酶反应机理的多理论层次量子力学/分子力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是生物体内高效的催化剂,它能显著地催化各种生化反应过程,促进生物体的新陈代谢。在大多数的生命活动中,酶促反应都起着至关重要的作用。透彻的理解和领悟酶的“工作”机制是进一步理解生命过程的根本性的要求;也是进一步应用酶的高效、专一性服务于生命活动过程的内在要求。实验上,三维酶结构的解析技术(例如:x-ray,NMR等)和基因工程都取得了巨大的进展。不过,酶的结构与其催化功能是如何相关的,以及在一个具体的催化反应里不同的催化机理的可行性的如何甄别,这些都不是完全清楚,计算机模拟为我们开辟了除实验、理论之外的又一新的途径。
     酶是至少包括了数千上万个原子的大分子而且是非均质的,它的非凡的催化能力不仅由活性中心决定而且也受蛋白和溶剂控制。这就要求计算中要考虑整个体系。QM/MM方法折中而有效的考虑了计算精度的需求与花费的可行性,已成为研究溶液及酶体系反应的一个重要手段。在QM/MM方法计算中,多个理论水平层次的QM方法从半经验水平的方法到从头算的分子轨道或密度泛函理论都能被应用。不过一直以来,准确的从头算水平的QM/MM研究由于其需较多的机时花费大多被用于单点计算和势能面的决定,在计算自由面中也只是用优化QM部分、采样MM部分的策略,从头算水平的QM与MM部分的同步采样也局限于相对比较小QM部分的一维的自由能面的获得。半经验水平的QM/MM的计算机时花费是较低的,能有效的被用于自由能面的采样,不过半经验方法的准确度是体系依赖的,在不同的体系中它的结果可能是不可靠的。这就要求应用多理论层次的QM/MM如何有效而准确来获得势能面和自由能面。
     我们在这个方面进行了一系列的工作,包括了多理论层次的QM/MM研究酶的催化机理。在第二章中,我们详述这个工作。我们用多理论层次的QM/MM方法研究了L-丝氨酸脱水酶(SDH,EC 4.3.1.17)的催化机理。L-丝氨酸脱水酶(SDH,EC 4.3.1.17)是一种重要的5′-磷酸吡哆醛(PLP)依赖的酶。在这个酶的催化反应研究中,我们获得了重要的发现,包括在Schiff碱的形成步骤中底物丝氨酸的羧基的化学角色和在β-羟基消去步骤中一个涉及磷酸基团的质子依赖的机理。后面这步反应是随着α-氢的消去而后自发的(无能垒的)进行的,这也说明这是一个连续进行的α,β-消去反应。我们也获得了这个催化过程的限速步骤和被酶环境稳定的过渡态。在这个过渡态,底物丝氨酸的羧基和Lys41的氨基的电荷被局域化,使得它们与酶环境特定的相互作用能够显著的降低活化能。另一方面,在从头算QM/MM方法研究复杂的酶反应中一个主要的困难是准确合适的反应坐标的选择,在这个研究中,我们利用了半经验AM1/MM和路径优化技术克服了这个困难。
     我们的工作也涉及了多理论层次的QM/MM方法计算多维的自由能面来获得复杂体系(例如酶体系)的热力学性质。自由能的计算是研究热力学性质的首要任务,同样是分子模拟领域最困难的方向之一。在第三章里,叙述了我们提出的应用自适应伞形采样方法来探索多维的自由能面用以研究溶液中或酶中的复杂的化学反应问题。自适应伞形采样是一种高效的采样稀少事件的重要方法。我们为了计算其准确的自由能面,我们巧妙地设计了一个逐步递增阀来严格的控制在研究体系中的自适应伞形势增加。在采样过程中,我们应用了AM1/MM这个半经验模型,为了避免了AM1模型本身的缺点,我们加入了特异的反应参数,使得不失构象采样的高效性的同时也保证了采样势的正确。为了进一步提高效率,一个全局背景势也被应用,它作为反应坐标的函数一定程度上弥补了自由能面上深的局部极小、从而降低了能垒。我们用甲酸二聚体(FAD)测试了我们的方法,得到了收敛的自由能面,溶剂效应被分析,获得了与已报道的一致的结果。我们期望这个方案能被广泛的用于溶液中或酶中的复杂反应。
Enzyme is an efficient catalysis in living organisms. In most biological systems, enzyme is all very important because it can catalyze most biochemical processes and accelerate the metabolism of living organisms. Intensively understanding the activity of enzymatic mechanism is not only a challenge but a fundamental requirement for quantitatively understanding biochemical processes and further applying enzymatic efficiency, specificities. Experimentally, Great progresses have been achieved both in the analytic techniques for protein structures (such as x-ray, NMR etc) and in the field of gene engineering. However, the correlations between the enzymatic structure and its catalytic functions are not fully clear, and in another aspect, how to validate the right mechanism in a specific catalytic process is also a challenge. In past few decades, computer simulation is playing an increasing role to study enzymatic mechanisms, which compensate the limitation of experimental and theoretical measures.
     Enzymes are very large and heterogeneous, containing at least thousands of atoms. Its remarkable capability is not only determined by its active site, but also affected by its protein and solvent environment. Therefore, it requires the computational method to take the heterogeneous enzyme environment into account explicitly. Conbined quantum mechanical/molecular mechanical (QM/MM) mechods have become the method of the choice of modelling of reactions in enzyme. In QM/MM simulations of reactions, multiple levels of theory approaches, from semiempirical level to ab initop molecule orbitals and density functional methods, have been used. Ab initio QM/MM is more accurate and relable; however, its computational cost is expensive so that most ab initio QM/MM studies have been limited to determine potential energy surfaces rather than FESs. Calculation of free energy surfaces using ab initio QM/MM are also limited to treat the QM parts by minimizations and the MM parts by sampling. Simultaneous sampling of QM and MM parts has been limited to systems with relatively small QM centers and for which one-dimensional FESs can be envisioned. The computional cost of semiempirical level methods is low, and semiempirical QM/MM is more efficient to calculate FESs and allows simultaneous sampling. It is, however, well-known that the accuracies of semi-empirical models are system-dependent, and results may become unreliable because of large errors. So it is very important to efficiently apply multiple levels of theory approaches to obtain the right potential energy surfaces and free energy surfaces.
     We have made many efforts to the field including multiple-levels QM/MM studies of enzyme mechanics. In Chapter 2, we detailtedly describes the work for studing enzymatic mechanism. In the work, the catalytic mechanism of a pyridoxal 5'-phosphate-dependent enzyme, L-serine dehydratase, has been investigated using ab initio quantum mechanical/molecular mechanical (QM/MM) methods. New insights into the chemical steps have been obtained, including the chemical role of the substrate carboxyl group in the Schiff base formation step, and a proton-relaying mechanism involving the phosphate of the cofactor in theβ-hydroxyl-leaving step. The latter step is of no barrier and follows sequentially after the elimination of theα-proton, leading to a single but sequentiala,β-elimination step. The rate-limiting transition state is specifically stabilized by the enzyme environment. At this transition state, charges are localized on the substrate carboxyl group, as well as on the amino group of Lys41. Specific interactions of the enzyme environment with these groups are able to lower the activation barrier significantly. One major difficulty associated with studies of complicated enzymatic reactions using ab initio QM/MM models is the appropriate choices of reaction coordinates. In this study, we have made use of efficient semi-empirical QM/MM and pathway optimization techniques to overcome this difficulty.
     Our effort also involved the methodological development for free energy calculation based on multiple-levels QM/MM. Free energy calculation is the first assignment to achieve the thermodynamical prosperities and is also one of the most difficult fields in computer simulation. In our work, we presented an efficient scheme to calculate multidimensional free energy surface as described in Chapter 3, in which we detailedly described a refined adaptive-umbrella-sampling method presented to explore multidimensional free energy surface for complex chemical reactions in solution and in enzyme. Adaptive umbrella sampling method is an efficient, important tool to sample rare events. To our target, we skillfully designed a so-called refined adaptive umbrella potential to achieve convergent free energy surface. In the scheme, a strictly adaptive umbrella potential and a global background potential are used to fit the system including chemical reaction. Moreover, to overcome the deficiencies of AM1 model, we applied the AM1 model of specific reaction parameters. The formic acid dimer is used to test the scheme. We obtained the convergent free energy surface, which is in accord with the reported results. The solvent effects are analyzed and validated. We hope the scheme can be extensively used in complex chemical reaction in enzyme.
引文
Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford: Clarendon Press,1987.
    Antes I, Thiel W. Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J. Phys. Chem. A 1999; 103: 9290-9295.
    Assfeld X, Rivail JL. Quantum chemical computations on parts of large molecules:The ab initio local self consistent field method. Chem. Phys. Lett. 1996; 263:100-106.
    Babin V, Roland C, Sagui C. Adaptively biased molecular dynamics for free energy calculations. J. Chem. Phys. 2008; 128: 134101.
    Bakowies D, Thiel W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 1996; 100: 10580-10594.
    Bash PA, Field MJ, Karplus M. J. Am. Chem. Soc. 1987; 109: 8092-8094.
    Becke DA. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. ReV. A 1988; 38.
    Becke DA. New Mixing of Hatree-Fock and Local-Density Functional Theories. J. Chem.Phys. 1993; 98: 5648.
    Becker OM, MacKerell Jr AD, Roux B, Watanabe M. Computational Biochemistry and Biophysics. New York: Marcel Dekker, 2001.
    Besler BH, Merz Jr. KM, Kollman PA. J. Comput. Chem. 1990; 11: 431.
    Bolhuis PG, Dellago C, Chandler D. Reaction coordinates of biomolecular isomerization. Proc. Natl. Acad. Sci. 2000; 97: 5877-5882.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M.CHARMM - A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 1983; 4: 187-217.
    Burger SK, Yang W. Quadratic string method for determining the minimum-energy path based on multiobjective optimization. . J. Chem. Phys. 2006; 124:054109.
    Chipot C, Pohorille A, editors. Free Energy Calculations: Theory and Apllication in Chemistry and Biology. New York: Springer, 2007.
    Chu J-W, Trout BL. A super-linear minimization scheme for the nudged elastic band method. J. Chem. Phys. 2003; 119: 12708-12717.
    Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, et al.High-Accuracy Computation of Reaction Barriers in Enzymes. Angew. Chem.Int. ED. 2006; 45: 6856-6859.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995; 117: 5179-5197.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179,1995). J. Am. Chem. Soc. 1996; 118: 2309-2309.
    Darve E, Pohorille A. Calculating free energies using average force. J. Chem. Phys.2001; 115: 9169-9183.
    Das D, Eurenius KP, Billings EM, Sherwood P, Chatfield DC, Hodoscek M, et al.Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method.. J. Chem. Phys. 2002; 117: 10534-10547.
    Dellago C, Bolhuis PG. Transition Path Sampling Simulations of Biological Systems.In: Reiher M, editor. Topics in Current Chemistry Vol 268: Springer-Verlag Berlin Heidelberg, 2007: 291-317.
    den Otter WK. Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates.. J. Chem. Phys. 2000; 112: 7283-7292.
    Dewar MJS, Thiel W. Ground states of molecules. 38. The MNDO method.Approximations and parameters. J. Am. Chem. Soc. 1977; 99: 4899-4507.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985; 107:3902-3909.
    Dilabio GA, Hurley MM, Christiansen PA. Simple one-electron quantum capping potentials for use in hybrid qm/mm studies of biological molecules. J. Chem.Phys. 2002; 116:9578-9584.
    Dilabio GA, Wolkow RA, Johnson ERE. Efficient silicon surface and cluster modeling using quantum capping potentials. J. Chem. Phys. 2005; 122:044708.
    E W, Ren W, Vanden-Eijnden E. String method for the study of rare events. Phys. Rev.B 2002; 66: 052301.
    Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S. A self-consistent charge density-functional based tightbinding scheme for large biomolecules. . Phys.Status Solidi B 2000; 217 357-376.
    Elstner M, Porezag D, Jungnickel G, Eisner J, Haugk M, Frauenheim T, et al.Self-consistentcharge density-functional tight-binding method for simulations of complex materials properties. Phys. ReV. B 1998; 58: 7260-7268.
    Eurenius K, Chatfield D, Brooks B, Hodoscek M. Enzyme mechanisms with hybrid quantum and molecular mechanical potentials .1. Theoretical considerations. Int. J. Quant. Chem. 1996; 60: 1189-1200.
    Eyring H. The activated complex in chemical reactions. J. Chem. Phys. 1935; 3: 107.
    Ferenczy GG, Rivail J-L, Surjan PR, Naray-Szabo G. J. Comput. Chem. 1992; 13:830.
    
    Ferre N, Assfeld X, Rivail J-L. J. Comput. Chem. 2002; 23.
    Fersht A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New York: W. H. Freeman and Co., 1999.
    Field MJ. Simulating Enzyme Reaction: Challenges and Perspectives. J. Comput.Chem. 2002; 23: 48-58.
    Field MJ, Bash PA, Karplus M. A Combined Quantum-Mechanical and Molecular Mechanical Potential for Molecular-Dynamics Simulations. J. Comput. Chem.1990; 11: 700-733.
    
    Fisher S, Karplus M. Chem. Phys. Lett. 1992; 194: 252.
    Foresman JB, Frisch A. Exploring Chemistry With Electronic Structure Methods.Gaussian, Inc.: Pittsburgh, PA., 1998.
    Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Orlando, FL: Academic Press, Inc. USA, 1996.
    Friesner RA, Guallar V. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 2005; 56: 389-427.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.Gaussian 03. Wallingford CT: Gaussian, Inc., 2004.
    GALVAN IF, FIELD MJ. Improving the Efficiency of the NEB Reaction Path Finding Algorithm. J. Comput. Chem. 2008; 29: 139-143.
    Gao J. Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials. In: Lipkowitz KB and Boyd DB, editors. In Review in Computer Chemistry. Vol 7. New York: VCH, 1995: 119-185.
    Gao J, Amara P, Alhambra C, Field MJ. A Generalised Hybrid Orbital (GHO) Method for the treatment of boundary atoms in combined QM/MM calculations. J.Phys. Chem. A1998; 102: 4714-4721.
    Gao JL, Truhlar DG. Quantum mechanical methods for enzyme kinetics. Annu. Rev.Phys. Chem. 2002; 53: 467-505.
    Garcia-Viloca M, Gao J, Karplus M, G. Truhlar D. How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations. Science 2004; 303: 186-195.
    Grubmuller H. Predicting slow structural stansitions in macromolecular systems:Conformational flooding. Phys. Rev. E 1995; 52: 2893-2906.
    Henkelman G, Johannesson G, Jonsson H. Methods for finding saddle points and minimum energy paths. Progress on Theoretical Chemistry and Physics.:KluwarA.P., 2000a: 269.
    Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys.2000; 113: 9978-9985.
    Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys.2000b; 113: 9901-9904.
    Hu P, Zhang YK. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: An ab initio QM/MM-FE study with multiple initial structures. J. Am. Chem. Soc. 2006; 128: 1272-1278.
    Huber T, Torda AE, van Gunsteren WF. Local elevatiorv.a method for improving the searching properties of molecular dynamics simulation J. Comput-Aided Mol. Des.1994; 8: 695.
    Hummer G, Szabo A. Free energy reconstruction from nonequilibrium singlemolecule pulling experiments. Proc. Natl. Acad. Sci. 2001; 98: 3658-3661.
    Jarzynski C. Equilibrium free-energy differences from nonequilibrium measurements:A master-equation approach. Phys. Rev. E 1997a; 56: 5018-5035.
    Jarzynski C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett.1997b; 78: 2690-2693.
    Jo'nsson H, Mills G, Jacobsen KW. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G and Coker DF, editors.Classical and Quantum Dynamics in Condensed Phase Simulations. Singapore:World Scientific, 1998: 385-404.
    Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996; 118: 11225-11236.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001; 105: 6474-6487.
    Kastner J, Senn HM, Thiel S, Otte N, Thiel W. QM/MM free-energy perturbation compared to thermodynamic integration and umbrella sampling: application to an enzymatic reaction. J. Chem. Theo. Comput. 2006; 2: 452-461.
    Kirkwood JG. Statistical mechanics of fluid mixtures. J. Chem. Phys. 1935; 3:300-313.
    Kohn W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys 1999; 71: 1253-1266.
    Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965; 140: 1133-1138.
    Laio A, Parrinello M. Escaping free energy minima. Proc. Natl. Acad. Sci. USA 2002;99: 12562-12565.
    Lee C, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988; 37: 785.
    Lelievre T, Rousset M, Stoltz G. Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys. 2007; 126: 134111.
    
    Levine IN. Quantum Chemistry. New Jersey: Prentice Hall,Engelwood Cliffs, 2000.
    Lin H, Truhlar DG. QM/MM: What have we learned, where are we, and where do we go from here? Theo. Chem. Ace. 2005a.
    Lin H, Truhlar DG. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J. Phys. Chem. A 2005b;109: 3991-4004.
    Lyne PD, Hodoscek M, Karplus M. A hybrid QM-MM potential employing Hartree-Fock or density functional methods in the quantum region. J. Phys.Chem. A 1999; 103: 3462-3471.
    Mackerell JAD. Atomistic models and force fields. In: Becker OM, MacKerell Jr AD,Roux B and Watanabe M, editors. Computational Biochemistry and Biophysics. New York: Marcel Dekker, 2001.
    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G. String method in collective variables: Minimum free energy paths and isocommittor surfaces. J. Chem.Phys.2006; 125: 24106-24120.
    Maragliano L, Vanden-Eijnden E. On-the-fly string method for minimum free energy paths calculation. Chem. Phys. Lett. 2007; 446: 182-190.
    Marsili S, Barducci A, Chelli R, Procacci P, Svchettino V. J. Phys. Chem. B 2006;110.
    Maseras F, Morokuma K. IMOMM: A new integrated ab-initio + molecular mechanics geometry optimisation scheme of equilibrium structures and transition states. J. Comput. Chem. 1995; 16: 1170-1179.
    McQuarrie DA. Statistical Mechanics. Sausalito, CA: University Science Books,2000.
    Mezei M. Adaptive Umbrella Sampling: Self-consistent Determination of the Non-Boltzmann Bias. J. Comput. Phys. 1987; 68: 237-248.
    Mills G, Jo'nsson H. Quantum and thermal effects in H2 dissociative adsorption:Evaluation of free energy barriers in multidimensional quantum systems. Phys.Rev. Lett. 1994; 72: 1124-1127.
    
    Mills G, Jonsson H, Schenter GK. Surf. Sci. 1995; 324: 305.
    Monard G, Loos M, Thery V, Baka K, Rivail JL. Hybrid classical quantum force field for modeling very large molecules. Int. J. Quant. Chem. 1996; 58: 153-159.
    Morse PM. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev. 1929; 34: 57.
    Mulholland AJ. Modelling enzyme reaction mechanisms, specificity and catalysis.Drug. Discov. Today. 2005; 10: 1393-1402.
    Mulholland AJ. Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions. Chem. Centr. J. 2007; 1:19.
    Mulholland AJ. Computational enzymology: modelling the mechanisms of biological catalysts. Biochem. Soc. Trans. 2008; 36: 22-26.
    Parr RG, Yang W. Density-Functional Theory of Atoms and Molecules. New York:Oxford University Press, 1994.
    Peters B, Heyden A, Bell AT, Chakraborty A. A growing string method for determining transition states: Comparison to the nudged elastic band and string methods. J. Chem. Phys. 2004; 120: 7877-7886.
    Ponder JW. TINKER, a Software Tools for Molecular Design: (The updated version for the TINKER program can be obtained from the webpage at http://dasher.wustl.edu/tinker, maintained by J. W. Ponder.), Accessed February 1998.
    Poteau R, Ortega I, Alary F, Solis AR, Barthelat J-C, Daudey J-P. Effective group potentials. 1. method. J. Phys. Chem.A 2001; 105: 198-205.
    Pu JZ, Gao JL, G. TD. Generalized hybrid-orbital method for combining density functional theory with molecular mechanicals. . Chemphyschem 2005; 6:1853-1865.
    Raugei S, Carloni P. Structure and function of vanadium haloperoxidases. J. Phys.Chem. B 2006; 110: 3747-3758.
    Rod T, Ryde U. Accurate QM/MM free energy calculations of enzyme reactions:methylation by catechol O-methyltransferase. . J. Chem. Theo. Compu. 2005a;1:1240-1251.
    Rod T, Ryde U. Quantum mechanical free energy barrier for an enzymatic reaction.Phys. Rev. Lett. 2005b; 94: 138302/1-4.
    Roux B. The calculation of the potential of mean force using computer simulations.Comput. Phys. Commu. 1995; 91: 275-282.
    Ryde U. Combined quantum and molecular mechanics calculations on metalloproteins.Curr. Opin. Chem. Biol. 2003; 7: 136-142.
    Schlegel HB. In: Yarkony DR, editor. Modern Electronic Structure Theory. Singapore:World Scientific Publishing, 1995.
    Schlegel HB. Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. J. Comput. Chem. 2003; 24: 1514-1527.
    Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, et al. The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A 1999;103: 3596-3607.
    Senn HM, Thiel W. QM/MM studies of enzymes. Curr Opin Chem Biol 2007a; 11:182-7.
    Senn HM, Thiel W. QM/MMMethods for Biological Systems. Top. Curr. Chem.2007b; 268: 173-290.
    Sherwood P. Hybrid quantum mechanics/molecular mechanics approaches. In:Grotendorst J, editor. Modern methods and algorithms of quantum chemistry.Vol 1. Julich: John von Neumann Institute for Computing, 2000: 257-277.
    Singh UC, Kollman PA. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3C1+C1- exchange reaction and gas-phase protonation of polyethers. J. Comput. Chem. 1986; 7: 718-730.
    Slavicek P, Martinez TJ. Multicentered valence electron effective potentials: a solution to the link atom problem for ground and excited electronic states. J.Chem. Phys. 2006; 124: 084107.
    
    Stevens WJ, Basch H, Kraus M. J. Chem. Phys. 1984; 81: 6016.
    Stewart JJP. Optimization of parameters for semiempirical methods I. Method. J.Comput. Chem. 1989a; 10: 209-220.
    Stewart JJP. Optimization of parameters for semiempirical methods II. Applications. J.Comput. Chem. 1989b; 10: 221-264.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. Oniom: A multilayered integrated mo+mm method for geometry optimizations and single point energy predictions. a test for diels-alder reactions and pt(p(t-bu)3)2)+h2 oxidative addition. . J. Phys. Chem. 1996; 100:19357-19363.
    Szabo A, Ostlund NS. Modern Quantum Chemistry.Introdction to Advanced Electronic Structure Theory. New York: McGraw-Hill, 1989.
    Thery V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG. Quantum mechanical computations on very large molecular systems: The local self-consistent field method. J. Comput. Chem. 1994; 15: 269-282.
    Thiel W. Computational methods for large molecules. J. Mol. Struct.:THEOCHEM 1997; 398:1-6.
    Torrie GM, Valleau JP. Nonphysical Sampling Distributions in Monte Carlo Free Energy estimation: Umbrella Sampling. J. Comput. Phys. 1977; 23: 13.
    Truhlar DG, Carrett BC. Variational Transition-State Theroy. Acc. Chem. Res. 1980;13:440-448.
    Truhlar DG, Garrett BC, Klippenstein SJ. Current status of transition-state theory. . J.Phys. Chem. 1996; 100: 12771-12800.
    Trygubenko SA, Wales DJ. A doubly nudged elastic band method for finding transition states (vol 120, pg 2082, 2004). J. Chem. Phys. 2004; 120:7820-7820.
    van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, et al. Biomolecular Simulation: The GROMOS96 Manual and User Guide: Biomos b.v., Z urich
    
    Groningen, VdF Hochschulverlag, ETH Z urich, 1996.
    von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D. Variational optimization of effective atom centered potentials for molecular properties. J.Chem.Phys.2005; 122: 014113.
    Voter AF, Doll D. J. Chem. Phys. 1985; 82: 80.
    Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JAJ, Morokuma K, et al.Combining quantum mechanics methods with molecular mechanics methods in ONIOM.. J. Chem. Theo. Comput. 2006; 2: 815-826.
    Wang F, Landau DP. Determining the density of states for classical statistical models:a random walk algorithm to produce a flat histogram Phys. Rev. E 2001a; 64:056101.
    Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 2001b; 86: 2050-2053.
    Warshel A. Computer Modeling of Chemical Reactions in Enzymes and Solutions. .New York Wiley-Interscience, 1991.
    Warshel A. Computer simulations of enzyme catalysis Methods,progress, and insighs.Annu. Rev. Biophys. Biomol. 2003; 32: 425-443.
    Warshel A, Levitt M. Theoretical Studies of Enzymic Reactions: Dielectric,Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976; 103: 227-249.
    Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, M. OMH. Electrostatic basis for enzyme catalysis. Chem. Rev. 2006; 106: 3210-3235.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J.Am. Chem. Soc. 1984; 106: 765-784.
    West DK. Free energy for protein folding from nonequilibrium simulations using the Jarzynski equality J. Chem. Phys. 2006; 125: 204910.
    Wigner E. Trans. Faraday Soc. 1938; 34: 29.
    Yasuda K, Yamaki D. Simple minimum principle to derive a quantummechanical/molecular-mechanical method. J. Chem. Phys. 2004; 121:3964-3972.
    Zhang XY, Houk KN. Why enzymes are proficient catalysts: Beyond the pauling paradigm. Acc. Chem. Res. 2005; 38: 379-385.
    Zhang Y, Kua J, McCammon JA. Influence of structural fluctuation on enzyme reaction energy barriers in combined quantum mechanical/molecular mechanical studies. J. Phys. Chem. B 2003; 107: 4459-4463.
    Zhang Y, Liu H, Yang W. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J. Chem. Phys. 2000;112:3483-3492.
    Zhang YK. Improved pseudobonds for combined ab initio quantum mechanical/molecular mechanical methods. J. Chem. Phys. 2005; 122:024114.
    Zhang YK. Pseudobond ab initio qm/mm approach and its applications to enzyme reactions. Theo. Chem. Acc. 2006; 116: 43-50.
    Zhang YK, Lee TS, Yang WT. A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J. Chem. Phys. 1999; 110:46-54.
    Zheng H, Zhang Y. Determination of free energy profiles by repository based adaptive umbrella sampling: Bridging nonequilibrium and quasiequilibrium simulations.J. Chem. Phys. 2008; 128: 204106.
    Zwanzig RW. High-temperature equation of state by a perturbation method. I.Nonpolar gases. J. Chem. Phys. 1954; 22: 1420-1426.
    Alexander FW, Sandmeier E, Mehta PK, Christen P. Evolutionary relationships among pyridoxal-5'-phosphatedependent enzymes. Regio-specific a, b and r families. Eur. J. Biochem. 1994; 219: 953-960.
    Allemann RK, Young NJ, Ma SH, Truhlar DG, Gao JL. Synthetic efficiency in enzyme mechanisms involving carbocations: Aristolochene synthase. J. Am.Chem. Soc. 2007; 129: 13008-13013.
    Altun A, Shaik S, Thiel W. What is the Active Species of Cytochrome P450 during Camphor Hydroxylation QM/MM Studies of Different Electronic States of Compound I and of Reduced and Oxidized Iron-Oxo Intermediates. J. Am.Chem. Soc. 2007; 129: 8978-8987.
    Antes I, Thiel W. Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J. Phys. Chem. A 1999; 103: 9290-9295.
    Bash P, Ho L, MacKerell A, Levine D, Hallstrom P. Progress toward chemical accuracy in the computer simulation of condensed phase reactions. Proc. Natl.Acad. Sci. 1996; 93: 3698-3703.
    Berendsen HJC, Postma JPM, Gunstereno WFV, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81:3684-3690.
    Boresch S, Archontis G, Karplus M. Free energy simulations: The meaning of the individual contributions from a component analysis. Proteins: Struct. Funct.Genet. 1994; 20: 25-33.
    Bornaes C, Petersen JGL, Holmberg S. Serine and threonine catabolism in Saccharomyces cereVisiae: The CHA1 polypeptide is homologous with other serine and threonine dehydratases. Genetics 1992; 131: 531-539.
    Bredow T, Jug K. Theory and range of modern semiempirical molecular orbital methods. Theo. Chem. Acc. 2005; 113: 1-14.
    Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN.Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J. Mol. Biol. 1998; 283: 121-133.
    Cavestri RC, Fedor LR. Base-Catalyzed P-Elimination Reactions in Aqueous Solution.IV. Elimination from 4- (4-Substituted benzoyloxy) -2-butanones. J. Am. Chem. Soc. 1970; 92: 4610-4613.
    Changeux JP. Allosteric proteins: from regulatory enzymes to receptors-personal recollections. BioEssays 1993; 15: 625-634.
    Cheng Y, Cheng X, Radiac Z, Andrew McCammon J. Acetylcholinesterase:Mechanisms of Covalent Inhibition of Wild-Type and H447I Mutant Determined by Computational Analyses. J. Am. Chem. Soc. 2007; 129:6562-6570.
    Cisneros GA, Liu HY, Zhang YK, Yang WT. Ab initio QM/MM study shows there is no general acid in the reaction catalyzed by 4-oxalocrotonate tautornerase. J.Am. Chem. Soc. 2003; 125: 10384-10393.
    Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, et al.High-Accuracy Computation of Reaction Barriers in Enzymes. Angew. Chem.Int. ED. 2006; 45: 6856-6859.
    Claeyssens F, Ranaghan KE, Manby FR, Harvey JN, Mulholland AJ. Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem. Commum. 2005: 5068-5070.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179,1995). J. Am. Chem. Soc. 1996; 118: 2309-2309.
    Datta P, Goss TJ, Omnaas JR, Patil RV. Covalent structure of biodegradative threonine dehydratase of Escherichia coli: Homology with other dehydratases. Proc.Natl. Acad. Sci. 1987; 84: 393-397.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. AMI: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985; 107:3902-3909.
    Ebara S, Toyoshima S, Matsumura T, Adachi S, Takenaka S, Yamaji R, et al.Cobalamin deficiency results in severe metabolic disorder of serine and threonine in rats. Biochim. Biophys. Acta. 2001; 1568: 111-117.
    Eisenstein E, Yu HD, Fisher KE, Iacuzio DA, Ducote KR, Schwarz FP. An expanded two-state model accounts for homotropic cooperativity in biosynthetic threonine deaminase from Escherichia coli. Biochemistry 1995; 34:9403-9412.
    Field MJ, Bash PA, Karplus M. A Combined Quantum-Mechanical and Molecular Mechanical Potential for Molecular-Dynamics Simulations. J. Comput. Chem.1990; 11:700-733.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.Gaussian 03. Wallingford CT: Gaussian, Inc., 2004.
    Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, et al.Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 1998; 15: 465-475.
    Gregersen B, Lopez X, York D. Hybrid QM/MM study of thio effects in transphosphorylation reactions: The role of solvation. J. Am. Chem. Soc. 2004;126:7504-7513.
    Hermann JC, Hensen C, Ridder L, Mulholland AJ, Holtje HD. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. J. Am. Chem. Soc. 2005; 127:4454-4465.
    Holzer H, Cennamo C, Boll M. Product activation of yeast threonine dehydratase by ammonia. Biochem. Biophys. Res. Commun. 1964; 14: 478-492.
    Hu P, Zhang YK. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: An ab initio QM/MM-FE study with multiple initial structures. J. Am. Chem. Soc. 2006; 128: 1272-1278.
    Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR. Three-dimensional structure of the tryptophan synthase R2(?)2 multienzyme complex from Salmonella typhimurium,
    . J. Biol. Chem. 1988; 263: 17857-17871.
    Imai S, Kanamoto R, Yagi I, Kotaru M, Saeki T, Iwami K. Response of the induction of rat liver serine dehydratase to changes in the dietary protein requirement.Biosci.Biotechnol. Biochem. 2003; 67: 383-387.
    Jo'nsson H, Mills G, Jacobsen KW. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G and Coker DF, editors.Classical and Quantum Dynamics in Condensed Phase Simulations. Singapore:World Scientific, 1998: 385-404.
    Jorgensen WL. Free energy calculations: A breakthrough for modeling organic chemistry in solution.. Acc. Chem. Res. 1989; 22: 184-189.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79: 926-935.
    Kashii T, Gomi T, Oya T, Ishii Y, Oda H, Maruyama M, et al. Some biochemical and histochemical properties of human liver serine dehydratase. Int. J.Biochem.Cell Biol. 2005; 37: 574-589.
    Klahn M, Braun-Sand S, Rosta E, Warshel A. On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J. Phys. Chem. B 2005; 109: 15645-15650.
    Kuhn B, Kollman PA. QM-FE and molecular dynamics calculations on catechol O-methyltransferase: Free energy of activation in the enzyme and in aqueous solution and regioselectivity of the enzyme-catalyzed reaction. . J. Am. Chem.Soc. 2000; 122: 2586-2596.
    Liu H, Elstner M, Kaxiras E, Franenheim T, Hermans J, Yang W. Quantum Mechanics Simulation of Protein Dynamics on Long Time Scale Made Possible. Proteins:Struct. Funct. Genet. 2001; 44: 484-489.
    Liu HY, Zhang YK, Yang WT. How is the active site of enolase organized to catalyze two different reaction steps? J. Am. Chem. Soc. 2000; 122: 6560-6570.
    Lopez-Flores I, Peragon J, Valderrama R, Esteban FJ, Luque F, Peinado MA, et al.Downregulation in the expression of the serine dehydratase in the rat liver during chronic metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp.Physiol. 2006; 291: R1295-R1302.
    Ma S, Devi-Kesavan LS, Gao J. Molecular dynamics Simulations of the catalytic pathway of a cysteine protease: A combined QM/MM study of human cathepsin K. J. Am. Chem. Soc. 2007; 129: 13633-13645.
    Mehta PK, Christen P. The molecular evolution of pyridoxal-5'-phosphate dependent enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 2000; 74: 129-184.
    Meier M, Janosik M, Kery V, Kraus JP, Burkhard P. Structure of human cystathionine (?)-synthase: A unique pyridoxal 5¢-phosphate-dependent heme protein,.EMBOJ. 2001; 20: 3910-3916.
    Mills G, Jo'nsson H. Quantum and thermal effects in H2 dissociative adsorption:Evaluation of free energy barriers in multidimensional quantum systems. Phys.Rev. Lett. 1994; 72: 1124-1127.
    Mozzarelli A, Bettati S. Exploring the pyridoxal 5'-phosphate-dependent enzymes.Chem. Rev. 2006; 6: 275-87.
    Nakagavva H, Kimura H. The properties of crystalline serine dehydratase of rat liver J. Bio. Chem. 1969; 66: 669-683.
    Nam K, Cui Q, Gao J, York DM. Specific reaction parametrization of the AM1/d Hamiltonian for phosphoryl transfer reactions: H, 0, and P atoms. J. Chem.Theo. Compu. 2007; 3: 486-504.
    Ogawa H. Structure and function relationships of serine dehydratases from various sources. Trends Comp. Biochem. Physiol. 2000; 6: 1-19.
    Ogawa H, Gomi T, Nishizawa M, Hayakawa Y, Endo S, Hayashi K, et al. Enzymatic and biochemical properties of a novel human serine dehydratase isoform.Biochim. Biophys. Acta. 2006; 1764: 961-971.
    Ogawa H, Konishi K, Fujioka M. The peptide sequences near the bound pyridoxal phosphate are conserved in serine dehydratase from rat liver and threonine dehydratases from yeast and Escherichia coli,. Biochim. Biophys. Acta. 1989;996: 139-141.
    Ponder JW. TINKER, a Software Tools for Molecular Design: (The updated version for the TINKER program can be obtained from the webpage at http://dasher.wustl.edu/tinker, maintained by J. W. Ponder.), Accessed February 1998.
    Reiber H. Proceedings: Alpha, beta-elimination of serine: mechanism and catalysis of a model reaction and the consequences for the active centre of serine dehydratases. Hoppe Seyler's Z.Physiol.Chem. 1974; 335: 1240.
    Rossi I, Truhlar DG. Parameterization of NDDO wavefunctions using genetic algorithms. Chem. Phys. Lett. 1995; 233: 231-236.
    Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. comput. phys. 1977; 23: 327-341.
    Samach A, Hareven D, Gutfmger T, Ken-Dror S, Lifschitz E. Biosynthetic threonine deaminase gene of tomato: Isolation, structure, and upregulation in floral organs. Proc. Natl. Acad. Sci. 1991; 88: 2678-2682.
    Sharma PK, Chu ZT, Olsson MHM, Warshel A. A new paradigm for electrostatic catalysis of radical reactions in vitamin B12 enzymes. Proc. Natl. Acad. Sci.2007; 104:9661-9666.
    Snell K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul. 1984; 22: 325-400.
    Snell K, Natsumeda Y, Eble JN, Glover JL, Weber G. Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br. J. Cancer 1988; 57:87-90.
    Sun L, Bartlam M, Liu YW, Pang H, Rao ZH. Crystal structure of the pyridoxal-5'-phosphate-dependent serine dehydratase from human liver. Protein Sci. 2005;14:791-798.
    Thiel W. Computational methods for large molecules. J. Mol. Struct.:THEOCHEM 1997; 398: 1-6.
    Umbarger HE. The Origin of a Useful Concept - Feedback Inhibition. Protein Sci.1992; 1:1392-1395.
    Warshel A. Computer Modeling of Chemical Reactions in Enzymes and Solutions. .New York Wiley-Interscience, 1991.
    Warshel A, Levitt M. Theoretical Studies of Enzymic Reactions: Dielectric,Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976; 103: 227-249.
    Winget P, Selcuki C, Horn AHC, Martin B, Clark T. Towards a "next generation" neglect of diatomic differential overlap based semiempirical molecular orbital technique. Theo. Chem. Acc. 2003; 110: 254-266.
    Xie L, Liu H, Yang W. Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes. J. Chem. Phys. 2004;120: 8039-8052.
    Yamada T, Komoto J, Takata Y, Ogawa H, Pitot HC, Takusagawa F. Crystal structure of serine dehydratase from rat liver. Biochemistry 2003; 42: 12854-12865.
    Yoshida T, Kikuchi G. Physiological significance of glycine cleavage system in human liver as revealed by the study of a case of hyperglycinemia. Biochem.Biophys. Res. Commun. 1969; 35: 577-583.
    Zhang Y, Kua J, McCammon JA. Influence of structural fluctuation on enzyme reaction energy barriers in combined quantum mechanical/molecular mechanical studies. J. Phys. Chem. B 2003; 107: 4459-4463.
    Zhang Y, Liu H, Yang W. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J. Chem. Phys. 2000;112:3483-3492.
    Zhang YK. Improved pseudobonds for combined ab initio quantum mechanical/molecular mechanical methods. J. Chem. Phys. 2005; 122: 024114.
    
    Zhang YK, Lee TS, Yang WT. A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J. Chem. Phys. 1999; 110:46-54.
    Adersen HC. Molecular dynamics at constant pressure and/or temperature. J. Chem.Phys. 1980; 72: 2384-2393.
    Akima H. A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comp. Mach. 1970; 17(4): 589-602.
    Bartels C, Karplus M. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J. Comput. Chem. 1997; 18:1450-1462.
    Bash P, Ho L, MacKerell A, Levine D, Hallstrom P. Progress toward chemical accuracy in the computer simulation of condensed phase reactions. Proc. Natl.Acad. Sci. 1996; 93: 3698-3703.
    Basner JE, Schwartz SD. How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study. J Am Chem Soc 2005; 127: 13822-31.
    Bentzien J, Muller RP, Florian J, Warshel A. Hybrid ab initio quantum mechanics molecular mechanics calculations of free energy surfaces for enzymatic reactions: The nucleophilic attack in subtilisin. J. Phys. Chem. B 1998; 102:2293-2301.
    Berendsen HJC, Postma JPM, Gunstereno WFV, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81:3684-3690.
    Chandrasekhar J, Smith SF, Jorgensen WL. Theoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution. J. Am. Chem. Soc. 1985; 107: 154-163.
    Chang Y-T, Yamaguchi Y, Miller WH, Schaefer III HF. An Analysis of the Infrared and Raman Spectra of the Formic Acid Dimer (HCOOH). J. Am. Chem. Soc.1987; 109: 7245-7253.
    Christen M, van Gunsteren WF. On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review. J.Comp. Chem. 2008; 29: 157-166.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids,and Organic Molecules. J. Am. Chem. Soc. 1995; 117: 5179-5197.
    Cui Q, Karplus M. Quantum Mechanical/Molecular Mechanical Studies of the Triosephosphate Isomerase-Catalyzed Reaction: Verification of Methodology and Analysis of Reaction Mechanisms. J. Phys. Chem. B 2002; 106:1768-1798.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. AMI: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985; 107:3902-3909.
    Dimelow RJ, Bryce RA, Masters AJ, Hillier IH, Burton NA. Exploring reaction pathways with transition path and umbrella sampling: application to methyl maltoside. J. Chem. Phys 2006; 124: 114113-114128.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.Gaussian 03. Wallingford CT: Gaussian, Inc., 2004.
    Garcia-Viloca M, Gao J, Karplus M, G. Truhlar D. How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations. Science 2004; 303: 186-195.
    Gonzalez-Lafont A, Truong TN, Truhlar DG. Direct dynamics calculations with neglect of diatomic differential overlap molecular orbital theory with specific raction parameters. J. Phys. Chem. 1991; 95: 4618-4627.
    
    Hooft RWW, Van Eijck BP, Kroon J. An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol. J. Chem. Phys. 1992; 97: 6690-6694.
    Hu H, Lu Z, Parks JM, Burger SK, Yang W. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface. J. Chem. Phys. 2008; 128: 034105.
    Hu H, Lu ZY, Yang WT. QM/MM minimum free-energy path: Methodology and application to triosephosphate isomerase. J. Chem. Theory. Comput. 2007; 3:390-406.
    Jencks WP. When is an intermediate not an intermediate—enforced mechanisms of general acid-base catalyzed, carbocation, carbanion, and ligand-exchange reactions. Acc. Chem. Res. 1980; 13: 161-169.
    Jorgensen WL. Free energy calculations: A breakthrough for modeling organic chemistry in solution.. Acc. Chem. Res. 1989; 22: 184-189.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79: 926-935.
    Jursic BS. Can hybrid DFT methods correctly compute the potential energy surface formic acid dimerization and proton transfer in the formic acid dimer? A comparison of hybrid DFT computed values with experimental and G1, G2,and G2MP2 generated data. J. Mol. Struct. (Theochem) 1997; 417: 89-94.
    Kim Y. Direct Dynamics Calculation for the Double Proton Transfer in Formic Acid Dimer. J. Am. Chem. Soc. 1996; 118: 1522-1528.
    Kuhn B, Kollman PA. QM-FE and molecular dynamics calculations on catechol O-methyltransferase: Free energy of activation in the enzyme and in aqueous solution and regioselectivity of the enzyme-catalyzed reaction. . J. Am. Chem.Soc. 2000; 122: 2586-2596.
    Kumar S, Bouzida D, Swendsen RH, Kollman PA, J.M.. R. The Weighted Histogram Amalysis Method for Free Energy Calculations on Biomolecules .I. The Method J. Comput. Chem. 1992; 13: 1011-1021.
    Kuttel M, Brady JW, Naidoo KJ. Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J. Comput. Chem 2002; 23: 1236-1243.
    Lim J-H, Lee EK, Kim Y. Theoretical study for solvent effect on the potential energy surface for the double proton transfer in formic acid dimer and formamidine dimer. J. Phys. Chem. A 1997; 101: 2233-2239.
    Liu H, Elstner M, Kaxiras E, Franenheim T, Hermans J, Yang W. Quantum Mechanics Simulation of Protein Dynamics on Long Time Scale Made Possible. Proteins:Struct. Funct. Genet. 2001; 44: 484-489.
    Liu HY, Zhang YK, Yang WT. How is the active site of enolase organized to catalyze two different reaction steps? J. Am. Chem. Soc. 2000; 122: 6560-6570.
    Mezei M. Adaptive Umbrella Sampling: Self-consistent Determination of the Non-Boltzmann Bias. J. Comput. Phys. 1987; 68: 237-248.
    Moore FG, Hymer TC. Improved semi-empirical method for power-on base-drag prediction. J. Spacecr. Rockets 2002; 39: 56-65.
    More O'Ferrall RA. Relationships between E2 and ElcB mechanisms of-elimination.J. Chem. Soc. B 1970.
    Mulholland AJ. Modelling enzyme reaction mechanisms, specificity and catalysis.Drug. Discov. Today. 2005; 10: 1393-1402.
    Mulliken RS. Electronic Population Analysis on LCAOMO Molecular Wave Functions. I. J. Chem. Phys. 1955; 23: 1833-1840.
    Naidoo KJ, Brady JW. Calculation of the Ramachandran potential of mean force for a disaccharide in aqueous solution. J. Am. Chem Soc. 1999; 121: 2244-2252.
    Olsson MHM, Parson WW, Warshel A. Dynamical Contributions to Enzyme Catalysis: Critical Tests of A Popular Hypothesis. Chem. Rev. 2006; 106: 1737-1756.
    Ponder JW. TINKER, a Software Tools for Molecular Design: (The updated version for the TINKER program can be obtained from the webpage at http://dasher.wustl.edu/tinker, maintained by J. W. Ponder.), Accessed February 1998.
    Radhakrishnan R, Yang LJ, Arora K, Schlick T. Exploring DNA polymerase beta mechanisms by advanced sampling techniques (Biophysical Meeting Abstract).Biophys.J. 2003;81:34A.
    Rajamani R, Naidoo KJ, Gao J. Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution. J. Comput. Chem. 2003; 24: 1775-1781.
    Rami Reddy M, Singh UC, Erion MD. Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies. J.Comput. Chem 2007; 28: 491-494.
    Rossi I, Truhlar DG. Parameterization of NDDO wavefunctions using genetic algorithms. Chem. Phys. Lett. 1995; 233: 231-236.
    Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. comput. phys. 1977; 23: 327-341.
    Schroder S, Thiel W. Comparison of Semiempirical and ab Initio Transition States. J.Am. Chem Soc. 1985; 107: 4422-4430.
    Shida N, Barbara PF, Almlof J. A reaction surface Hamiltonian treatment of the double proton transfer of formic acid dimer. J. Chem. Phys 1991; 94:3633-3643.
    Simonson T. Free energy calculations. In: Becker OM, MacKerell Jr AD, Roux B and Watanabe M, editors. Computational Biochemistry and Biophysics. New York:Marcel Dekker,2001: 169-197.
    Stewart JJ. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model 2004;10: 155-64. Stewart JJ. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model 2007;13: 1173-213.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. Oniom: A multilayered integrated mo+mm method for geometry optimizations and single point energy predictions. a test for diels-alder reactions and pt(p(t-bu)_3)_2)+h_2 oxidative addition.. J. Phys. Chem. 1996; 100: 19357-19363.
    Taube AG, Taylor C, Runge K, Bartlett RJ. Development of a new semi-empirical quantum chemical method using exact hamiltonian consistency conditions. Abstr.Papers Am. Chem. Soc. 2003; 225: U507-U507.
    Tautermann Cs, Loferer MJ, Andreas f.Voegele, R.Liedl K. Double hydrogen tunneling revisited: The breakdown of experimental tunneling criteria. J.Chem. Phys. 2004; 120: 11650-11657.
    Torrie GM, Valleau JP. Nonphysical Sampling Distributions in Monte Carlo Free Energy estimation: Umbrella Sampling. J. Comput. Phys. 1977; 23: 13.
    Trajbl M, Hong GY, Warshel A. Ab initio QM/MM simulation with proper sampling:"First principle" calculations of the free energy of the autodissociation of water in aqueous solution. J. Phys. Chem. B 2002; 106: 13333-13343.
    Wang J, Liu H. Determination of conformational free energies of peptides by multidimensional adaptive umbrella sampling. J. Chem. Phys. 2006; 125:94907-94915.
    Warshel A, Levitt M. Theoretical Studies of Enzymic Reactions: Dielectric,Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976; 103: 227-249.
    Whitfield TW, Crain J, Martyna GJ. Structural properties of liquid N-methylacetamide via ab initio, path integral, and classical molecular dynamics. J. Chem. Phys. 2006; 124: 94503(1-15).
    Woods CJ, Manby FR, Mulholland AJ. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. J. Chem. Phys. 2008;128:014109.
    Xie L, Liu H, Yang W. Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes. J. Chem. Phys. 2004;120: 8039-8052.
    Yang WT, Lee TS. A Density-matrix Divide-and-conquer Approach for Electronic Structure Calculations of Large Molecules. J. Chem. Phys. 1995; 103:5674-5678.
    Zaets VA, Gerda VI. Parameters of the modified NDDO method for the chromium atom. Journal of Structural Chemistry 2002; 43: 346-351.
    Zhang Y, Liu H, Yang W. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J. Chem. Phys. 2000;112:3483-3492.