescaused by Sclerotinia species. Phytopathology1979,69:890-895.
    [17] Inglis G, Boland G: The microflora of bean and rapeseed petals and theinfluence of the microflora of bean petals on white mold. Canadian Journal ofPlant Pathology1990,12:129-134.
    [18] Turkington T, Morrall R: Use of petal infestation to forecast Sclerotinia stemrot of canola: the influence of inoculum variation over the flowering periodand canopy density. Phytopathology1993,83:682-689.
    [19] Bolton MD, Thomma BP, Nelson BD: Sclerotinia sclerotiorum (Lib.) de Bary:biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol2005,7:1-16.
    [20] Pohronezny K, Purdy L: Sclerotinia Diseases of Vegetables and Field Cropsin Florida. University of Florida;1981.
    [21] Alghisi P, Favaron F: Pectin-degrading enzymes and plant-parasiteinteractions. European Journal of Plant Pathology1995,101:365-375.
    [22] Bateman D, Beer S: Simultaneous production and synergistic action of oxalicacid and polygalacturonase during pathogenesis by Sclerotium rolfsii.Phytopathology1965,55:204-211.
    [23] Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JA, Van Kan JA:Necrotizing activity of five Botrytis cinerea endopolygalacturonasesproduced in Pichia pastoris. The Plant Journal2005,43:213-225.
    [24] Kasza Z, Vagv lgyi C, Févre M, Cotton P: Molecular characterization and inplanta detection of Sclerotinia sclerotiorum endopolygalacturonase genes.Current microbiology2004,48:208-213.
    [25] Maxwell D, Lumsden R: Oxah'c acid production by Sclerotinia sclerotiorumin infected Bean and in culture. Phytopathology1970,60:1395-1398.
    [26] Marciano P, Di Lenna P, Magro P: Oxalic acid, cell wall-degrading enzymesand pH in pathogenesis and their significance in the virulence of twoSclerotinia sclerotiorum isolates on sunflower. Physiological PlantPathology1983,22:339-345.
    [27] Noyes R, Hancock J: Role of oxalic acid in the Sclerotinia wilt of sunflower.Physiological Plant Pathology1981,18:123-132.
    [28] Godoy G, Steadman J, Dickman M, Dam R: Use of mutants to demonstratethe role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum onPhaseolus vulgaris. Physiological and molecular plant pathology1990,37:179-191.
    [29] Favaron F, Sella L, D'Ovidio R: Relationships amongendo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibitingprotein (PGIP) in the interaction between Sclerotinia sclerotiorum andsoybean. Mol Plant-Microbe Interact2004,17:1402-1409.
    [30] Kim YT, Prusky, D., Rollins, J. A.,: An activating mutation of the Sclerotiniasclerotiorum pac1gene increases oxalic acid production at low pH butdecreases virulence. Molecular Plant Pathology2007,8:611-622.
    [31] Cessna SG, Sears VE, Dickman MB, Low PS: Oxalic acid, a pathogenicityfactor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the hostplant. Science Signaling2000,12:2191-2200.
    [32] Guimar es RL, Stotz HU: Oxalate production by Sclerotinia sclerotiorumderegulates guard cells during infection. Plant physiology2004,136:3703-3711.
    [33] Purdy LH: Sclerotinia sclerotiorum: history, diseases and symptomatology,host range, geographic distribution, and impact. Phytopathology1979:875.
    [34] Duncan RW: Evaluation of host tolerance, biological, chemical, and culturalcontrol of Sclerotinia sclerotiorum in sunflower (Helianthus annuus L.).University of Manitoba,2003.
    [35]张军政,杨谦,魏丹,杨雷,张喜林,陈雪莉:东北黑土区核盘菌对大豆寄主的破坏性研究.大豆科学2008,27:633-636.
    [36]李沛利,秦芸,严吉明,叶华智:四川省核盘菌的营养体亲和性.四川农业大学学报2010,28:324-327.
    [37] Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH:Soybean plants expressing an active oligomeric oxalate oxidase from thewheat gf-2.8(germin) gene are resistant to the oxalate-secreting pathogenSclerotina sclerotiorum. Physiological and molecular plant pathology2001,59:297-307.
    [38] Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G:Overexpression of a gene encoding hydrogen peroxide-generating oxalateoxidase evokes defense responses in sunflower. Plant physiology2003,133:170-181.
    [39] Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A: Oxalatedecarboxylase from Collybia velutipes molecular cloning and itsoverexpression to confer resistance to fungal infection in transgenic tobaccoand tomato. Journal of Biological Chemistry2000,275:7230-7238.
    [40] Livingstone DM, Hampton JL, Phipps PM, Grabau EA: Enhancing resistanceto Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene.Plant physiology2005,137:1354-1362.
    [41] Mueller D, Dorrance A, Derksen R, Ozkan E, Kurle J, Grau C, Gaska J,Hartman G, Bradley C, Pedersen W: Efficacy of fungicides on Sclerotiniasclerotiorum and their potential for control of Sclerotinia stem rot on soybean.Plant Disease2002,86:26-31.
    [42] Del Rio L, Martinson C, Yang X: Biological control of Sclerotinia stem rot ofsoybean with Sporidesmium sclerotivorum. Plant Disease2002,86:999-1004.
    [43] Li G, Huang H, Miao H, Erickson R, Jiang D, Xiao Y: Biological control ofSclerotinia diseases of rapeseed by aerial applications of the mycoparasiteConiothyrium minitans. European Journal of Plant Pathology2006,114:345-355.
    [44] Partridge D, Sutton T, Jordan D, Curtis V, Bailey J: Management ofSclerotinia blight of peanut with the biological control agent Coniothyriumminitans. Plant Disease2006,90:957-963.
    [45] McQuilken MP, Gemmell J, Hill RA, Whipps JM: Production ofmacrosphelide A by the mycoparasite Coniothyrium minitans. FEMSmicrobiology letters2003,219:27-31.
    [46] Yang R, Han YC, Li GQ, Jiang DH, Huang HC: Suppression of Sclerotiniasclerotiorum by antifungal substances produced by the mycoparasiteConiothyrium minitans. European Journal of Plant Pathology2007,119:411-420.
    [47] Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, HuangJ: A geminivirus-related DNA mycovirus that confers hypovirulence to aplant pathogenic fungus. Proceedings of the National Academy of Sciences2010,107:8387-8392.
    [48] Bell AA, Wheeler MH: Biosynthesis and functions of fungal melanins.Annual review of phytopathology1986,24:411-451.
    [49] Henson JM, Butler MJ, Day AW: The dark side of the mycelium: melanins ofphytopathogenic fungi. Annual review of phytopathology1999,37:447-471.
    [50] Young N, Ashford AE: Changes during development in the permeability ofsclerotia of Sclerotinia minor to an apoplastic tracer. Protoplasma1992,167:205-214.
    [51] Willetts H: The survival of fungal sclerotia under adverse environmentalconditions. Biological Reviews1971,46:387-407.
    [52] Kohn LM, Grenville DJ: Anatomy and histochemistry of stromatalanamorphs in the Sclerotiniaceae. Canadian Journal of Botany1989,67:371-393.
    [53] Kohn LM, Grenville DJ: Ultrastructure of stromatal anamorphs in theSclerotiniaceae. Canadian Journal of Botany1989,67:394-406.
    [54] Willetts H, Bullock S: Developmental biology of sclerotia. MycologicalResearch1992,96:801-816.
    [55] Townsend BB, Willetts H: The development of sclerotia of certain fungi.Transactions of the British Mycological Society1954,37:213-221.
    [56] Li M, Rollins JA: The development-specific protein (Ssp1) from Sclerotiniasclerotiorum is encoded by a novel gene expressed exclusively in sclerotiumtissues. Mycologia2009,101:34-43.
    [57] Chet I, Henis Y: Sclerotial morphogenesis in fungi. Annual review ofphytopathology1975,13:169-192.
    [58] Le Tourneau D: Morphology, cytology, and physiology of Sclerotinia speciesin culture. Phytopathology1979,69:887-890.
    [59] Rollins JA, Dickman MB: pH signaling in Sclerotinia sclerotiorum:identification of a pacC/RIM1homolog. Appl Environ Microbiol2001,67:75-81.
    [60] Rollins JA: The Sclerotinia sclerotiorum pac1gene is required for sclerotialdevelopment and virulence. Mol Plant-Microbe Interact2003,16:785-795.
    [61] Georgiou CD: Lipid peroxidation in Sclerotium rolfsii: a new look into themechanism of sclerotial biogenesis in fungi. Mycological Research1997,101:460-464.
    [62] Georgiou C, Petropoulou K: Effect of the antioxidant ascorbic acid onsclerotial differentiation in Rhizoctonia solani. Plant pathology2001,50:594-600.
    [63] Georgiou CD, Petropoulou KP: Role of erythroascorbate and ascorbate insclerotial differentiation in Sclerotinia sclerotiorum. Mycological Research2001,105:1364-1370.
    [64] Georgiou CD, Zees A: Lipofuscins and sclerotial differentiation inphytopathogenic fungi. Mycopathologia2002,153:203-208.
    [65] Patsoukis N, Georgiou CD: Effect of sulfite–hydrosulfite and nitrite on thiolredox state, oxidative stress and sclerotial differentiation of filamentousphytopathogenic fungi. Pesticide Biochemistry and Physiology2007,88:226-235.
    [66] Chen CB, Harel A, Gorovoits R, Yarden O, Dickman MB: MAPK regulationof sclerotial development in Sclerotinia sclerotiorum is linked with pH andcAMP sensing. Mol Plant-Microbe Interact2004,17:404-413.
    [67] Harel A, Gorovits R, Yarden O: Changes in protein kinase A activityaccompany sclerotial development in Sclerotinia sclerotiorum.Phytopathology2005,95:397-404.
    [68] Harel A, Bercovich S, Yarden O: Calcineurin is required for sclerotialdevelopment and pathogenicity of Sclerotinia sclerotiorum in an oxalicacid-independent manner. Mol Plant-Microbe Interact2006,19:682-693.
    [69] Li M, Rollins JA: The development-specific ssp1and ssp2genes ofSclerotinia sclerotiorum encode lectins with distinct yet compensatoryregulation. Fungal Genet Biol2010,47:531-538.
    [70] Jurick WM,2nd, Rollins JA: Deletion of the adenylate cyclase (sac1) geneaffects multiple developmental pathways and pathogenicity in Sclerotiniasclerotiorum. Fungal Genet Biol2007,44:521-530.
    [71] Erental A, Harel A, Yarden O: Type2A phosphoprotein phosphatase isrequired for asexual development and pathogenesis of Sclerotiniasclerotiorum. Molecular Plant-Microbe Interactions2007,20:944-954.
    [72] Rollins JA, Dickman MB: Increase in endogenous and exogenous cyclicAMP levels inhibits sclerotial development in Sclerotinia sclerotiorum.Applied and environmental microbiology1998,64:2539-2544.
    [73] Chen C, Dickman MB: cAMP blocks MAPK activation and sclerotialdevelopment via Rap‐1in a PKA‐independent manner in Sclerotiniasclerotiorum. Molecular microbiology2005,55:299-311.
    [74] Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P: BcSAK1, astress-activated mitogen-activated protein kinase, is involved in vegetativedifferentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell2007,6:211-221.
    [75] Georgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G: Sclerotialmetamorphosis in filamentous fungi is induced by oxidative stress.Integrative and comparative Biology2006,46:691-712.
    [76] Miller RM, Liberta AE: The effects of light and tyrosinase during sclerotiumdevelopment in Sclerotium rolfsii Sacc. Canadian Journal of Microbiology1977,23:278-287.
    [77] Kim H-S, Han K-Y, Kim K-J, Han D-M, Jahng K-Y, Chae K-S: The veAgene activates sexual development in Aspergillus nidulans. Fungal Geneticsand Biology2002,37:72-80.
    [78] Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G: Whitecollar-1, a central regulator of blue light responses in Neurospora, is a zincfinger protein. EMBO J1996,15:1650-1657.
    [79] Linden H, Macino G: White collar2, a partner in blue-light signaltransduction, controlling expression of light–regulated genes in Neurosporacrassa. The EMBO journal1997,16:98-109.
    [80] Veluchamy S, Rollins JA: A CRY-DASH-type photolyase/cryptochrome fromSclerotinia sclerotiorum mediates minor UV-A-specific effects ondevelopment. Fungal Genetics and Biology2008,45:1265-1276.
    [81] Bugeja HE, Hynes MJ, Andrianopoulos A: AreA controls nitrogen sourceutilisation during both growth programs of the dimorphic fungus Penicilliummarneffei. Fungal Biology2012,116:145-154.
    [82] Dabas N, Morschhaeuser J: Control of ammonium permease expression andfilamentous growth by the GATA transcription factors GLN3and GAT1inCandida albicans. Eukaryot Cell2007,6:875-888.
    [83] Horst RJ, Zeh C, Saur A, Sonnewald S, Sonnewald U, Voll LM: The Ustilagomaydis Nit2homolog regulates nitrogen utilization and is required forefficient induction of filamentous growth. Eukaryotic cell2012,11:368-380.
    [84] Kim H, Woloshuk CP: Role of AREA, a regulator of nitrogen metabolism,during colonization of maize kernels and fumonisin biosynthesis in Fusariumverticillioides. Fungal Genet Biol2008,45:947-953.
    [85] Kmetzsch L, Staats CC, Simon E, Fonseca FL, Oliveira DL, Joffe LS,Rodrigues J, Lourenco RF, Gomes SL, Nimrichter L, et al: The GATA-typetranscriptional activator Gat1regulates nitrogen uptake and metabolism inthe human pathogen Cryptococcus neoformans. Fungal Genet Biol2011,48:192-199.
    [86] Cleary IA, Lazzell AL, Monteagudo C, Thomas DP, Saville SP: BRG1andNRG1form a novel feedback circuit regulating Candida albicans hyphaformation and virulence. Molecular Microbiology2012,85:557-573.
    [87] Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R: The global nitrogenregulator, FNR1, regulates fungal nutrition-genes and fitness duringFusarium oxysporum pathogenesis. Molecular Plant Pathology2006,7:485-497.
    [88] Du H, Guan G, Xie J, Sun Y, Tong Y, Zhang L, Huang G: Roles of Candidaalbicans Gat2, a GATA-type zinc finger transcription factor, in biofilmformation, filamentous growth and virulence. PloS one2012,7:e29707.
    [89] Limjindaporn T, Khalaf RA, Fonzi WA: Nitrogen metabolism and virulenceof Candida albicans require the GATA-type transcriptional activator encodedby GAT1. Mol Microbiol2003,50:993-1004.
    [90] Pellier AL, Lauge R, Veneault-Fourrey C, Langin T: CLNR1, theAREA/NIT2-like global nitrogen regulator of the plant fungal pathogenColletotrichum lindemuthianum is required for the infection cycle. MolecularMicrobiology2003,48:639-655.
    [91] Canessa P, Munoz-Guzman F, Vicuna R, Larrondo LF: Characterization ofPIR1, a GATA family transcription factor involved in iron responses in thewhite-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol2012,49:626-634.
    [92] Hwang LH, Seth E, Gilmore SA, Sil A: SRE1Regulates Iron-Dependent and-Independent Pathways in the Fungal Pathogen Histoplasma capsulatum.Eukaryotic Cell2012,11:16-25.
    [93] Oberegger H, Schoeser M, Zadra I, Abt B, Haas H: SREA is involved inregulation of siderophore biosynthesis, utilization and uptake in Aspergillusnidulans. Molecular Microbiology2001,41:1077-1089.
    [94] Jung WH, Kronstad JW: The iron-responsive, GATA-type transcription factorcir1influences mating in Cryptococcus neoformans. Mol Cells2011,31:73-77.
    [95] Szewczyk E, Krappmann S: Unrelated clinical isolates of Aspergillusfumigatus are able to mate. Mycoses2010,53:380-381.
    [96] Wong KH, Hynes MJ, Todd RB, Davis MA: Deletion and overexpression ofthe Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy.Microbiology2009,155:3868-3880.
    [97] Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM: The nsdD geneencodes a putative GATA-type transcription factor necessary for sexualdevelopment of Aspergillus nidulans. Mol Microbiol2001,41:299-309.
    [98] Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, WeissRL, Borkovich KA, Dunlap JC: A high-throughput gene knockout procedurefor Neurospora reveals functions for multiple transcription factors. Proc NatlAcad Sci USA2006,103:10352-10357.
    [99] Chen C-H, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ: Genome-wideanalysis of light-inducible responses reveals hierarchical light signalling inNeurospora. EMBO J2009,28:1029-1042.
    [100] Tsitsigiannis D, Kowieski TM, Zarnowski R, Keller NP: Endogenouslipogenic regulators of spore balance in Aspergillus nidulans. Eukaryot Cell2004,3:1398-1411.
    [101] Naito T, Kiba T, Koizumi N, Yamashino T, Mizuno T: Characterization of aunique GATA family gene that responds to both light and cytokinin inArabidopsis thaliana. Biosci Biotechnol Biochem2007,71:1557-1560.
    [102] Luo X-M, Lin W-H, Zhu S, Zhu J-Y, Sun Y, Fan X-Y, Cheng M, Hao Y, Oh E,Tian M, et al: Integration of Light-and Brassinosteroid-Signaling Pathwaysby a GATA Transcription Factor in Arabidopsis. Dev Cell2010,19:872-883.
    [103] Teakle G, Gilmartin P: Two forms of type IV zinc-finger motif and theirkingdom-specific distribution between the flora, fauna and fungi. TrendsBiochem Sci1998,23:100-102.
    [104] Orkin SH: Transcription factors and hematopoietic development. J BiolChem1995,270:4955-4958.
    [105] Pai SY, Truitt ML, Ting CN, Leiden JM, Glimcher LH, Ho IC: Critical rolesfor transcription factor GATA-3in thymocyte development. Immunity2003,19:863-875.
    [106] Bresnick EH, Katsumura KR, Lee H-Y, Johnson KD, Perkins AS: Masterregulatory GATA transcription factors: mechanistic principles and emerginglinks to hematologic malignancies. Nucleic Acids Res2012,40:5819-5831.
    [107] Carlsson P, Mahlapuu M: Forkhead transcription factors: key players indevelopment and metabolism. Developmental biology2002,250:1-23.
    [108] Pohl BS, Knochel W: Of Fox and Frogs: Fox (fork head/winged helix)transcription factors in Xenopus development. Gene2005,344:21-32.
    [109] Wijchers PJ, Burbach JPH, Smidt MP: In control of biology: of mice, menand Foxes. Biochemical Journal2006,397:233-246.
    [110] Jackson BC, Carpenter C, Nebert DW, Vasiliou V: Update of human andmouse forkhead box (FOX) gene families. Hum Genomics2010,4:345-352.
    [111] Sebe-Pedros A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I:Unexpected repertoire of metazoan transcription factors in the unicellularholozoan Capsaspora owczarzaki. Molecular biology and evolution2011,28:1241-1254.
    [112] Schmitt EK, Hoff B, Kück U: AcFKH1, a novel member of the forkheadfamily, associates with the RFX transcription factor CPCR1in thecephalosporin C-producing fungus Acremonium chrysogenum. Gene2004,342:269-281.
    [113] Mazet F, Yu J-K, Liberles DA, Holland LZ, Shimeld SM: Phylogeneticrelationships of the Fox (Forkhead) gene family in the Bilateria. Gene2003,316:79-89.
    [114] Pall M, Brunelli J: A series of six compact fungal transformation vectorscontaining polylinkers with multiple unique restriction sites. Fungal GenetNewsl1993,40:59-62.
    [115] Yelton MM, Hamer JE, Timberlake WE: Transformation of Aspergillusnidulans by using a trpC plasmid. Proc Natl Acad Sci USA1984,81:1470-1474.
    [116] Kohn L, Stasovski E, Carbone I, Royer J, Anderson J: Mycelialincompatibility and molecular markers identify genetic variability in fieldpopulations of Sclerotinia sclerotiorum. Phytopathology1991,81:480-485.
    [117] Russo GM, Dahlberg KR, Van Etten JL: Identification of adevelopment-specific protein in sclerotia of Sclerotinia sclerotiorum.Experimental Mycology1982,6:259-267.
    [118] Kladnik A, Chamusco K, Dermastia M, Chourey P: Evidence of programmedcell death in post-phloem transport cells of the maternal pedicel tissue indeveloping caryopsis of maize. Plant physiology2004,136:3572-3581.
    [119] Bundock P, Hooykaas PJ: Integration of Agrobacterium tumefaciens T-DNAin the Saccharomyces cerevisiae genome by illegitimate recombination.Proceedings of the National Academy of Sciences1996,93:15272-15275.
    [120] Mullins E, Chen X, Romaine P, Raina R, Geiser D, Kang S:Agrobacterium-mediated transformation of Fusarium oxysporum: an efficienttool for insertional mutagenesis and gene transfer. Phytopathology2001,91:173-180.
    [121] Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E,Delseny M, Bernardi G: The distribution of T-DNA in the genomes oftransgenic Arabidopsis and rice. FEBS letters2000,471:161-164.
    [122] Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P:Distribution and characterization of over1000T‐DNA tags in rice genome.The Plant Journal2003,36:105-113.
    [123] Campoy S, Perez F, Martín JF, Gutierrez S, Liras P: Stable transformants ofthe azaphilone pigment-producing Monascus purpureus obtained byprotoplast transformation and Agrobacterium-mediated DNA transfer.Current genetics2003,43:447-452.
    [124] Hanif M, Pardo A, Gorfer M, Raudaskoski M: T-DNA transfer andintegration in the ectomycorrhizal fungus Suillus bovinus using hygromycinB as a selectable marker. Current genetics2002,41:183-188.
    [125] Leclerque A, Wan H, Abschütz A, Chen S, Mitina GV, Zimmermann G,Schairer HU: Agrobacterium-mediated insertional mutagenesis (AIM) of theentomopathogenic fungus Beauveria bassiana. Current genetics2004,45:111-119.
    [126] Sullivan TD, Rooney PJ, Klein BS: Agrobacterium tumefaciens integratestransfer DNA into single chromosomal sites of dimorphic fungi and yieldshomokaryotic progeny from multinucleate yeast. Eukaryotic cell2002,1:895-905.
    [127] Zwiers L-H, De Waard MA: Efficient Agrobacterium tumefaciens-mediatedgene disruption in the phytopathogen Mycosphaerella graminicola. Currentgenetics2001,39:388-393.
    [128] Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A,Coutinho PM, de Vries RP, Dyer PS, Fillinger S: Genomic analysis of thenecrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.PLoS genetics2011,7:e1002230.
    [129] Evans T, Felsenfeld G: The erythroid-specific transcription factor Eryf1: anew finger protein. Cell1989,58:877-885.
    [130] Tsai S-F, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH: Cloning ofcDNA for the major DNA-binding protein of the erythroid lineage throughexpression in mammalian cells. Nature1989,339:446-451.
    [131] Fu Y, Marzluf GA: nit-2, the major nitrogen regulatory gene of Neurosporacrassa, encodes a protein with a putative zinc finger DNA-binding domain.Molecular and cellular biology1990,10:1056-1065.
    [132] Kudla B, Caddick M, Langdon T, Martinez-Rossi N, Bennett C, Sibley S,Davies R, Arst Jr H: The regulatory gene areA mediating nitrogen metaboliterepression in Aspergillus nidulans. Mutations affecting specificity of geneactivation alter a loop residue of a putative zinc finger. The EMBO journal1990,9:1355-1364.
    [133] Daniel-Vedele F, Caboche M: A tobacco cDNA clone encoding a GATA-1zinc finger protein homologous to regulators of nitrogen metabolism in fungi.Molecular and General Genetics MGG1993,240:365-373.
    [134] Reyes JC, Muro-Pastor MI, Florencio FJ: The GATA family of transcriptionfactors in Arabidopsis and rice. Plant Physiol2004,134:1718-1732.
    [135] Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ: Multiplesequence alignment with Clustal x. Trends in Biochemical Sciences1998,23:403-405.
    [136] Sambrook J, Russell DW: Molecular cloning: a laboratory manual. New York:Cold Spring Harbor Laboratory Press;2001.
    [137] K fer E: Origins of translocations in Aspergillus nidulans. Genetics1965,52:217-232.
    [138] Vienken K, Fischer R: The Zn (II)2Cys6putative transcription factor NosAcontrols fruiting body formation in Aspergillus nidulans. Mol Microbiol2006,61:544-554.
    [139] Lara‐Ortíz T, Riveros‐Rosas H, Aguirre J: Reactive oxygen speciesgenerated by microbial NADPH oxidase NoxA regulate sexual developmentin Aspergillus nidulans. Mol Microbiol2003,50:1241-1255.
    [140] Vienken K, Scherer M, Fischer R: The Zn(II)(2)Cys(6) putative Aspergillusnidulans transcription factor repressor of sexual development inhibits sexualdevelopment under low-carbon conditions and in submersed culture.Genetics2005,169:619-630.
    [141] Li M, Liang X, Rollins JA: Sclerotinia sclerotiorum γ-glutamyltranspeptidase (Ss-Ggt1) is required for regulating glutathione accumulationand development of sclerotia and compound appressoria. Mol Plant-MicrobeInteract2012,25:412-420.
    [142] Kim H-j, Chen C, Kabbage M, Dickman MB: Identification andcharacterization of Sclerotinia sclerotiorum NADPH oxidases. Appl EnvironMicrobiol2011,77:7721-7729.
    [143] Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P:NADPH Oxidases are involved in differentiation and pathogenicity inBotrytis cinerea. Mol Plant-Microbe Interact2008,21:808-819.