矢量粲偶素若干重子衰变道的测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用北京谱仪(BESⅡ)在北京正负电子对撞机(BEPC)上收集的58×10~6J/φ和14×10~6φ(2S)事例,对J/φ→Λ(?)π~0, J/φ→Λ(?)η,φ(2S)→Λ(?)π~0,φ(2S)→Λ(?)η, J/φ→∑~+(?) and J/φ→Ξ~0(?)等重子衰变道的分支比进行了精确测量。
     在分析J/φ→Λ(?)π~0过程中,发现本底J/φ→∑~0π~0(?)+c.c.和J/φ→∑~+π~-(?) +c.c.对Λ(?)π~0信号构成严重污染。考虑这一本底贡献后,J/φ→Λ(?)π~0的衰变分支比比以前的测量结果明显减小。2006年粒子数据组(PDG)给出J/φ→Λ(?)π~0的分支比结果为(2.2±0.6)×10~(-4),而我们测得90%置信度下的分支比上限为
     在寻找J/φ→Λ(?)η时,通过优化事例筛选条件,首次在两光子不变质量谱上观察到η信号,其统计显著性为4.80σ,并测得其分支比为其中第一项误差为统计误差,第二项为系统误差。对比J/φ→Λ(?)π~0和J/φ→Λ(?)η分支比,我们发现同位旋守恒过程(Λ(?)η)与同位旋破坏过程(Λ(?)π~0)分支比显著不同,与理论预期的强衰变分支比比电磁过程要大一致,表明J/φ→Λ(?)π~0和J/φ→Λ(?)η中不存在反常行为。
     同样,我们还对φ(2S)衰变到Λ(?)π~0和Λ(?)η进行了分析和研究。在扣除已知本底后,没有发现明显的信号事例,测得90%置信度下的分支比上限为
     本文还首次测量了重子对衰变过程J/φ→∑~+(?)和J/φ→Ξ~0(?)的分支比,测量结果如下:其中第一项误差为统计误差,第二项误差为系统误差。这些测量结果和它们的同位旋多重态J/φ→∑~0(?)和J/φ→Ξ~-(?)的分支比在误差范围内是一致的。利用CLEO合作组最新测得的φ(2S)→∑~+(?)和φ(2s)→Ξ~0(?)分支比结果,我们发现J/φ和φ(2S)衰变到∑~+(?)和Ξ~0(?)基本符合微扰QCD预言的“12%规则”。
With 58 million J/φand 14 millionφ(2S) events collected with the BESⅡdetector at the BEPC, branching fractions or upper limits on branching fractions for the baryonic decays J/φ→Λ(?)π~0, J/φ→Λ(?)η,φ(2S)→Λ(?)π~0,φ(2S)→Λ(?)η, J/φ→∑~+(?) and J/φ→Ξ~0(?) are measured.
     In the analysis of J/φ→Λ(?)π~0, we found that the observedπ~0 was seriously contaminated by the backgrounds J/φ→∑~0π~0(?) + c.c. and J/φ→∑~+π~-(?) + c.c. Considering the contributions of these crucial backgrounds, we found that the branching fraction of J/φdecaying toΛ(?)π~0 is smaller than previous measurements. In contrast to the large value ((2.2±0.6)×10~(-4)) of branching fraction of J/φ→Λ(?)π~0 in PDG 2006, we determined, at the 90% confidence level,
     In the measurement J/φ→Λ(?)η, we optimized the event selections, and observed the signal ofηin theγγinvariant mass for the first time. The statistical significance is 4.8σ, and the branching fraction is measured to be,where the first error is statistical and the second systematic. Comparing the distinct values of the branching fraction of J/φ→Λ(?)π~0 and J/φ→Λ(?)η, we found that our results are in accord with the theoretical predictions of the relative large branching fraction of strong interaction. Therefore, our results indicate that there is no abnormal physics in J/φ→Λ(?)π~0, and J/φ→Λ(?)ηdecays.
     Similarly, we also analyzedφ(2S) decaying intoΛ(?)π~0, andΛ(?)η. No signals were found inφ(2S) decays, and the upper limits at the 90% confidence level are determined to be,
     Furthermore, we observed the baryon pair processes J/φ→∑~+(?) and J/φ→Ξ~0(?) for the first time, and measured the branching fractions to be,where the first error is statistical and the second systematic. These results are consistent with the branching fractions of their isospin partners J/φ→∑~0(?) and J/φ→Ξ~-(?) with expectations of isospin symmetry. Using the recent branching fractions ofφ(2S)→∑~+(?) andφ(2S)→Ξ~0(?) measured by CLEO collaboration, we found that the ratio of the branching fraction ofφ(2S) and J/φdecaying to∑~+(?) andΞ~0(?) agree with the so called " 12% rule" predicted by perturbative QCD within1σ.
引文
[1]章乃森,粒子物理学(第1版),科学出版社,(上册)1986年4月;(下册)1987年11月.
    [2]杨振宁,基本粒子发现简史(第1版),上海科学技术出版社,1963年9月
    [3]高崇寿,秦旦华,粒子物理学概要,高等教育出版社出版,1988年.
    [4]李政道,粒子物理和场论,山东科学技术出版社出版,1996年.
    [5]D.H.LPerkins, Introduction to High Energy Physics, Cambridge University Press(4th Edition)2000.
    [6]A.Schafer and W.Greiner, Quantum Chromodynamics, Springer, 1994
    [7]J.F.Donoghue, E.Golowich, B.R. Holstein, Dynamics of Standard Model; M.E. Peskin and D.V. Schroeder, An introduction to Quantum Field Theory.
    [8]刘涵,蔡勖,夸克与轻子物理的运动学原理,华中师范大学出版社,1999年12月;杨纯斌,蔡勖,夸克与轻子物理-原理导引,华中师范大学出版社,2000年3月。
    [9]H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365 (1973).
    [10]D. J. Gross and F. Wilczek, Phys. Lett. 30, 1343 (1973); H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
    [11]T. Eichten et al., Phys. Lett. B 46, 274-280 (1973).
    [12]G. Arnison et al., Phys. Lett. B 126, 398 (1983). P. Bagnaia et al., Phys. Lett. B 126, 130 (1983).
    [13]M. Gell-Mann, Phys. Rev. Lett. 8, 214 (1964).
    [14]郑志鹏、朱永生主编,北京谱仪·正负电子物理
    [15] M. S. Chanowitz, LBL-23437 and Proc. of the International Conference On Hadron Spectlreoscopy, April 16-18, 1987, KEK, Tsukuba, Japan.
    [16] 张宗烨,多夸克态研究概况,原子核物理评论,第二十一卷第四期.
    [17] S. Eidelman, et al., Phys. Lett. B 592, 1 (2004).
    [18] N.Cabbibo, Phys. ReV. Lett. 10, 531(1963).
    [19] B.J.Bjorken and S.L.Glashow, Phys. Lett. B11, 255(1964).
    [20] S.L.Glashow, J.Iliopoulos, L.Maiani, Phys. Rev. D2, 1285(1970).
    [21] J.J. Aubert et al, Phys. Rev. Lett. 30, 1404(1974).
    [22] J.E. Augustin et al, Phys. Rev. Lett. 30, 1406(1974).
    [23] P.A.Rapidis et al, Phys. Rev. Lett. 39, 526(1977); W.Braunschweig et al, Phys. Lett. B57, 407(1975); J.S.Whittaker et al., Phys. Rev. Lett. 37, 1596(1976); W. Tanenbaum et al, Phys. Rev. D17, 1731(1978).
    [24] J. Gaiser et al., Phys. Rev. D 34, 711 (1986).
    [25] G. T. Bodwin, E.Braaten and G. P. Lepage, Phys. Rev. D 46, 1914 (1992).
    [26] Particle Data Group, C. Amsler el al, Phys. Lett. B 667, 1 (2008).
    [27] S.S.Fanget al.,高能物理与核物理,27,277(2003).
    [28] 莫晓虎等,高能物理与核物理,v28,455(2004)。
    [29] Diego Bettoni and Roberto Calabrese, Process in Particle and Nuclear Physics 54,615-651(2005).
    [30] W. Kwong, Phys. Rev. D 37, 3210 (1988).
    [31] M. E. B. Franklin et al., Phys. Rev. Lett. 51, 963 (1983).
    [32] V. A. Novikove, et al., Phys. Rep. 41C, 1(1978).
    [33] ]J.B. Kogut,Rev.Mod.Phys.51, 659, (1979); ibid. 5,775 (1983).
    [34] H. Grosse and A. Martin, Phys. Rept. 60, 341 (1980).
    [35] G. T. Bodwin, E.Braaten and G. P. Lepage, Phys. Rev. D46, 1914 (1992);ibid D 51, 1125(1995).
    [36] H. Kowalski and T. F. Walsh, Phys. Rev. D 14, 852 (1976).
    [37] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989).
    [38] Particle Data Group, W. M. Yao et al, J. Phys. G 33,1 (2006).
    [39] BES合作组,高能物理与核物理,v16,769(1992);J.Z.Bai et al, Nucl. Instr. Meth. A344, 319(1994); Y.N.Guo, Nucl. Instr. Meth. A379, 349(1996); J.Z.Bai et al, Nucl. Instr. Meth. A458, 627(2001).
    [40] 谢家麟主编,北京正负电子对撞机与北京谱仪(第1版),浙江科学技术出版社,1996年11月;郑志鹏、朱永生主编,北京谱仪·正负电子物理(第1版),广西科学技术出版社,1996年11月;关于北京谱仪的论文集(硬件部分),1983-1999,(共收录文章78篇);关于北京谱仪的论文集(软件、物理部分),1986-1999,(共收录文章40篇);BES合作组中文文集,1992-1999,(共收录文章23篇);BES合作组英文文集,1992-1999,(共收录文章32篇).
    [41] 杨宏勋,顶点探测器性能研究(硕士论文1998年),第2章,第6页。
    [42] 崔象宗,粒子物理与原子核物理实验(2),教学参考。
    [43] BES Collaboration, J. Z. Bai et al, Nucl. Instr. and Meth. A 458, 627 (2001).
    [44] BES Collaboration, M. Ablikim et al, Nucl. Instr. and Meth. A 552, 344 (2005).
    [45] R.M. Sternheimer and R.F. Peierls, Phys. Rev. B 3, 3681 (1971).
    [46] 谢一冈,陈昌,et al,粒子探测器与数据获取,科学出版社,2003年;谢家麟,北京正负电子对撞机与北京谱仪,浙江科学技术出版社,1996年;郑志鹏、朱永生,北京谱仪·正负电子物理,广西科学技术出版社,1996年。
    [47] 许克尊等,粒子探测技术,上海科学出版社,1981年。
    [48] BES Collaboration, M. Ablikim et al, Phys. Rev. D 76, 092003 (2007).
    [49] Y. S. Zhu, High Energy Phys. Nucl. Phys. 4, 30 (2006).
    [50] X. B. Ji and X. Y. Shen, High Energy Phys. Nucl. Phys. 27, 1058 (2003).
    [51] 季晓斌,J/φ重子衰变道的分析及其他研究,高能所博士后报告(2003).
    [52] 焦健斌,φ(2S)重子对衰变的分之比测量,山东大学博士学位论文(2006).
    [53] BES Collaboration, M. Ablikim el al., Phys. Lett. B648, 149 (2007).
    [54] BES Collaboration, J. Z. Bai et al., Phys. Lett. B 424, 213 (1998).
    [55] DM2 Collaboration, P. Henrard et al., Nucl. Phys. B 292, 670 (1987).
    [56] BES Collaboration, M. Ablikim el al, Phys. Rev. D 78, 092005 (2008).
    [57] BES Collaboration, M. Ablikim et al, Phys. Rev. D 71, 072006 (2005).
    [58] BES Collaboration, J. Z. Bai et al., Phys. Rev. D 70, 012005 (2004).
    [59] BES Collaboration, M. Ablikim el al., Phys. Rev. D 69, 072001 (2004).
    [60] BES Collaboration, M. Ablikim et al., Phys. Lett. B630, 7 (2005).
    [61] BES Collaboration, T. K. Pedlarer al., Phys. Rev. D 72, 051108 (2005).
    [62] BES Collaboration, J. Z. Bai et al., Phys. Rev. D 63, 032002 (2001).
    [63] MarkⅠ Collaboration, I. Peruzzi et al., Phys. Rev. D 17, 2901 (1978).
    [64] MarkⅡ Collaboration, M. W. Eaton et al., Phys. Rev. D 29, 804 (1984).
    [65] DM2 Collaboration, P. Henrard el al., Nucl. Phys. B 292,653 (1987).
    [66] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 76,092006 (2007).
    [67] BES Collaboration, M. Ablikim el al., Phys. Lett. B632,181 (2006).
    [68] 苑长征,et al,高能物理与核物理26,1201(2002).
    [69] BESⅢ design report,08/05/2002
    [70] T. P. Li, Mathematical Treatment of Experimental Data, Science Press, 1980.
    [71] 朱永生,实验物理中的概率和统计(第二版),科学出版社,(2006)。
    [72] J. Neyman, Philos. Trans. R. Soc. London Ser. A 236, 333 (1937).
    [73] G. J. Feldman, R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
    [74] B. P. Roe, M. B. Woodroofe, Phys. Rev. D 60, 053009 (1999).
    [75] T. Bayes, Phil. Trans. R. Soc. 53, 370 (1763).
    [76] R. D. Cousins, V. L. ffighland, Nucl. Instr. and Meth. A 320, 331 (1992).
    [77] I. Narsky, Nucl. Instr. and Meth. A 450, 444 (2000).
    [78] O. Helene, Nucl. Instr. and Meth. A 300, 132 (1999).
    [79] G. E. P. Box, G. C. Tiao, Bayesian Inference in Statistical Analysis, Wiley, New York, 1992.
    [80] W. A. Rolke, A. M. Lopez, Nucl. Instr. and Meth. A 458, 745 (2001).
    [81] J. Conrad, et al., Phys. Rev. D 67, 012002 (2003).
    [82] http://www3.tsl.uu.se/conrad/pole.html.
    [83] Y. S. Zhu, Nucl. Inst. Meths. A 578, 322 (2007).
    [84] Y. S. Zhu, High Energy Phys. Nucl. Phys. 32, 363 (2003).
    [85] http://www.ihep.ac.cn/lunwen/zhuys/BPULE/BPULE.html.
    [86] N. Guillotin-Plantard and R. Schott, Dynamic Random Walks: Theory and Ap-plication (Elsevier, Amsterdam, 2006).
    [87] W. Woess, Random Walks on Infinite Graphs and Groups (Cambridge: Cam-bridge University Press, 2000).
    [88] D. Supriyo, Quantum Transport: Atom to Transistor (Cambridge University Press, London, 2005).
    [89] P. A. Mello and N. Kumar, Quantum Transport in Mesoscopic Systems: Com-plexity and Statistical Fluctuations (Oxford University Press, USA, 2004).
    [90] R. Metzler und J. Klafter, Phys. Rep. 339, 1 (2000).
    [91] R. Burioni and D. Cassi, J. Phys. A 38, R45 (2005).
    [92] E. Farhi and S. Gutmanh, Phys. Rev. A 58, 915 (1998).
    [93] L. K. Grover, A Fast Quantum Mechanical Algorithm for Database Search, Pro-ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-ing pp. 212 - 219( ACM, New York, 1996).
    [94] Y. Yin, D. E. Katsanos, and S. N. Evangelou, Phys. Rev. A 77, 022302 (2008).
    [95] C. Kittel, Introduction to solid state physics (Wiley, New York, 1986).
    [96] H. Krovi and T. A. Brun, Phys. Rev. A 75, 062332 (2007).
    [97] F. W. Strauch, Phys. Rev. A 74, 030301R (2006).
    [98] O. Mülken, A. Volta and A. Blumen, Phys. Rev. A 72, 042334 (2005).
    [99] G. H. Weiss, Aspect and Applications of the Random Walk (North-Holland, Am-sterdam, 1994).
    [100] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998). A. M. Childs, E. Farhi, and S. Gutmann, Quant. Inf. Proc. 1, 35 (2002).
    [101] O. Mülken and A. Blumen, Phys. Rev. E 73, 066117 (2006).
    [102]http://www.math.hmc.edu/calculus/tutorials/gramschrnidt/
    [103]G.Arfken,Mathematical Methods for Physicists,pp.516-520 (3rd ed.Orlando,Academic Press,1985).
    [104]X.P.Xu,J.Phys.A 42,115205 (2009).
    [105]O.Mulken and A.Blumen,Phys.Rev.E 71,036128 (2005).
    [106]T.Zhou,M.Zhao,and B.Hong Wang,Phys.Rev.E 73,037101 (2006).
    [107]X.P.Xu,Phys.Rev.E 79,011117 (2009).
    [108]X.P.Xu,Phys.Rev.E 77,061127 (2008).
    [109]A.Volta,O.Mulken and A.Blumen,J.Phys.A 39,14997 (2006).
    [110]X.P.Xu,Phys.Rev.A 77,062318 (2008).
    [111]O.Mülken,A.Volta and A.Blumen,Phys.Rev.A 76,051125 (2007).
    [112]J.S.Andrade,H.J.Herrmann,R.F.S.Andrade,and L.R.da Silva,Phys.Rev.Lett.94,018702 (2005).
    [113]R.Iwanow,D.A.May-Arrioja,D.N.Christodoulides,G.I.Stegeman,Y.Min,and W.Sohler,Phys.Rev.Lett.95,053902 (2005).
    [114]F.Grossmann,J.-M.Rost,and W.P.Schleich,J.Phys.A 30,L277 (1997).
    [115]X.P.Xu,W.Li and F.Liu,Phys.Rev.E 78,052103 (2008).
    [116]X.P.Xu,New J.Phys.10,123012 (2008).
    [117]J.Kempe,Contemp.Phys.44,307 (2002).