电流型CVD金刚石探测器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探测技术是脉冲辐射场诊断的关键和核心技术之一,它直接决定待测对象的种类、范围及测试数据的质量。为了获得脉冲辐射性能优异,可在极端环境下使用的新型半导体探测器件,本文开展了CVD金刚石薄膜探测器作为脉冲辐射探测器件的研究与探索。
     首先开展了CVD金刚石薄膜探测器作为脉冲辐射探测器件的可行性研究。通过对目前国内外多批金刚石材料性能测试、器件制作及探测器性能研究,对“探测器级”金刚石薄膜材料提出结晶程度好、尤其要求杂质浓度低的选材准则,制作了欧姆接触良好,暗电流达10pA的高质量CVD金刚石薄膜探测器。
     研究了CVD金刚石薄膜探测器的电荷收集特性。理论计算了电荷收集效率与探测器电场强度、规格尺寸的代数关系,分析了金刚石材料质量对电荷收集效率的影响。实验研究获得了所研制探测器的电荷收集效率和载流子寿命,验证了理论计算结果。研究表明,工作电场在2V/μm以上时,探测器可获得稳定的电荷收集效率,所研制探测器的电荷收集效率达60-70%,达到国际先进水平。
     系统研究了CVD金刚石薄膜探测器的脉冲辐射特性。利用物理模型计算了探测器的时间响应波形,并在快脉冲紫外激光、X射线及质子束流上开展了相应的实验研究,获得了探测器时间性能指标及金刚石质量对探测器时间性能的影响。完成了探测器辐射响应(灵敏度、能量响应)、n/γ分辨能力的蒙特卡罗模拟计算,开展了探测器对脉冲γ射线、Z-pinch过程脉冲X射线、DPF装置脉冲中子/X射线混合场、BEPC II试验束装置脉冲电子束及国家串列加速器脉冲质子束的辐射响应实验研究。研究表明,所研制金刚石探测器的上升时间达440ps,其时间响应和辐射响应满足脉冲辐射场测量需求。
     研究了探测器的耐辐照性能。在2×13MeV国家串列加速器HI-13装置开展了探测器对直流质子束的耐辐照实验研究,结果表明所研制的金刚石探测器的抗辐照能力比硅PIN探测器高3个量级。
     本课题所研制的高质量CVD金刚石薄膜探测器具有暗电流小、时间响应快、抗辐照能力强等优点,为高强度脉冲辐射场的诊断提供了新的、性能更加优异的探测元件。
Radiation detection is one of the key technologies in the pulsed radiation field diagnosis. The thesis conducted studies on CVD diamond film detectors for pulsed radiation detection in the purpose of developing new semiconductor detectors which have higher properties and great tolerance of atrocious environment.
     The possibility of CVD diamond film detectors for pulsed radiation detection is firstly researched. After times of material testing, detector preparing and researches on detector properties, the concept of“detector grade”diamond film which should have good lattice structures, especially have low impurity concentrations is concluded. Finally, high quality CVD diamond film detectors with good Ohmic contact and dark current as low as 10pA are prepared.
     Charge collecting properties of CVD diamond film detectors are studied. The relationship between detector charge collection efficiencies with the electric field and detector sizes is derived, and the relationship between detector charge collection efficiencies with diamond qualities is discussed. The charge collection efficiencies and charge carrier lives of the detectors developed in the thesis are obtained. The results show that, the charge collection efficiencies reach the saturate region when the electric field is higher than 2V/μm. The charge collection efficiencies of the detectors developed in the thesis are as high as 60%-70%, which reach the advanced level of the world.
     Pulsed radiation response properties of CVD diamond film detectors are systematically studied. Their time response waveforms are calculated using a physical mode, and the relevant experiments are finished on ultra-fast UV source, X rays and proton beams. Time response parameters of the detectors developed in the thesis and the relationship between the time response of diamond film detectors and diamond qualities are achieved. Basing on the Monte-Carlo calculations of the detectors’responses to radiation and n/γdiscrimination ability, their radiation response properties are experimentally investigated on pulsedγrays, X rays from Z-pinch processes, n/X mixed radiation fields of the DPF neutron generator, electron beams of BEPC II Testing Beam Facility. The results show that the best rise time of the detectors developed in the thesis is as fast as 440ps, their time response and sensitivities satisfy the requirements of pulsed radiation detection.
     The radiation hardness are studied on the 2×13MeV Beijing Tandem Accelerator HI-13. The results show that the radiation hardness of detectors developed in the thesis is 3 grade higher than that of Si-PIN detectors.
     It can be concluded that the CVD diamond film detectors developed in the thesis have high qualities of low dark currents, fast time response, high radiation hardness and they can be used as a better alternative detectors in the high intensity pulsed radiation diagnosis.
引文
[1] Krasilnikov A. V., Azizov E., Roquemore A., et al. TFTR natural diamond detectors based D-T neutron spectrometry system. Rev. of Sci. Ins., 1997, 68(1):553.
    [2]刘庆兆等.脉冲辐射场诊断技术.北京:科学出版社, 1994.
    [3]欧阳晓平.低强度脉冲裂变中子探测器技术研究[博士学位论文].上海:复旦大学现代物理研究所, 2002.
    [4] Knoll G. F. Radiation Detection and Measurement Third Edition. New York: John Wiley & Sons, Inc., 2000.
    [5] Ouyang X. P., Li Z. F., Wang Q. S. Thin plastic scintillating foil for measuring pulsed neutron flux in high gamma-ray enviroment. High Energy Physics and Nuclear Physics, 2005, 29(4):399-403.
    [6]杨洪琼,杨瑞华,彭忠传,等. GaAs:Cr探测器对聚变脉冲中子诊断的灵敏度研究.强激光与粒子束, 1997, 9(3):381-384.
    [7] Ouyang X. P., Zhang Z. B., Wang Q. S. A novel detector for measuring gamma-ray fluxes in a mixed pulsed neutron-gamma radiation fields. IEEE Trans. Nucl. Sci., 2007, NS-54(4):1239-1243.
    [8] Ouyang X. P. A charge-collection method for measurements of pulsed fast-neutron flux. Nuclear Instruments and Methords in Physics Research A, 2002, 481(493-501.
    [9]黎春华.集电型高n/g聚变中子探测器g灵敏度研究[硕士学位论文].西安:西北核技术研究所, 2006.
    [10]欧阳晓平,李真富,霍裕昆.狭缝外延式高灵敏裂变中子探测系统.物理学报, 2005, 51(7):1502-1504.
    [11]欧阳晓平,李真富,霍裕昆.具有统计增强效应的(CF2)n-PIN夹层探测器阵列.高能物理与核物理, 2006, 30(7):704-708.
    [12]安继刚等.致电离辐射探测学讲义.北京:清华大学工程物理系, 1999.
    [13]欧阳晓平,王兰,范如玉,等.金刚石膜探测器研制.物理学报, 2006,55(5):2170-2174.
    [14]孙亦宁,李敬起,郭晚土,等.金刚石膜高能粒子探测器.真空科学与技术, 1997, 17(5):336-339.
    [15] Bergonzo P., Brambilla A., Tromson D., et al. CVD diamond for nuclear detection applications. Nuclear Instruments and Methords in Physics Research A, 2002, 476(694-700.
    [16] Wang L., Ouyang X. P., Fan R. Y., et al. A CVD diamond film detector for pulsed radiation detection. Chinese Physics, 2007, To be published.
    [17] Diamond technology for particle and soft X-ray detectors: report of Los Alamos National Laboratory. California: LA-CRADA-96-4, 1996.
    [18] Wang L., Ouyang X. P., Fan R. Y., et al. Characteristics of CVD diamond film detectors for pulsed radiation detection. 2007 IEEE Nuclear Science Symposium Conference Record, 2007, N24(284):1507-1510.
    [19] Ahearn A. J. Conductivity Induced in Diamond by Alpha-Particle Bombardment and Its Variation among Specimens Phys. Rev., 1948, 73:1113.
    [20] Wooldridge D. E., Ahearn A. J., Burton J. A. Conductivity Pulses Induced in Diamond by Alpha-Particles Phys. Rev., 1948, 71:913.
    [21] Friedman H., Birks L. S., Gauvin H. P. Ultraviolet Transmission of "Counting" Diamonds Phys. Rev., 1948, 73:186.
    [22] Hofstadter R. Nucleonics, 1949, 4:29.
    [23] Kozlov S. F., Konorova E. A., Kuanetsov Y. A., et al. Diamond dosemeter for X-ray and g-radiation. IEEE Trans. Nucl. Sci., 1977, 24(1):235-237.
    [24] Canali C., Gatti E., Kozlov S. F., et al. Electrical properties and performances of natural diamond nuclear radiation detectors. Nuclear Instruments and Methords, 1979, 160:73-77.
    [25] Kozlov S. P., Konorova E. A., Barinov A. L., et al. Preparation and characteristics of natural diamond nuclear radiation detectors. IEEE Trans. Nucl. Sci., 1975, 22:171.
    [26] Nazare M. H., Foster B., Gilmore R. S., et al. Development of Diamond Tracking Detectors for High Luminosity Experiments at LHC: report of CERN. Switzerland: CERN/DRDC 94-21, 1994.
    [27] Mainwood A. Recent developments of diamond detectors for particles and UV radiation. Semicond. Sci. Technol., 2000, 15:R55-R63.
    [28] Mongkolnavin R. CVD Polycrystalline Diamond: A Novel Neutron Detector andApplications[PhD Thesis]. London: Imperial CollegeDepartment of Physics, 1998.
    [29] Han S. New developments in photoconductive detectors: report of Los Alamos National Laboratory. California: LA-UR-96-2174, 1996.
    [30] Kagan H. Recent adcances in diamond detector development. Nuclear Instruments and Methords in Physics Research A, 2005, 541:221-227.
    [31] Angelone M., Marinelli M., Milani E., et al. Neutron detection and dosimetry using polycrystalline CVD diamond detectors with high collection efficiency. Radiation Protection Dosimetry, 2006, 120(1-4):345-348.
    [32] Mer C., Pomorski M., Bergonzo P., et al. An insight into neutron detection from polycrystalline CVD diamond films. Diamond and Related Materials, 2004, 13:791-795.
    [33] Kania D. R., Pan L. S., Kornblum H., et al. Soft X-ray detection with diamond photoconductive detectors. Review of Scientific Instruments, 1990, 61(10):2765-2767.
    [34] Pan L. S., Han S., Kania D. R., et al. Particle- and photoinduced conductivity in type-IIa diamonds. J. Appl. Phys, 1993, 74(2):1086-1095.
    [35] Pan L. S.Kania D. R. Diamond: electronic properties and applications. Boston: Kluwer Academic Publishers, 1995.
    [36] Kania D. R. Diamond radiation detectors II. CVD diamond development for radiation detectors: report of Advanced Microtechnology Program, Lawrrence Livermore National Laboratory. California: UCRL-JC-127288 Pt 2, 1997.
    [37] Marinelli M., Milani E., Paoletti A., et al. Trapping and detrapping effects in high-quality chemical-vapor-deposition diamond films: Pulse shape analysis of diamond particle detectors. Phys. Rev. B, 2001, 64:195205-1-195205-8.
    [38] Milazzo L.Mainwood A. Modelling of diamond detectors: effects of the polycrystalline structure and a pulse shape analysis. Diamond and Related Materials, 2004, 13:934-937.
    [39] Angelone M., Pillon M., Balducci A., et al. Radiation hardness of a polycrystalline chemical-vapordeposited diamond detector irradiated with 14MeV neutrons. Rev. of Sci. Ins., 2006, 11:023505.
    [40] Pillon M., Angelone M., Krasilnikov A. V. 14 MeV neutron spectra measurements with 4% energy resolution using a type IIa diamond detector. Nuclear Instruments and Methords in Physics Research B, 1995, 101:473-483.
    [41] Bauer C., Baumann I., Colledani C., et al. Pion irradiation studies of CVD diamond detectors: report of CERN. Sweitzerland: CERN PPE/ 95-173, 1995.
    [42] Meier D. Diamond as a Particle Detector: report of CERN. Switzerland: CH-1211, 1996.
    [43] Adam W., Bauer C., Berdermann E., et al. Development of CVD Diamond Radiation Detectors. In: Electrochemical Society. 1997.
    [44] Adam W., Berdermann E., Bergonzo P., et al. Decelopment of Diamond Tracking Detectors for High Luminosity Experiments at the LHC: report of CERN. Switzerland: 1998.
    [45] Adam W., Berdermann E., Bergonzo P. Pulse Height Distribution and Radiation Tolerance of CVD Diamond Detectors: report of CERN. Switzerlant: 1999.
    [46] Adam W., Berdermann E., Bergonzo P., et al. Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC: report of CERN. Switzerland: 2000.
    [47] Luis F., Vladimir C., Christoph I., et al. Development of a beam condition monitor for use in experiments at the CERN large hadron collider using synthetic diamond. In: Instrumentation and Measurement Technology Conference. Como, Italy: 2004.
    [48] Zoeller M. M., Adam W., Bauer C., et al. Performance of CVD diamond microstrip detectors under particle irradiation. IEEE Trans. Nucl. Sci., 1997, 44(3):815-818.
    [49]王玉光,费允杰,冯克安.金刚石膜紫外光电导探测器及性能.功能材料与器件学报, 2000, 6(3):252-255.
    [50]夏义本,王林军,张明龙,等. CVD金刚石核探测材料与器件.原子能科学技术, 2005, 39(7):
    [51] Zhang M. L., Xia Y. B., Wang L. J., et al. Effects of the grain size of CVD diamond films on the detector performance. Journal of Material Science, 2005, 40:5269-5272.
    [52] Marinelli M., Milani E., Paoletti A., et al. Systematic study of pre-irradiation effects in high efficiency CVD diamond nuclear particle detectors. Nuclear Instruments and Methords in Physics Research A, 2002, 476:701-705.
    [53] Mathes M. A single crystal diamond pixel detector: testbeam and lab results. In: IEEE 2007 NSS-MIC. Hawaii, USA: 2007.
    [54] Behnke T., Doucet M., Ghodbane N., et al. Electromagnetic radiation hardness of diamond detectors. Nuclear Instruments and Methords in Physics Research A, 2002, 489:230-240.
    [55] Adam W., Berdermann E., Bergonzo P., et al. Radiation tolerance of CVD diamond detectors for pions and protons. In: Third International Conference on Radiation Effects on Semiconductor Materials. Florence, Italy: 2000.
    [56] Mainwood A., Allers L., Collins A. T., et al. Neutron damage of chemical vapour deposition diamond. J. Phys. D: Appl. Phys., 1995, 28:1279-1283.
    [57] Allers L., Howard A. S., Hassard J. F., et al. Neutron damage of CVD diamond. Diamond and Related Materials, 1997, 6:353-355.
    [58] Husson D., Bauer C., Baumann I., et al. Neutron irradiation of CVD diamond samples for tracking detectors. Nuclear Instruments and Methords in Physics Research A, 1997, 388:421-426.
    [59] Wagner R. S., Hilko R. A., Harper R. W., et al. The temporal response and relative proton-to gamma radio of radiation detectors made from natural diamond: report of Los Alamos National Laboratory. California: LA-UR-92-3541, 1992.
    [60]张恒大,刘敬明,宋建华,等. CVD金刚石膜中的缺陷.北京科技大学学报, 2002, 24(4):426-428.
    [61] Balducci A., Marinelli M., Milani E., et al. Distribution of electrically active defects in chemical vapor deposition diamond: Model and measurement. Applied Physics Letters, 2005, 86:022108.
    [62]吕反修,唐伟忠,李成明,等.大面积光学级金刚是自支撑膜研究进展.红外技术, 2003, 25(4):1-7.
    [63] Pickles C. S. J., Madgwick T. D., Sussmann R. S., et al. Optical Applications of CVD diamond: report of Element Six. Netherlands: 2000.
    [64]张恒大.自支撑CVD金刚石薄膜中的杂质及其影响[博士学位论文].北京:北京科技大学材料科学与工程学院, 2004.
    [65] Filik J. Raman spectroscopy: a simple, non-destructive way to characterise diamond and diamond-like materials. Spectroscopy Europe, 2005, 17(5):10-17.
    [66] Yang J. X., Zhang H. D., Li C. M., et al. Effects of nitrogen addition on morphology and mechanical property of DC arc plasma jet CVD diamond films. Diamond and Related Materials, 2004, 13:139-144.
    [67] Iakoubovskii K., Adriaenssens G. J., Nesladek M., et al. Photoluminescence excitation and quenching spectra in CVD diamond films. Diamond and Related Materials, 1999, 8:717.
    [68] Rossi M. C., Salvatori S., Galluzzi F., et al. Diamond photoluminescence spectra: dependence on excitation energy and microstructure. Diamond and Related Materials, 1998, 7:255.
    [69] Tallaire A., Achard J., Silva F., et al. Hooepitaxial deposition of high-quality thickdiamond films: effect of growth parameters. Diamond and Related Materials, 2005, 14:249-254.
    [70]李超,曹传宝,朱鹤孙,等.阴极电沉积法制备高氮含量氮化碳薄膜.应用化学, 2004, 21(1):36-40.
    [71] Tallaire A., Achard J., Secroun A., et al. Multiple growth and characterization of thick diamond single crystals using chemical vapour deposition working in pulsed mode. Journal of Crsystal Growth, 2006, 291:533-539.
    [72] Lu F. X., Zhang H. D., Tong Y. M., et al. Dielectric property of thick freestanding diaond films by high power arcjet operating at gas recycling mode. Diamond and Related Materials, 2004, 13:17141718.
    [73]杨胶溪.高质量金刚石自支撑膜组织与性能的研究[博士学位论文].北京:北京科技大学材料科学与工程学院, 2004.
    [74]杨胶溪,张恒大,李成明,等.加氮对直流电弧等离子体喷射金刚石膜生长、形貌和质量的影响.人工晶体学报, 2003, 32(4):386-392.
    [75] Smith S. D.Taylor W. Optical Phonon Effects in the Infra-red Spectrum of Acceptor Centres in Semiconducting Diamond. Proc. Phys. Soc, 1962, 79:1142.
    [76] Koizumi S., Ozaki H., Kamo M., et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl. Phys. Lett. , 1997, 71(8):1065.
    [77] Nishitani-Gamo M., Yasu E., Xiao C., et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties. Diamond and Related Materials, 2000, 9:941.
    [78] Warner R. M.Grung B. L. Semiconductor-Device Electronics. Beijing: Publishing House of Electronics Industry, 2002.
    [79]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社, 2005.
    [80]黄昆.固体物理学.北京:高等教育出版社, 1988.
    [81] Seeger K. Semiconductor Physics. New York: Springer-verlag Wien, 1973.
    [82] Bardeen J. Phys. Rev., 1947, 71:717.
    [83] Jany C., Foulon F., Bergonzo P., et al. Post-growth treatments and contact formation on CVD diamond films for electric applications. Diamond and Related Materials, 1998, 7:951-956.
    [84] Judith J., Briesmeister, Editor. MCNP- A general Monte Carlo N-particle trasport code: report of Los Alamos National Laboratory. New Mexico: LA-13709-M, 2000.
    [85] McLane V., Dunford C. L., Rose P. F., et al. ENDF-102: Data formats and procedures for the evaluated nuclear data file ENDF-6": report of BNL. BNL-NCS-44945, 1995.
    [86] MCNP4C Mont Carlo N-Particle Transport Code System: report of Los Alamos National Laboratory. 2000.
    [87] UNIDOS10002 user's manual: report of PTW Corporation. L?rracher Str. 7, Germany:
    [88]季万河,俞鸿宝,刘邦杰. X射线绝对测量(电离室)装置:西北核技术研究所报告.西安: B2738, 1984.
    [89] Ziegler J. F. Nuclear Instruments and Methords in Physics Research B, 2004, 219/220:1027-1036.
    [90] Little R. C. Argon and Krypton Cross-section Files. LANL internal memorandum, 1982.
    [91] Nava F., Canali C., Jacoboni C., et al. Electron effective massed and lattice scattering in natural diamond. Solid State Coom., 1980, 33:475.
    [92] Reggiani L., Bosi S., Canali C., et al. Onthe lattice scattering and effective mass of holes in natural diamond. Solid State Coom., 1979, 30:333.
    [93] Mckay K. G.Mcafee K. B. Electron Multiplication in Silicon and Germanium Phys. Rev., 1953, 91(1079.
    [94]伯托利尼G.科什A.半导体探测器.北京:原子能出版社, 1975.
    [95] Nava F., Canali C., Artuso M., et al. Transport properties of natural diamond used as nuclear particle detector for a wide temperature range. IEEE Trans. Nucl. Sci., 1979, NS-26(1):308.
    [96] Hecht K. Zum Mechanismus des lichtelektrischen primarstromes in isolierenden kristallen. Z. Physik, 1932, 77:235-245.
    [97]穆辛K. H.实验核物理学.北京:原子能出版社, 1996.
    [98] Dikinson W. C., Lauzon A. F., Neifert R. D., et al. report of Lowrence Radiation Laboratory. Livermore: UOPB 63-113, 1963.
    [99] Setbt W., Sundstrom K. E., Tove P. A. Charge collection in silicon detectors for strongly ionizing particles. Nuclear Instruments and Methords, 1973, 113:317-324.
    [100] Koike J., Parkin D. M., Mitchell T. E. Applied Physics Letters, 1992, 60:1450.
    [101]曹建中.半导体材料的辐照效应.北京:科学出版社, 1993.
    [102] Marinelli M., Milani E., Morgada M. E., et al. Separate measurement of electron and hole meandrift distance in CVD diamond. Diamond and Related Materials, 2004, 13:929-933.
    [103] Robert W. K. Semiconductor Detectors for Use in the Current Mode: report of UCRL51011, 1971.