基于环境激励的大型土木工程结构模态参数识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着经济实力的不断增强,我国的基础建设发展迅猛,涌现了大量大跨径桥梁和大型空间结构。但这些大型工程结构在长达几十年、甚至上百年的服役期间,受到环境载荷作用、疲劳效应、腐蚀效应和材料老化等不利因素的影响,结构不可避免地产生损伤积累、抗力衰减,故对结构的健康状况进行评估显得非常有必要。对这些大型工程结构进行基于环境激励的模态测试,然后利用输出响应识别结构模态参数,再利用模态参数进行状况评估是目前国内外应用很广泛的结构状况评估方法。但环境激励下,由于噪声的干扰、环境激励的不充分以及受到环境温度、湿度、风荷载、交通荷载环境因素等的影响,存在着测试信号的信噪比低、结构模态参数随环境因素变化而变化等问题,这些问题导致一些评估方法虽然在数值或实验室模型中有效,但却很难直接应用到实际工程中。本文以崖门大桥、杜坑特大桥及广州新电视塔Benchmark为工程背景,对上述问题进行研究,主要内容包括以下几个方面:
     (1)基于遗传算法-奇异值分解(GA-SVD)的自适应降噪方法。针对基于SVD降噪方法中难以确定矩阵维数p和重构阶次k的问题,提出基于GA-SVD的自适应降噪方法,利用GA的优化寻优功能,使得上述两个关键参数能自适应地确定。通过对两组含不同频率成分的仿真信号进行降噪处理,总结出取N4或N3(N为数据长度),重构阶次可取信号频率主成分个数2倍的规律。但考虑到实测信号的频率成分比较复杂,为了避免遗漏真实的频率成分,对实测信号进行降噪处理时建议取重构阶次应该大于真实频率主成分的2倍,仍旧取或即可。
     (2)对自然激励技术/特征系统实现算法(NExT/ERA)算法中关键参数的取值进行探讨。基于两座桥梁的实测振动信号,研究了NExT/ERA算法中快速傅里叶变换抽取点数(NFFT)、分析数据的长度和Hankel矩阵的维数这三个关键参数的选取问题,指出:①NFFT过大反而会减少平均次数,造成数据的信噪比低,建议取值为1024或2048;②而分析数据长度不能过小,应至少大于第一阶自振周期T1的60倍才能使识别的模态参数稳定、一致;③对于如何确定Hankel矩阵的维数,提出一取值经验公式,并通过这两座桥梁的实测振动信号进行分析验证。
     (3)介绍了几种常用的模态精度判别指标,对基于输出矩阵的一致模态指标(CMI_O)进行补充,通过数值算例验证其可靠性并提出合适的取值范围。
     (4)针对激励未知情况下,运行模态分析容易遗漏真实模态和产生虚假模态的问题,提出了基于NExT/ERA的多参考点稳定图算法(M-NExT/ERA)。该算法通过设置不同的参考点,利用NExT/ERA识别模态参数,在每一步循环中以阻尼比、CMI_O和模态振幅相干系数(MAC)作为判别标准,能自动确定可信度最高的模态参数,减少主观因素对识别结果的影响。通过一8自由度剪切模型作为数值算例,验证了该算法在非白噪声激励以及强噪声干扰下的适应性。
     (5)MIDP模态参数识别工具箱的开发与工程应用。基于MATLAB平台,开发出模态参数识别工具箱―MIDP‖,使之具有数据载入、数据预处理、模态参数识别和结果后处理四种功能。通过同时使用MIDP和ARTeMIS软件对瑞士Z24桥(连续梁)进行模态参数识别,可知两种软件的识别结果很吻合,MIDP工具箱的可靠性得以验证,最后将MIDP应用于崖门大桥(斜拉桥)和杜坑特大桥(连续梁拱桥)的模态参数识别工作。
     (6)环境因素影响下高耸结构模态参数的变异性分析。基于广州新电视塔(GuangzhouNew TV Tower, GNTVT)Benchmark的实测数据,分析了环境因素对模态参数的影响规律,可知模态频率值随着温度的增加而减少,但阻尼比值的识别精度不高、分布较为离散,难以观察到其变化趋势;利用修正后的ANSYS有限元模型分析温度对GNTVT模态频率的影响机理,可知无论是仅考虑温度影响材料弹模的情况,还是仅考虑温度影响结构内力的情况,温度的升高均会使结构频率降低,但前者所引起的频率改变量较大,应引起重视,后者所引起的频率改变量非常小,几乎可以忽略。
     (7)建立环境因素与结构频率之间的非线性主成分分析-支持向量回归(NLPCA-SVR)模型。提出利用NLPCA消除各环境因素之间的相关性,得到温度和风速为环境因素的主要特征向量,然后输入到SVR模型的建模方法。在本文所讨论的问题上,通过利用网格搜索法(GSM)、遗传算法(GA)和果蝇优化算法(FOA)三种方法确定SVR模型最优的超参数,优化结果表明NLPCA-SVR模型比OriginalData-SVR模型具有更好的泛化性能。通过对NLPCA-SVR模型进行分析与检验,可知该模型可以对环境因素-模态频率数据进行较好的拟合与预测,结合消除环境因素影响的公式,能使前4阶模态频率变幅度减少,与均值更接近。由此可见,该方法具有一定的实用价值。
During the past few decades, along with the growth of China's economic development,infrastructure construction has developed rapidly and a lot of long-span bridges andlarge-scale space structures have been built. These large-scale civil engineering structures areprone to be damaged during their service lives, caused by factors such as complex conditionloads, fatigue effect, corrosion effect and material aging. So structural health monitoring(SHM) is very necessary. The ambient excitation method to identify large-scale structuremodal parameter is widely used for structural health monitoring. Different from traditionalone, modal parameter can be identified from output-only data in ambient excitation method.But due to noise interference, inadequately excitation or uncertain environmental conditions(for example, temperature, humidity, wind loads and traffic loads), it would meet someproblems in ambient excitation method, such as low Signal to Noise Ratio (SNR), modalparameter changes under different environmental conditions. Because of these problems,algorithms for SHM may work in numerical or laboratory model, but difficult to be applied topractical engineering. This dissertation focus on the core problems of output-only modalparameter identification and the Yamen Bridge, Dukeng Bridge and GNTVT Benchmark aretaken as engineering background. The main work and conclusions include as follows:
     (1)An adaptive noise reduction method based on Genetic Algorithm (GA) and SingularValue Decomposition (SVD). The row number of reconstruction matrix (p) and the order ofeffective rank(k) both are difficult to determine for noise reduction based on singular valuedecomposition. An improved adaptive noise reduction method is proposed, using theoptimization function of GA, the two key parameters can be determined adaptively. Twonumerical simulation signals with different frequency components are employed. The resultsshow that can beN4orN3(N is the length of data), is twice as the number ofdominating frequency. For measured signal, the frequency components are more complicatedin order not to miss the true frequency components, when dealing with measured signals,should be more than twice as the number of dominating frequency, but can still beor.
     (2)Investigation of the key parameters in NExT/ERA algorithm. The number ofextraction point for fast Fourier transform(NFFT), the length of data used in modaldentification and the dimension of Hanke matrix are the three key parameters in NExT/ERA algorithm. The three key parameters are investigated through the output-only data of twobridges and the results show that:①NFFT shouldn’t be too large, or it will reduce the timesof average,1024or2048is suitable;②the length of data shouldn’t be too less, it should atleast longer than60times as the first natural vibration period (T1) of the structure;③aempirical equation is proposed for determination of the demension of Hankel matrix and theequation is verified by the output-only data of two bridges.
     (3)Several mode accuracy indicators are introduced. Though numerical simulations, theConsistent-Mode Indicator for Observability matrix (CMI_O) is investigated and verified, andthe suitable range of value for distinguishing the physically true modes from the spuriousmodes is proposed.
     (4)For Operational modal analysis, the key issue is how to identify the weakly excitedmodes and distinguish the physically true modes from the spurious modes. An improvedmultiple reference DOFs stabilization diagram algorithm based on NExT/ERA(M-NExT/ERA) is presented. By setting different reference DOFs in each group of data,NExT/ERA is used to identify modal parameters. Damping ratio, CMI_O and ModalAmplitude Coherence (MAC) was used as threshold to identify the most accuracy modalparameters. A numerical simulation of8DOFs shear model is employed, the results show thatM-NExT/ERA is reliable to identify modal parameter accurately under the conditions ofnon-white noise excitaion and strong noise interference.
     (5)Development and engineering application of MIDP toolbox for modal parameteridentification. Base on MATLAB, a modal parameters identification toolbox named "MIDP"is developed. Data loading, data pre-process, modal identification and data post-processfunctions are involed in MIDP. MIDP and ARTeMIS are bothe used to identify the modalparameter of Z24bridge(Continious bridge) in Swiss.The results show that the modalparameters identified from the two methods are in good agreement and MIDP is reliable. Atlast, MIDP is applied to modal identification of Yamen Bridge(Cable-stayed bridge) andDukeng Bridge(Continious-Arch ccomposite bridge).
     (6)Variability analysis in dynamic properties of high-rise structure under differentenviromental conditions. Basded on the measured data of GNTVT Benchmark, the influencelaw of dynamic properties caused by different environmental conditions is analysed. Theresults show that modal frequencies decrease as the temperature rise, but it is hard to observethe trend of damping ratio. Temperature to frequency influence mechanism of GNTVT isinvestigated through the updated ANSYS model. The results show that both the material property and internal force state of GNTVT will change along with different temperature.Modal frequency decrease as temperature rise, and the change of material property is the mainreason of the change of modal frequency.
     (7)NLPCA-SVR model between envriomental factors and modal frequency.NLPCA-SVR mothod is proposed, NLPCA is first applied to eliminate the correlation amongenvriomental factors and extract principal components from the envriomental factors fordimensionality reduction. The predominant feature vectors in conjunction with the measuredmodal frequencies are then fed into a support vector algorithm to formulate regression models.Grid serach method (GSM), Genetic Algorithm (GA) and Flying fruit optimization algorithm(FOA) are used to determine the hyper-parameters of the SVR models.The results show thatNLPCA-SVR model is better than OriginalData-SVR model, it can accurately fit and predictthe changes of frequencies along with temperature changes.
引文
[1]刘红星,林京,屈梁生,等.信号时域平均处理中的若干问题探讨[J].振动工程学报.1997,10(4):446-450.
    [2]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [3] Mallat S, Zhong S. Characterization of signals from multiscale edges[J]. IEEETransactions on Pattern Analysis and Machine Intelligence.1992,14(7):710-732.
    [4] Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets[J]. IEEETransactions on Information Theroy.1992,38(2):617-643.
    [5]朱焰煌.环境激励下大跨空间钢结构参数识别与损伤预警[D].哈尔滨:哈尔滨工业大学,2010.
    [6]任华新,鲜继清.一种改进的模极大值小波域的去噪算法研究[J].重庆邮电学院报(自然科学报).2005,17(4):418-421.
    [7]袁华,张卫宁,路峻,等.一种改进的小波去噪中模极大值处理的方法[J].系统仿真学报.2005,17(4):838-843.
    [8]张翠芳.基于小波变换的模极大值降噪法的实现及改进[J].南京邮电大学学.2009,29(1):74-77.
    [9] Xu Y, Weaver J B, Healy D M, et al. Wavelet transform domain filters: A spatiallyselective noise filtration technique[J]. IEEE Transactions on Image Processing.1994,3(6):747-758.
    [10]潘泉,戴冠中,张洪才,等.基于阀值决策的子波域去噪方法[J].电子学报.1998,26(1):115-117.
    [11]潘泉,张磊,孟晋丽,等.小波滤波方法及应用[M].北京:清华大学出版社,2005.
    [12]赵瑞珍.小波理论及其在图像、信号处理中的算法研究[D].西安:西安电子科技大学,2001.
    [13] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J].Biometrika.1994,81(3):425-455.
    [14] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on InformationTheroy.1995,41(3):613-627.
    [15]郭晓霞,杨慧中.小波去噪中软硬阈值的一种改良折衷法[J].智能系统学报.2008,3(3):222-225.
    [16] Coifman R R, Donoho D L. Translation-invariant de-noising[R]. USA: Hall of YaleUniversity,1995.
    [17] Vidakovic B. Nonlinear wavelet shrinkage with Bayes rule and Bayes factors[J]. Journalof the American Statistical Association.1998,93(441):173-179.
    [18]赵晓燕,李宏男.一种改进的小波分析消噪方法及其在健康监测中的应用[J].振动与冲击.2007,26(10):137-139.
    [19]刘卫东,刘尚合,胡小锋,等.小波阀值去噪函数的改进方法分析[J].高压电技术.2007,33(10):59-63.
    [20]陶红艳,秦华峰,余成波.基于改进阀值函数的小波域去噪算法的研究[J].压电与声光.2008,30(1):93-95.
    [21] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the HibertSpectrum for Nonlinear and Non-Stationary Time Series Analysis[C]. Proceedings of theRogal Society,London,454:903-995:1998.
    [22] Boudraa A O, Cexus J C, Saidi Z. EMD-Based Signal Noise Reduction[J]. InternationalJournal of Signal Processing.2004,1(1):33-37.
    [23]杜修力,何立志,候伟.基于经验模态分解(EMD)的小波闽值除噪方法[J].北京工业大学学报.2007,33(3):253-272.
    [24]赵志宏,杨绍普,中永军.一种改进的EMD降噪方法[J].振动与冲击.2009,28(12):35-37.
    [25]王婷. EMD算法研究及其在信号去噪中的应用[D].哈尔滨:哈尔滨工程大学,2010.
    [26] Jutten C, Herault A. Blind Separation of Sources,Part I: An Adaptive Algorithm Basedon Neuro mimetic Architecture [J]. Signal Processing.1991,24(1):1-10.
    [27]焦卫东,杨世锡,吴昭同.基于独立分量分析的噪声消除技术研究[J].浙江大学学报(工学版).2004,8(7):872-876.
    [28]季忠,金涛,杨炯明,等.基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J].中国机械工程.2005,16(1):50-53.
    [29]杨燕,袁海庆,赵丽芝.独立分量分析在结构振动信号降噪中的应用[J].华中科技大学学报(城市科学版).2008,25(3):234-237.
    [30] Li H, Li H Q. Denoising of Electric Power System Signals by ICA Based on EMDVirtual Channel[C]. Asia-Pacific Power and Energy Engineering Conference,Wuhan,China:2009.
    [31] Vautard R, Yiou P, Ghil M. Singular-spectrum analysis: A toolkit for short,noisy chaoticsignals[J]. Physical D.1992,58(1-4):95-126.
    [32] Konstantinides K, Yao K. Statistical analysis of effective singular values ni matrix rankdetermination[J]. IEEE Transactions on Acoustics Speech and Signal Processing.1988,36(5):757-763.
    [33] Konstantinides K, Natarajan B, Yovanof G S. Noise Estimation and Filtering UsingBlock-based Singular Value Decomposition[J]. IEEE Transactions on Image Processing.1997,6(3):283-479.
    [34] Yang W X, Peter W T. Development of an Advanced Noise Reduction Method forVibration Analysis Based on Singular Value Decomposition[J]. NDT&E International.2003,36(6):419-432.
    [35] Hou Z. Adaptive Singular Value Decomposition in Wavelet Domain for ImageDenosing[J]. Pattern Recognition.2003,36(8):1747-1763.
    [36] Cakar O, Sanliturk K Y. Elimination of Noise and Transducer Effects From MeasuredResponse Data[C]. Proceedings of ESDA2002:6th Biennial Conference on EngineeringSystems Design and Analysis, Istanbul, Turkey:2002.
    [37] Brenner M J. Non-stationary Dynamic Data Analysis with Wavelet-SVDFiltering[J].Mechanical System and Signal Processing.2003,17(4):765-786.
    [38] Duan L X, Zhang L B, Wang Z H. De-noising of Diesel Vibration Signal Using WaveletPacket and Sigular Value Decomposition[J]. Frontiesrs of Mechanical Engineering inChina.2006,1(4):443-447.
    [39]吕志民,张武军,徐金梧,等.基于奇异谱的降噪方法及其在故障诊断技术中的应用[J].机械工程学报.1999,35(3):85-88.
    [40]杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究[J].西北工业大学学报.2001,19(3):368-371.
    [41]王太勇,王正英,胥永刚,等.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击.2005,24(4):96-99.
    [42]胡谋法,董文娟,工书宏,等.奇异值分解带通滤波背只抑制和去噪[J].电子学报.2008,36(1):111-116.
    [43]康春玉,章新华.一种基于奇异值分解的自适应降噪方法[J].声学技术.2008,27(3):455-458.
    [44]孙鑫晖,张令弥,王彤.基于奇异值分解的频响函数降噪方法[J].振动、测试与诊断.2009,29(3):325-328.
    [45]禹丹江.土木工程结构模态参数识别[D].福州:福州大学,2006.
    [46] Cunha á, Caetano E. Experimental Modal Analysis of Civil Engineering Structures[J].Sound and Vibration.2006:12-20.
    [47] Bendat J S, Piersol A G. Engineering Application of Correlation and Spectral Analysis:Second Edition.[M]. New York: John Wiley&Sons,1993.
    [48] Bao Z W, Ko J M. Determination of Modal Parameters of Tall Buildings with AmbientVibration Measurements[J]. The International Journal of Analytical and ExperimentalModal Analysis.1991,6(1):57-68.
    [49] Lin A N, Nikaeen. A. Dynamic Response of Prototype Concrete Shell-Part1[J].Experimental Techniques.1989,13(1):10-13.
    [50] Luz E. Experimental Modal Analysis of Large-scale Structures[C]. Proceeding of theInternational Conference on Mechanical Dynamics:1987.
    [51]宗周红,Aishi Bijaya J.,林友勤,等.西宁北川河钢管混凝土拱桥的理论和实验模态分析[J].铁道学报.2003,25(4):89-95.
    [52]任伟新,林友勤,彭雪林.大跨度斜拉桥环境振动与分析[J].实验力学.2006,21(4):418-426.
    [53]宗周红,赖苍林,林友勤,等.大跨度预应力混凝土连续刚构桥动力特性分析[J].地震工程与工程振动.2004,24(3):98-104.
    [54]任伟新.环境振动系统识别方法的比较分析[J].福州大学学报(自然科学版).2001,29(6):80-86.
    [55] Prevosto M. Algorithmes d’Identification des Caractéristiques Vibratoires de StructuresMecaniques Complexes[D]. Rennes: INRIA de Rennes: Universitéde Rennes1,1982.
    [56] Brincker R, Zhang L, Andersen P. Modal identification from ambient responses usingfrequency domain decomposition[C]. Proc.18th Int. Modal Analysis Conf.(IMAC), SanAntonio, Tex.:2000.
    [57] Brincker R, Ventura C, Andersen P. Damping estimation by frequency domaindecomposition[C]. Proceedings of19th International Modal Analysis Conference.Kissimmee, USA: Society for Experimental Mechanics:2001.
    [58] Fladung W, Brown D. Multiple reference impact testing[C]. Proceedings of ISMA17,Leuven, Belgium:1992.
    [59]王彤,张令弥.运行模态分析的频域空间域分解法及其应用[J].航空学报.2006,27(1):62-66.
    [60]张坤,段忠东,刘洋.连续刚构桥动力特性参数识别与有限元模型修正[J].公路交通科技.2008,25(9):67-72.
    [61]朱东生,朱烯,田琪.识别桥梁模态参数时域法的仿真研究[J].兰州铁道学院学报.1995,14(3):1-9.
    [62]黄方林,何旭辉,陈政清,等.随机减量法在斜拉桥拉索模态参数识别中的应用[J].机械强度.2002,24(3):331-334.
    [63]蒋远林,周辉,晏忠良,等.铜陵长江大桥主跨的环境随机激励模态测试[J].实验力学.2004,19(2):217-221.
    [64] James G H, Carne T G, Lauffer J P. The Natural Excitation Technique (NExT) for ModalParameter Extraction From Operating Wind Turbines[R]. Albuquerque: Sandia NationalLaboratory report, SAND92-1666.UC-261,1993.
    [65]谭冬梅,姚三,瞿伟廉.振动模态的参数识别综述[J].华中科技大学学报(城市科学版).2002,19(3):73-78.
    [66]罗奎.基于自然激励技术的模态参数识别方法应用研究[J].建材世界.2010,31(3):79-82.
    [67]韩建平,李达文.基于Hilbert-Huang变换和自然激励技术的模态参数识别[J].工程力学.2010,27(8):54-59.
    [68]贺瑞,秦权.改进的NExT-ERA时域模态识别法的误差分析[J].清华大学学报(自然科学版).2009,49(06):803-810.
    [69] Ibrahim S R, Mikulcik E C. A method for the direct identification of vibrationparameters from the free response[J]. Shock and Vibration Bulletin.1977,47(2):183-198.
    [70] Yule G U. On a method of investigating periodicities in disturbed series, with specialreference to Wolfer's sunspot numbers,,1927, A226, pp:267-298.[J]. Philos. Trans.Royal Soc. London.1927, A226:267-298.
    [71] Akaile H. Power Spectrum Estimation through Autogressive Model Fitting[J]. Annals ofthe Institute of Statistical Mathematics.1969,21(1):243-247.
    [72] Smail M. A Time Domain Method for the Identification of Dynamic Parameters ofStructures[J]. Mechanical Systems and Signal Processing.1993,7(1):45-56.
    [73]赵永辉,邹经湘.利用ARMAX模型识别结构模态参数[J].振动与冲击.2000,19(1):34-36.
    [74] Peeters B, De Roeck G. Stochastic Subspace Techniques Applied to ParameterIdentification of Civil Engineering Structures[C]. Proceeding of New Advances inModal Yunthesis of Large Structures:Nonlinear,Damped and Nondeterministic Cases,Lyon,France:1995.
    [75] Boonyapinyo V, Janesupasaeree T. Data-driven stochastic subspace identification offlutter derivatives of bridge decks[J]. Journal of Wind Engineering and IndustrialAerodynamics.2010,98(12):784-799.
    [76]张敏,谢慧才,Sim Sung-Han,等.基于随机子空间的分布式结构模态参数识别[J].深圳大学学报(理工版).2009,26(4):394-399.
    [77]肖祥,任伟新.实时工作模态参数数据驱动随机子空间识别[J].振动与冲击.2009,28(8):148-153.
    [78] Peeters B, De Roeck G. Reference based stochastic subspace identification in civilengineering[J]. Inverse Problems in Science and Engineering.2000,8(1):47-74.
    [79]常军.随机子空间方法在桥梁模态参数识别中的应用研究[D].上海:同济大学,2006.
    [80] Juang J N, Pappa R S. Effects of Noise on Modal Parameters Identified by theEigensystem Realization Algorithm[J]. Journal of Guidance, Control, and Dynamics.1986,9(3):294-303.
    [81] Juang J N, Pappa R S. An Eigensystem Realization-Algorithm for ModalParameter-Identification and Model-Reduction[J]. Journal of Guidance,Control andDynamics.1985,8(5):620-627.
    [82] Ho B L, Kalman R E. Effective Construction of Linear State Variable Models fromInput/output Data[C]. Proceedings of the3rd Annual Allerton Conference on Circuit andSystem Theory:1965.
    [83] Kung S. A New Identification and Model Reduction Algorithm Via Singular ValueDecomposition[C].12th Asilomar Conference on Circuits, Systems and Computers:1978.
    [84] Pappa R S, Juang J N. Galileo Spacecraft Modal Identification Using an EigensystemRealization Algorithm[J]. Journal of the Astronautical Sciences.1985,33(1):15-33.
    [85] Peterson L D, Alvin K F. Time and frequency domain procedure for identification ofstructural dynamic models[J]. Journal of Sound and Vibration.1997,201(1):137-144.
    [86] Lus H, Betti R, Longman R W. Identification of linear structural system usingearthquake induced vibration data[J]. Earthquake Engineering and Structural Dynamics.1999,28(11):1449-1467.
    [87] Darby J L, Brownjohn M W J, Sohn H, et al. Modal Parameter Extraction of z24BridgeData[C]. Proceeding of the19th Identification Modal Analysis Conference, Orlando,USA.:2001.
    [88]李惠彬,秦权,钱良中.青马悬索桥的时域模态识别[J].土木工程学报.2001,34(5):52-61.
    [89]李蕾红,陆秋海,任革学.特征系统实现算法的识别特性研究及算法的推广[J].工程力学.2002,19(1):109-114.
    [90]杨和振,李华军,土国兴.海洋平台结构模态参数识别的仿真研究[J].海洋工程.2003,21(4):75-80.
    [91] Wang S Q, Li H J, Takayama T. Modal identification of offshore platforms usingstatistical method based on ERA [J]. China Ocean Engineering.2005,19(2):175-184.
    [92] Siringoringo D M, Fujino Y. System identification of suspension bridge from ambientvibration response[J]. Engineering Structures.2008,30(2):462-477.
    [93] Tang S K. On the Time-Frequency Analysis of Signals that Decay Exponentially withTime[J]. Journal of Sound and Vibration.2000,234(2):241-258.
    [94] Zhang Z Y, Hua H X, Xu X Z. Modal Parameter Identification through Gabor Expansionof Response Signals[J]. Journal of Sound and Vibration.2003,266(5):943-955.
    [95] Piombo B A D, Fasana A, Marchesiello S, et al. Modelling and identification of thedynamic response of a supported bridge[J]. Mechanical Systems and Signal Processing.2000,14(1):75-89.
    [96] Kijewdki T, Kareem A. Wavelet transforms for system identification in civilengineering[J]. Computer-Aided Civil and Infrastructure Engineering.2003,18(5):339-355.
    [97] Chang C C, Sun Z, Li N. Identification of structural dynamical properties using wavelettransform[C]. Proceeding of the15th international Conference on Structural HealthMonitoring and Intelligent Infrastructure, Tokyo, Japan:2003.
    [98]陈隽,徐幼麟. HHT方法在结构模态参数识别中的应用[J].振动工程学报.2003,16(3):383-388.
    [99] Xu Y L. System identification and structural damage detection: EMD+HT approach.[C].Ou J P, Li H, Duan Z D. Structural Health Monitoring and Intelligent Infrastructure.Talor&Francis Group, London:2006.
    [100]王学敏,黄方林,陈政清. Hilbert-Huang变换在桥梁振动分析中的应用[J].铁道学报.2005,27(2):80-84.
    [101] Yang J N, Lei Y, Lin S, et al. Identification of Natural Frequencies and Dampings ofInsitu Tall Building using Ambient Wind Vibraton Data[J]. Jouranl of EngineeringMechanics.2004,130(5):570-577.
    [102]樊海涛,何益斌,周绪红.基于Hilbert-Huang变换的结构损伤诊断方法研究[J].建筑结构学报.2006,27(6):114-122.
    [103]罗文波,夏松波,王莉,等.对用稳定图识别真假模态的一点改进[J].应用力学学报.1999,16(2):112-116.
    [104] Pappa R S, Elliott K B. Consistent-Mode Indicator for the Eigensystem RealizationAlgorithm[J]. Journal of Guidance Control and Dynamics.1993,16(5):852-858.
    [105] Pappa R S, James G H, Zimmerman D C. Autonomous modal identification of thespace shuttle tail rudder[J]. Journal of Spacecraft and Rockets.1998,35(2):163-169.
    [106]杨和振,李华军,王国兴.海洋平台结构模态参数识别的仿真研究[J].海洋工程.2003,21(4):75-80.
    [107] Yun G J, Lee S G, Shen S. An Improved Mode Accuracy Indicator for EigensystemRealization Analysis(ERA) Techniques[J]. KSCE Journal of Civil Engineering.2012,16(3):377-387.
    [108] Yun G J. Modal Identification and Damage Detection for Structural Health MonitoringUnder Ambient Vibration Environment[C]. Proceeding of the2009StructuresCongress,Austin,Texas:2009.
    [109] Peeters B. System identification and damage detection in civil engineering [D].Belgium: Katholieke Universiteit Leuven,2000.
    [110] Verboven P, Parloo E, Gguillaume P, et al. Autonomous structural healthmonitoring–Part I: Modal parameter estimation and tracking[J]. Mechanical Systems andSignal Processing.2002,16(4):637-657.
    [111] Allemang R J. Vibrations: Experimental Modal Analysis, Course Notes. Seventhedition, Structural Dynamics Research Laboratory, University of Cincinnati, OH,USA1999/日期.
    [112]樊江玲,张志谊,华宏星.一种改进的随机子空间辨识方法的稳定图[J].振动与冲击.2010,29(2):31-34.
    [113]常军,孙利民,张启伟.基于两阶段稳定图的随机子空间识别结构模态参数[J].地震工程与工程振动.2008,28(3):47-51.
    [114] Alampalli S. Influence Of In-service Environment On Modal Parameters[C]. Societyfor Experimental Mechanics,Inc.Press.Proceedings of IMAC16.Santa Barbara:Societyfor Experimental Mechanics:1998.
    [115] Roberts G P, Pearson A J. Health monitoring of structures-towards a stethoscope forbridges[C]. Proceedings of the ISMA23, International Conference on Noise andVibration Engineering, Leuven, Belgium:1998.
    [116] Farrar C R, Doebling S W, Cornwell P J, et al. Variability of Modal ParametersMeasured on the Alamosa Canyon Bridge[C]. Proceedings of the15th InternationalModal Analysis Conference.Orlando: Pergamon Press,1997.
    [117] Peeters B, De Roeck G. One-year monitoring of the Z24-Bridge: environmental effectsversus damage events[J]. Earthquake Engineering&Structural Dynamics.2001,30(2):149-171.
    [118] Xia Y. Long term vibration monitoring of an RC slab Temperature and humidityeffect[J]. Engineering Structures.2006,28(3):441-452.
    [119] Peeters B, Maeck J, De Roeck G. Dynamic monitoring of the Z24Bridge:SeparatingTemperature Effects from Damage[C]. Proceeding of the European COST F3Conference on System Identification Structural Health Monitoring, Madrid,Spain:2000.
    [120]樊可清,倪一清,高赞明.大跨度桥梁模态频率识别中的温度影响研究[J].中国公路学报.2006,19(2):67-73.
    [121] Ni Y Q, Hua X G. Correlating modal properties with temperature using long-termmonitoring data and support vector machine technique[J]. Engineering Structures.2005,27(12):1762-1773.
    [122] Hua X G, Ni Y Q, Ko J M. Modeling of temperature-frequency correlation usingcombined principal component analysis and support vector regression technique[J].Journal of Computing in Civil Engineering.2007,21(2):122-135.
    [123] Ni Y Q, Zhou H F, Ko J M. Generalization Capability of Neural Network Models forTemperature-Frequency Correlation Using Monitoring Data[J]. Journal of StructuralEngineering.2009,135(10):1290-1300.
    [124] Zhou H F, Ni Y Q, Ko J M. Constructing input to neural networks for modelingtemperature-caused modal variability: Mean temperatures, effective temperatures, andprincipal components of temperatures[J]. Engineering Structures.2010,32(6):1747-1759.
    [125]李顺龙,李惠,欧进萍,等.考虑温度和风速影响的桥梁结构模态参数分析[J].土木工程学报.2009,42(4):100-106.
    [126] Zhou H F, Ni Y Q, Ko J M, et al. Modeling of Wind and Temperature Effects on ModalFrequencies and Analysis of Relative Strength of Effect[J]. Wind and Structures.2008,11(1):35-50.
    [127]余建星,王新岐,王选仓.斜拉桥样条有限条三维颤振分析[J].中国市政工程.2002(4):24-26.
    [128]盛英.基于小波变换的语音信号降噪研究[D].哈尔滨:哈尔滨工业大学,2007.
    [129] Golub G H, Van Loan C F. Matrix Computations. Second Edition[M]. John HopkinsUniversity Press,1989.
    [130] Takens F. Detecting Strange Attractors in Turbulence [C]. Dynamical Systems andTurbulence, Lecture Notes in Mathematics,Berlin: Springer-Verlag,1981.
    [131]关晓勇.基于奇异值分解的状态监测与故障诊断方法研究[D].大连:大连理工大学,2005.
    [132]谢居静.基于平稳性和信噪比的桥梁环境振动响应信号质量评价[D].长沙:中南大学,2010.
    [133] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in C: The Art ofScientific Computing[M]. Cambridge University Press,1988.
    [134] Maia N M M. Fundamentals of Singular Value Decomposition[C]. Proceedings of the9th International Modal Analysis Conference:1991.
    [135]王维,张英堂,徐章遂.基于动态聚类的奇异值分解降噪方法研究[J].振动工程学报.2008,21(3):304-308.
    [136]胡广书.数字信号处理[M].北京:清华大学出版社,2003.
    [137] Holland J H. Adaptation In Natural And Systems[M]. Michigan: University ofMichigan Press,1975.
    [138]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.
    [139] Clough R W, Penzien J. Dynamics Of Structures(2nd Edition)[M]. New York:McGraw-Hill,1993.
    [140]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [141]李惠彬.大型工程结构模态参数识别技术[M].北京:北京理工大学出版社,2007.
    [142] Gilbert E G. Controllability and observability in multivariable control systems[J].SIAM Journal on Control.1963,1(2):128-151.
    [143]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [144] Caicedo J M, Dyke S J, Johnson E A. Natural excitation technique and eigensystemrealization algorithm for phase I of the IASC-ASCE benchmark problem: Simulateddata[J]. Journal of Engineering Mechanics.2004,130(1):49-60.
    [145] Nayeri R D, Tasbihgoo F, Wahbeh M, et al. Study of Time-Domain Techniques forModal Parameter Identification of a Long Suspension Bridge with Dense SensorArrays[J]. Journal of engineering mechanics.2009,135(7):669-683.
    [146] Cooper J E, Wright J R. Spacecraft in-orbit identification using eigensystem realizationmethods[J]. Journal of Guidance Control and Dynamics.1992,15(2):352-359.
    [147] Johnson E A, Lam H F, Karafygiotis L S. A Benchmark Problem for Structure HealthMonitoring and Damage Detection[C]. Proceedings of the Engineering MechanicsSpecialty Conference,Austin,Texas:2000.
    [148] Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE StructuralMonitoring Problem Using Simulated Data[J]. Journal of Engineering Mechanics.2004,130(1):3-15.
    [149] Caughey T K. Classical normal modes in damped linear dynamic systems[J]. Journal ofApplied Mechanics.1960,27(6):269-271.
    [150] Rofooeia F R, Mobarakea A, Ahmadi G. Generation of artificial earthquake recordswith a nonstationary Kauai-Tajimi model[J]. Engineering Structures.2001,23(7):827-837.
    [151]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动DGGC.1991,11(3):45-53.
    [152] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [153]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报.2003,36(5):5-10.
    [154]周耀.地铁车站结构健康监测研究[D].北京:北京交通大学,2008.
    [155]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动.1984,4(3):1-11.
    [156] Magalh es F, Caetano E, Cunha á. Challenges in the Application of Stochastic ModalIdentification Methods to a Cable-Stayed Bridge[J]. Journal of Bridge Engineering.2007,12(6):746-754.
    [157]董书伟,刘晓平,应怀樵. SVD降噪方法在模态阻尼比参数识别中的应用[J].振动工程学报(增刊).2004,17(S):1018-1021.
    [158] Iglesias A M. Investigating Various Modal Analysis Extraction Techniques to EstimateDamping Ratio[D]. Virginia Polytechnic Institute and State University,2000.
    [159]黄方林,何旭辉,陈政清,等.识别结构模态阻尼比的一种新方法[J].土木工程学报.2002,35(6):20-23.
    [160] Structural Vibration Solutions公司[DB/OL]. http://svibs.com.
    [161] Lms公司[DB/OL].. http://www.lmschina.com.
    [162]东方振动与噪声研究所[DB/OL]. http://www.coinv.com.cn/product/daspmas.htm.
    [163]东华测试技术有限公司[DB/OL]. http://www.dhtest.com/motai.htm.
    [164] N-Modal软件[DB/OL].. http://www.dytac.com.cn.
    [165] Matlab官方网站[DB/OL]. http://www.mathworks.com.
    [166] Uff文件说明文档[DB/OL].http://www.sdrl.uc.edu/universal-file-formats-for-modal-analysis-testing-1.
    [167]王彤,张令弥,邵姗姗.模态测试与分析软件中的通用文件读写接口设计[J].振动与冲击.2006,25(6):147-149.
    [168]伯晓晨. MATLAB工具箱应用指南-信息工程篇[M].北京:电子工业出版社,2000.
    [169]王广斌,刘义伦,金晓宏,等.基于最小二乘原理的趋势项处理及其MATLAB的实现[J].有色设备.2005(5):4-8.
    [170]孙苗钟.基于MATLAB的振动信号平滑处理方法[J].电子测量技术.2007,30(6):55-57.
    [171] Simces研究项目[DB/OL]. http://www.kuleuven.ac be/bwm/SIMCES.htm.
    [172] Peeters B, De Roeck G, Hermans L. Comparision of system identification methodsusing operational data of a bridge test[C]. Proceedings of ISMA23, Noise and VibrationEngineering,Leuven, Belgium:1998.
    [173] Maeck J, De Roeck G. Description of Z24Benchmark[J]. Mechanical Systems andSignal Processing.2003,17(1):127-131.
    [174] Z24桥测试数据[DB/OL]. http://new.svibs.com/download/examples_z24.htm.
    [175] SAMCO Final Report, F04Case Studies:Bridge Z24-Switzerland[R].Department ofCivil Engineering,Division of Structural Mechanics, Katholieke Universiteit Leuven,2006.
    [176]杨佑发,白文轩,魏建东.采用Ernst公式计算斜拉桥拉索振动特性的精度分析[J].世界地震工程.2008,24(2):50-53.
    [177]胡利平.崖门大桥主桥斜拉桥-工程检测试验报告[R].广东省交通建设工程质量检测中心,2002.
    [178] Illinois SHM Project[DB/OL]. http://shm.cs.uiuc.edu.
    [179]侯立群,欧进萍,赵雪峰,等.哈尔滨四方台斜拉桥模态参数和索力识别[J].振动与冲击.2009,28(5):106-110.
    [180]陈刚,任伟新.基于环境振动的斜拉桥拉索基频识别[J].地震工程与工程振动.2003,23(3):100-106.
    [181] Zui H S T A. Practical Formulas for Estimation of Cable Tension by VibrationMethod[J]. Journal of Structural Engineering.1996,122(6):651-656.
    [182]王卫锋. PC斜拉桥的施工监测[D].广州:华南理工大学,2000.
    [183]罗世东.铁路桥梁大跨度组合桥式结构的应用研究[J].铁道标准设计.2005(11):1-4.
    [184]黄晓彬,李涛,吴定俊.大跨度单线铁路连续梁拱桥动力特性分析[J].铁道标准设计TDBS.2009(7):59-62.
    [185]闵志华,孙利民,淡丹辉.影响斜拉桥模态参数变化的环境因素分析[J].振动与冲击.2009,28(10):99-105.
    [186]孙君,李爱群,丁幼亮,等.润扬大桥悬索桥模态频率-温度的季节相关性研究及其应用[J].工程力学.2009,26(9):50-55.
    [187] Sohn H. Effects of Environmental and Operational Variability on Structural HealthMonitoring[J]. Philosophical Transactions of the Royal Society A.2007,365(1851):539-560.
    [188] GNTVT benchmark[DB/OL]. http://www.cse.polyu.edu.hk/benchmark/index.htm.
    [189] Faravelli L, Ubertini F, Fuggini C. Subspace Identification of the Guangzhou New TVTower[C]. Proceedings of5th World Conference on Structural Control and Monitoring,Tokyo:2010.
    [190] Kraemer P, Fritzen C P. Aspects of Operational Modal Analysis for Structures ofOffshore Wind Energy Plants[C]. Proceedings of IMAC-XXVIII:277-284, Jacksonville,Florida, USA:2010.
    [191] Cluni F, Gusella V, Ubertini F. A parametric investigation of wind-induced cablefatigue[J]. Engineering Structures.2007,29(11):3094-3105.
    [192] Ubertini F, Giuliano F. Computer simulation of stochastic wind velocity fields forstructural response analysis: comparisons and applications[J]. Advances in CivilEngineering.2010,2010.
    [193]何少宁.广州新电视塔竖向地震作用分析[D].西安:西安建筑科技大学,2006.
    [194]李春林.高耸结构风振响应分析研究[D].广州:广州大学,2007.
    [195]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [196]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [197] Brownjohn J M W, Dumanoglu A A, Severn T. Ambient vibration survey of the FatihSultan Mehmet(second Bosporus) suspension bridge[J]. Earthquake Engineering andStructural Dynamics.1992,21(10):907-924.
    [198] Zhang D, Zhang L. Matrix Transformation Method for Updating Dynamic Model[J].AIAA Journal.1992,30(5):1440-1443.
    [199]钟颖.基于静力测试数据的桥梁结构有限元模型修正[D].成都:西南交通大学,2009.
    [200]梁文广.框架结构模型修正与损伤识别研究[D].重庆:重庆大学,2009.
    [201]杜思义.基于频率变化与单元矩阵摄动理论的结构损伤识别方法研究[D].重庆:重庆大学,2005.
    [202]闫桂荣,段忠东,欧进萍.遗传算法在结构有限元模型修正中的应用[J].哈尔滨工业大学学报.2007,39(2):181-186.
    [203]王士同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1998.
    [204]王兴元,赵敏,樊印海.船舶电力负荷预测混沌时间序列分析法[J].大连理工大学学报.2010,50(1):141-144.
    [205]昊简彤,王建华.神经网络技术及应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [206]程丽丽.支持向量机集成学习算法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [207]唐阔,胡国圣,车喜龙,等.基于遗传算法优化支持向量回归机的网格负载预测模型[J].吉林大学学报(理学版)JLDX.2010,48(2):251-255.
    [208]耿睿,崔德光,徐冰.应用支持向量机的空中交通流量组合预测模型[J].清华大学学报(自然科学版).2008,48(7):1205-1208.
    [209] Pearson K. On Lins and planes of closest fit To systems of points in space[J].Philosophical Magazine.1901,2(6):559-572.
    [210] Hotelling H. Analysis of a complex of statistical variables into principal components[J].Journal of Educational Psychology.1933,24(6):417-441,498-520.
    [211] Kramer M A. Nonliner principal component analysis using auto-associative neuralnetworks[J]. AIChE Journal.1991,37(2):233-243.
    [212] Cybenko G. Approximation by superposition of a sigmoidal function[J]. Mathematicsof Control,Signals and Systems.1989,2(3):303-314.
    [213] Vapnik V N. The nature of statistical learning theory [M]. New York: Springer Verlag,1995.
    [214] Smola A J, Sch lkopf B. A tutorial on support vector regression[J]. Statistics andComputing.2004,14(3):199-222.
    [215]刘靖旭.支持向量回归的模型选择及应用研究[D].长沙:国防科学技术大学,2006.
    [216] Scholkopf B, Sung K K, Burges C J, et al. Comparing support vector machines withGaussian kernels to radial basis function classifiers[J]. IEEE transactions on signalprocessing.1997,45(11):2758-2765.
    [217] Cherkassky V, Ma Y. Comparison of model selection for regression[J]. NeuralComputation.2003,15(7):1691-1714.
    [218] Soares C, Brazdil P B, Kuba P. A meta-learning method to select the kernel width insupport vector regression[J]. Machine Learning.2004,54(3):195-209.
    [219] Chapelle O, Vapnik V N, Bousquet O, et al. Choosing Multiple Parameters for SupportVector Machines[J]. Machine Learning.2002,46(1):131-159.
    [220]余晓琳.自锚式悬索桥静力可靠度研究[D].广州:华南理工大学,2011.
    [221] Cherkassky V, Ma Y. Selection of meta-parameters for support vector regression[C].Proceedings of ICANN2002,Verlag Berlin Heidelberg:Springer:2002.
    [222]肖建,于龙,白裔峰.支持向量回归中核函数和超参数选择方法综述[J].西南交通大学学报.2008,43(3):297-302.
    [223]奉国和. SVM分类核函数及参数选择比较[J].计算机工程与应用.2011,47(3):123-128.
    [224]邵信光,杨慧中,陈刚.基于PSO的支持向量机参数选择及其应用[J].控制理论与应用.2006,23(5):740-743.
    [225] Pan W T. A new evolutionary computation approach: Fruit Fly OptimizationAlgorithm[C].2011Conference of Digital Technology and innovationManagement,Taipei:2011.
    [226]潘文超.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报(社会科学版).2011,29(4):1-5.
    [227] Rencher A C. Methods of multivariate analysis(2nd Edition)[M]. New York: John wiley&Sons,2002.