多烯紫杉醇经皮给药系统的设计与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多烯紫杉醇(Docetaxel, DTX)是一种新一代抗肿瘤药物,其新颖的抗肿瘤机制及在临床研究中显示的独特疗效,使得DTX及其合并用药方案在临床上被越来越多的应用于乳腺癌、非小细胞肺癌、卵巢癌及前列腺癌等多种肿瘤的治疗。由于DTX的水溶性差,市售制剂泰索帝(Taxotere)含有助溶剂吐温80,临床试验中部分患者产生严重过敏反应。开发安全有效的新型DTX制剂,消除现有DTX制剂所产生的问题,能够提高广大肿瘤患者的生活质量,具有重要的研究意义。
     本论文以改善难溶性药物DTX的经皮渗透性为主体思路,制备了DTX弹性脂质体制剂以解决DTX水溶性差和皮肤用药安全性问题,综合运用弹性脂质体和微针经皮给药技术改善DTX的经皮渗透性,对该药物经皮渗透的体内外药物动力学行为及经皮渗透机理进行了深入的研究,以期为以DTX为代表的低水溶性大分子药物的经皮给药新剂型开发提供研究基础。
     在本论文的文献综述部分,简单介绍了经皮给药系统,详细描述了改善药物经皮渗透性的药剂学、物理学及化学方法,对DTX的应用及制剂相关研究进展进行了阐述;在本论文的实验部分,主要围绕DTX弹性脂质体的研制及其与微针经皮给药技术结合的体内外药物动力学等方面开展了一系列研究。主要研究工作包括:
     1.建立了DTX弹性脂质体的制备方法。经处方优化后制备的DTX弹性脂质体为单层圆球形结构,载药量较水溶液提高了1000倍以上,具有良好的稳定性。
     2.运用体外扩散池实验研究了DTX弹性脂质体的体外经皮渗透性,并比较了DTX弹性脂质体、常规脂质体和对照溶液经猪皮的渗透性。DTX弹性脂质体的稳态渗透速率是常规脂质体的3倍(P<0.05),而对照溶液的接受池中药物浓度在定量限以下,这表明DTX弹性脂质体可显著性促进DTX的体外经皮渗透。通过空白制剂预处理实验和激光共聚焦成像法,提出在弹性脂质体改善DTX经皮渗透性的机理中,既存在渗透促进剂机制,又有完整弹性脂质体进入角质层机制,其中前者可能间接影响DTX的经皮传递,后者对渗透起主导作用。
     3.首次将弹性脂质体和微针经皮给药技术结合以改善药物的经皮渗透性,并对其促渗机理进行了探讨。微针作用可促进载有DTX的弹性脂质体的经皮传递,从而进一步改善DTX的经皮渗透。与微针技术结合时,DTX弹性脂质体的稳态渗透速率是对照溶液的1.7倍,且时滞仅为常规脂质体的1/4。上述研究结果表明DTX弹性脂质体微针给药系统在改善DTX经皮渗透性上具有显著优势,具有潜在应用价值。皮肤贮留量研究表明,DTX弹性脂质体进入微针作用产生的微孔道后,完整的弹性脂质体几乎无法穿透皮肤,而是贮留在皮肤中将DTX释放出来。
     4.初步研究了DTX弹性脂质体微针给药系统在小鼠体内药动学行为及抗肿瘤活性。DTX弹性脂质体微针经皮给药时,进入皮肤的DTX只有极少量会进入体循环。DTX弹性脂质体微针经皮给药治疗人乳腺癌裸鼠移植瘤的肿瘤体积和重量的增长均明显受到抑制。初步判断,DTX弹性脂质体微针给药系统具有一定程度的局部抗肿瘤作用。家兔皮肤刺激性实验结果表明,DTX弹性脂质体可降低DTX对皮肤的刺激性。
The novel antitumor mechanism and the unique efficacy in clinical trials make docetaxel (DTX) one of the promising new generations of antitumor drugs. DTX and its combination therapy were widely used in the treatment of many cancers, such as breast, non-small-cell lung, ovarian, and prostate cancer etc. Severe allergies are seen in clinical test of the market formulation (Taxotere) by utilizing Tween 80 as the solubilizer. To develop a safe and effective new formulation of DTX would overcome the problems of current formulation and improve the life quality of tumor patients, which has great importance for tumor therapy.
     Improving the skin permeability of poorly water-soluble DTX was the main focus of this paper. Both the solubility and the cutaneous safety of DTX were significantly improved by loading DTX into elastic liposomes. Combining elastic liposomes with microneedle pretreatment, the skin permeability of DTX was remarkably improved. The in vitro/in vivo pharmacokinetic behavior of skin permeation of DTX and the relevant mechanism were thoroughly studied to provide new idea and materials on the study of new formulation of high molecular weight and poor water-soluble drugs of DTX kind.
     In the review sections of this work, the skin drug delivery system was briefly introduced. Pharmaceutical, physical and chemical methods to improve skin drug delivery were described in detail. Recent development on DTX application and formulation study was also reviewed. In the experimental sections, a series of research work was performed in association with the development of DTX elastic liposomes and the in vitro/in vivo pharmacokinetics of DTX elastic liposomes-microneedle combination system. The main works are described below:
     1. Preparation of DTX elastic liposomes. The DTX elastic liposomes prepared under optimized formulation were unilamellar and spherical. The drug loading dosage of DTX in elastic liposomes was more than 1000 times higher than that in water. The DTX elastic liposomes were confirmed stable in the stability test.
     2. The permeability of DTX through porcine skin from elastic liposomes, conventional liposomes and control solution was investigated and compared in vitro. The steady-state flux of DTX from elastic liposomes is 3-fold higher than that from conventional liposomes (P<0.05). In the meantime, concentration of DTX in the receptor cell from control solution was below the limit of determination. The above results indicated that using elastic liposomes could significantly improve the skin delivery of DTX. The mechanism of elastic liposomes to improve skin delivery of DTX was studied by blank formulation pretreatment experiment and laser confocal scanning microscopy (CLSM), which indicated that both the penetration enhancing effect and intact liposomal permeation into the stratum corneum mechanism play a role in it. Furthermore, the penetration enhancing effect may indirectly influence the skin delivery of DTX, and the intact liposomal permeation into the stratum corneum mechanism seems to play a predominant role through the DTX permeation.
     3. The effect and mechanism of improvement of skin drug delivery by combining elastic liposomes with microneedle skin drug delivery system were studied for the first time. Microneedle pretreatment can improve the permeation of DTX loaded elastic liposomes, so as to further improve skin delivery of DTX. Combining with microneedle pretreatment, steady-state flux of DTX from elastic liposomes is 1.7-fold higher than that from control solution. Furthermore, the lag time of DTX from elastic liposomes is only a quarter of that from conventional liposomes by microneedle pretreatment. The results above showed that combining DTX elastic liposomes with microneedle pretreatment significantly improved the skin delivery of DTX, and showed great potential application value. The skin deposition study showed that after DTX elastic liposomes entering the microchannels created by microneedle pretreatment, intact liposomes will be difficult to permeate through the skin, but to deposit in the skin and release DTX.
     4. The pharmacokinetic behavior and antitumor effect of DTX elastic liposomes -microneedle combination system in mice were preliminarily studied. Only little DTX can enter the systemic circulation after enter the skin by the combination system, if any. Both the tumor volume and tumor weight of the human breast carcinoma xenografts in nude mice were remarkably inhibited by treatment of DTX elastic liposomes-microneedle system. These results demonstrated that DTX elastic liposomes-microneedle system could improve the local antitumor activity to some extent. Skin irritation test in rabbits showed that the DTX elastic liposomes can decrease the irritation of DTX to the skin.
引文
1.郑俊民.经皮给药新剂型,p3,人民卫生出版社,北京,2006.
    2. Malcolmson C., Satra C., Kantaria S., et al. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci, 1998, 87: 109–116.
    3. Elena P., Paola S., Maria R.G. Transdermal permeation of apomorphine through hariless mouse skin from microemulsion. Int J Pharm, 2001, 226:47–51.
    4.崔福德.药剂学,p383,人民卫生出版社,北京,2005.
    5. Vyas S.P., Singh R.P., Jain S., et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm, 2005, 296: 80–86.
    6. Elsayed M.M.A., Abdallah O.Y., Naggar V.F., et al. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int J Pharm, 2007, 332: 1–16.
    7. Mezei M., Gulasekharan V. Liposomes: a selective drug delivery system for the topical route of administration: I. Lotion dosage form. Life Sci, 1980, 26: 1473–1477.
    8. Mezei M., Gulasekharan V. Liposomes: a selective drug delivery system for the topical route of administration: gel dosage form. J Pharm Pharmacol, 1982, 34: 473–474.
    9. Wohlrab W., Lasch J. Penetration kinetics of liposomal hydrocortisone in human skin. Dermatologica, 1987, 174: 18–22.
    10. Foldvari M., Gesztes A., Mezei M. Dermal drug delivery by liposome encapsu- lation: clinical and electron microscopic studies. J Microencapsul, 1990, 7: 479–489.
    11. Egbaria K., Ramachandran C., Weiner N. Topical delivery of ciclosporin: evaluation of various formulations using in vitro diffusion studies in hairless mouse skin. Skin Pharmacol, 1990, 3: 21–28.
    12. Masini V., Bonte F.,Meybeck A., et al. Cutaneous bioavailability in hairless rats of tretinoin in liposomes or gel. J Pharm Sci, 1993, 82: 17–21.
    13. Fresta M., Puglisi G. Corticosteroid dermal delivery with skin-lipid liposomes. J Control Rel, 1997, 44: 141–151.
    14. Kim M.K., Chung S.J., Lee M.H., et al. Targeted and sustained delivery of hydrocortisone to normal and stratum corneum removed skin without enhanced skin absorption using a liposome gel. J Control Rel, 1997, 46: 243–251.
    15. VanKuijk-Meuwissen M.E.M.J., Junginger H.E., Bouwstra J.A. Interactions between liposomes and human skin in vitro, a confocal laser scanning microscopy study. Biochem Biophys Acta, 1998, 1371: 31–39.
    16. Bouwstra J.A., Honeywell-Nguyen P.L. Skin structure and mode ofaction of vesicles. Adv Drug Deliv Rev, 2002, 54: S41–S55.
    17. El Maghraby G.M.,Williams A.C., Barry B.W. Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol, 2006, 58: 415–429.
    18. Paul S., Cevc G., Bachhawat B.K. Transdermal immunization with an integral membrane component function protein, by means of ultradeformable drug carriers, transfersomes. Vaccine, 1998, 16: 188–195.
    19. Cevc G., Blume G. New highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, transfersomes. Biochem Biophys Acta, 2001, 1514: 191–205.
    20. Cevc G., Blume G., Schatzlein A. Transfersomes-mediated transepidermal delivery improves the region-specificity and biological activity of corticosteroids in vivo. J Control Rel, 1997, 45: 211–226.
    21.陈国广,张钧寿,翟光喜等.肝素透皮吸收传递体的研制.中国药科大学学报,2002,33:110–112.
    22.翟光喜,王唯红,赵焰等.低分子肝素柔性纳米脂质体的研究.山东大学学报(医学版),2002,40:240–242.
    23. Cevc G., Schatzlein A., Blume G. Transdermal drug carriers: basic properties optimization and transfer-efficiency in the case of epicutaneously applied peptides. J Control Rel, 1995, 36: 3–16.
    24. Ceve C., Gebauer D., Stieber J., et al. Ultraflexible vesicles, transfersomes have an extremely low pore penetration resistance and transport therapeutic amounts ofinsulin across the intact mammalian skin. Biochem Biophys Acta, 1998, 1368: 201–215.
    25.卞生杰,赵会英,丁平田等.胰岛素传递体经小鼠和家兔活体透皮吸收的初步评价.沈阳药科大学学报,2000,17:324–326.
    26.郭健新,平其能,吴涛.环孢素脂质微粒经小鼠皮肤给药的通透机理研究.药学学报,2000,35:782–785.
    27.郭健新,平其能,孙国庆等.柔性纳米脂质体作为环孢素经皮通透载体的体外研究,中国药学杂志,2000,35:595–597.
    28. El Maghraby G.M.M., Williams A.C., Barry B.W. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm, 2000, 196: 63–74.
    29. El Maghraby G.M.M., Williams A.C., Barry B.W. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in vitro. J Pharm Pharmacol, 2001, 53: 1069–1076.
    30. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Del Rev, 2004, 56: 675–711.
    31.丁平田,赵红(编译).透皮吸收药物的载体——传递体.国外医药——合成药、生化药、制剂分册,1997,18:48–51.
    32. Horer C., Goebel R., Deering P., et al. Formulation of interleukin-2 and interferon-alpha containing ultradeformable carriers for potential transdermal application. Anticancer Res, 1999, 19: 1505–1507.
    33. Hofer C., Lehmer A., Hartung R., et al. A transdermal approach for IL-2 therapy by new ultradeformable carriers (transfersomes). J Urology, 2000, 163: 114–116.
    34. Jain S., Sapre R., Tiwary A.K., et al. Proultraflexible lipid vesicles for effective transdermal delivery of levonorgestrel: development, characterization, and performance evaluation. AAPS PharmSciTech, 2005, 6: 513–522.
    35. Garg M., Mishra D., Agashe H., et al., Ethinylestradiolloaded ultraflexible liposomes: pharmacokinetics and pharmacodynamics. J Pharm Pharmacol, 2006, 58: 459–468.
    36. Honeywell-Nguyen P.L., Bouwstra J.A. Vesicles as a tool for transdermal anddermal delivery. Drug Discovery Today: Technologies, 2006, 2: 67?74.
    37. Honeywell-Nguyen P.L., Bouwstra J.A. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. J Control Rel, 2003, 86: 145–156.
    38. Cevc G., Blume G. Lipid vesicles penetrate into intact skin owing to thetransdermal osmotic gradients and hydration force. Biochem Biophys Acta, 1992, 1104: 226–232.
    39. Cevc G., Schatzlein A., Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochem Biophys Acta, 2002, 1564: 21–30.
    40. Williams A. Transdermal and Topical Drug Delivery, 1st ed. Pharmaceutical Press, 2003,London.
    41. Trotta M., Peira E., Debernardi F., et al. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm, 2002, 241: 319–327.
    42. van den Bergh B.A., Bouwstra J.A., Junginger H.E., et al. Elasticity of vesicles affects hairless mouse skin structure and permeability. J Control Rel, 1999, 62: 367–379.
    43. Elsayed M.M., Abdallah O.Y., Naggar V.F., et al. Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen. Pharmazie, 2007, 62: 133–137.
    44. Touitou E., Dayan N., Bergelson L., et al. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Rel, 2000, 65: 403–418.
    45.陈文浩,刘玉玲.含醇脂质体ethosomes的特性、透皮机制及应用.中国药学杂志,2003,38:490–493.
    46. Gobin B., Touitou E. Ethosomes: new prospects in transdermal delivery. Therapeutic Drug Carrier System, 2003, 20: 63–102.
    47. Dayan N., Touitou E. Carriers fro skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials, 2000, 21: 1879–1885.
    48. Riviere J.E., Papich M.G. Potential and problems of developing transdermal patchesfor vereinary applications. Adv Drug Deliv Rev, 2001, 50: 175–203.
    49. Curby C., Kalia Y.N., Guy R.H. Non-invasive assessment of the effects of iontophoresis on human skin in-vivo. J Pharm Pharmacol, 2001, 53: 769–777.
    50. Knoblauch P., Moll F. In vitro pulsatile and continuous trandermal delivery of buserelin by iontophoresis. J Control Rel, 1993, 26: 203–212.
    51. Erik R. Transdermal ionic species in skin: contribution of pore to the overall skin conductance. Pharm Res, 1993, 10: 1699–1709.
    52. Junginger H.E. Iontophoretic delivery of apomorphine: from in-vitro modeling to the Parkinson patient. Adv Drug Deliv Rev, 2002, 54 Suppl: S57–75.
    53. Sen A., Zhao Y., Zhang L., et al. Enhanced transdermal transport by electroporation using anionic lipids. J Control Rel, 2002, 82: 399–405.
    54. Conjeevaram R., Banga A.K., Zhang L. Electrically modulated trandermal delivery of fentanyl. Pharm Res, 2002, 19: 440–444.
    55. Dujardin N., Staes E., Kalia Y., et al. In vivo assessment of skin electroporation using square wave pulses. J Control Rel, 2002, 79: 219– 227.
    56.张国良,史宗道.低频超声透皮给药的研究进展.华西药学杂志,2001,16: 367–368.
    57. Edwards D., Langer R. A linear theory of transdermal transport phenomena. J Pharm Sci, 1994, 83: 1313–1334.
    58. Mitragotri S., Kost J. Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. Pharm Res, 2001, 18: 1151–1156.
    59. Henry S., McAllister D.V., Allen M.G. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci, 1998, 87: 922–925.
    60. Kaushik S., Hord A.H., Denson D.D., et al. Lack of pain associated with microfabricated microneedles. Anesth Analg, 2001, 92: 502–504.
    61. McAllister D.V., Wang P.M., Davis S.P., et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA, 2003, 100: 13755–13760.
    62. Lin W., Cormier M., Samiee A., et al. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res,2001, 18: 1789–1793.
    63. Matriano J.A., Cormier M., Johnson J., et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res, 2002, 18: 63–70.
    64. Theratechnologies ThPTH data for Phase I trial in osteoporosis presented at American bone and Mineral Society Meeting, http://www.newswire.ca/ en/releases/archive/October2004/04/c7181.html
    65. Martanto W., Davis S.P., Holiday N.R., et al. Transdermal delivery of insulin using microneedles in vivo. Pharm Res, 2004, 21: 947-952.
    66. Mikszta J.A., Alarcon J.B., Brittingham J.M., et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med, 2002, 8: 415–419.
    67.贾书海,李以贵,朱军等.一种新的低成本微电子机械系统微针加工办法.西安交通大学学报,2007,41:589– 592.
    68. Hou W., Das B., Jiang Y., et al. On a microfabricated Ti-alloy-based microneedle array for transdermal drug delivery. Proceedings of the 3rd IEEE Int.Conf. on Nano/Micro Engineered and Molecular Systems, 2008, 453–456, Sanya, China.
    69.徐百,高云华.微型实心硅针阵列芯片及其制备方法和用途,中国专利,CN200310122500(2003).
    70. Yan W., Qiu Y., Zhang S., et al. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevices, 2008, 10: 601–610.
    71. Barry B.W. Dermatological Formulations: Percutaneous Absorption, Marcel Dekker, New York, 1983.
    72. Elias P.M., Tsai J., Menon G.K., et al. The potential of metabolic interventions to enhance transdermal drug delivery. JID Symp Proc, 2002, 7: 79–85.
    73. Barry B.W., Southwell D., Woodford R. Optimisation of bioavailability of topical steroids: penetration enhancers under occlusion. J Invest Dermatol, 1984, 82: 49–52.
    74. Bennett S.L., Barry B.W., Woodford R. Optimisation of bioavailability of topicalsteroids: non-occluded penetration enhancers under thermodynamic control. J Pharm Pharmacol, 1984, 37: 298–304.
    75. Park E.S., Chang S.J., Rhee Y.S., et al., Effects of adhesives and permeation enhancers on the skin permeation of captopril. Drug Dev Ind Pharm, 2001, 27: 975–980.
    76. Aungst B.J., Rogers N.J., Shefter E. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. Int J Pharm, 1986, 33 : 225–234.
    77. Aungst B.J. Structure-effects studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharm Res, 1989, 6: 244–247.
    78. Wiechers J.W. Absorption, distribution, metabolism, and exretion of the cutaneous penetration enhancer Azone. Ph.D. thesis, University of Groningen, 1989.
    79. Wiechers J.W., de Zeeuw R.A. Transdermal drug delivery: efficacy and potential applications of the penetration enhancer Azone. Drug Des. Deliv, 1990, 6: 87– 100.
    80. Afouna M.I., Fincher T.K., Zaghloul A.A.A., et al. Effect of Azone upon the in vivo antiviral efficacy of cidofovir or acyclovir topical formulations in treatment/prevention of cutaneous HSV-1 infections and its correlation with skin target site free drug concentration in hairless mice. Int J Pharm, 2003, 253: 159–168.
    81. Tupker R.A., Pinnagoda J., Nater J.P. The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: inter-individual variation. Acta Derm. Venereol, (Stockh.) 1990, 70: 1–5.
    82. Watkinson A.C., Green D.M., Brain K.R., et al. Skin penetration of a series of nonoxynol homologues, in: Brain K.R., James V.J., Waters K.S. (Eds), Perspectives in Percutaneous penetration, vol. 5b. STS Publishing, Cardiff, 1998, pp. 54–59.
    83. Sarpotdar P.P., Zatz J.L. Percutaneous absorption enhancement by non-ionic surfactants. Drug Dev Ind Pharm, 1986, 12: 1625–1647.
    84. Sarpotdar P.P., Zatz J.L. Evaluation of penetration enhancement of lidocaine by non-ionic surfactants through hairless mouse skin in vitro. J Pharm Sci, 1986, 75: 176–181.
    85. Yu D., Sanders L.M., Davidson G.W., et al. Percutaneous absorption of nicardipine and ketorolac in rhesus monkeys. Pharm Res, 1988, 5: 457–462.
    86. Rigg P.C., Barry B.W. Shed snake skin and hairless mouse skin as model membranes for human skin during permeation studies. J. Invest. Dermatol, 1990, 94: 235–240.
    87. Gloor M., Fluhr J., Wasik B., et al. Clinical effect of salicylic acid and high dose urea applied in standardized NRF formulations. Pharmazie, 2001, 56: 810–814.
    88. Wong O., Tsuzuki N., Nghiem B., et al. Unsaturated cyclic ureas as new non-toxic biodegradable transdermal penetration enhancers: II. Evaluation study. Int J Pharm, 1989, 52: 191–192.
    89. Williams A.C., Barry B.W. Urea analogues in propylene glycol as penetration enhancers in human skin. Int J Pharm, 1989, 56: 43–50.
    90. Williams A.C., Barry B.W. Essential oils as novel human skin penetration enhancers. Int J Pharm, 1989, 57: R7–R9.
    91. Williams A.C., Barry B.W. Terpenes and the lipid–proteinpartititioning theory of skin penetration enhancers. Pharm Res, 1991, 8: 17–24.
    92. Williams A.C., Barry B.W. The enhancement index concept applied to terpene penetration enhancers for human skin and model lipophilic (oestradiol) and hydrophilic (5-fluorouracil) drugs. Int J Pharm, 1991, 74:157–168.
    93. Nagai T., Okabe H., Ogura A., et al. Effect of limonene and related compounds on the percutaneous absorption of indomethacin, Proceedings of the 16th International Symposium on Controlled Release Bioactive Material, Chicago,USA, 1989, pp. 181–182.
    94. Okabe, H. Takayama K., Ogura A., et al. Effect of limonene and related compounds on the percutaneous absorption of indomethacin. Drug Des Deliv, 1989, 4: 313–321.
    95. Barry B.W., Williams A.C. Human skin penetration enhancement: the synergy of propylene glycol with terpenes, Proceedings of the 16th International Symposium on Controlled Release Bioactive Material, Chicago, USA, 1989, pp. 33–34.
    96. Fang J.-Y., Hung C.-F., Chiu H.-C., et al. Efficacy and irritancy of enhancers on thein vitro and in vivo percutaneous absorption of curcumin. J Pharm Pharmacol, 2003, 55: 593–601.
    97. Cornwell P.A., Barry B.W. Sesquiterpene components of volatile oils as skin penetration enhancers for the hydrophilic permeant 5-fluorouracil. J Pharm Pharmacol, 1994, 46: 261–269.
    98. Kadir R., Barry B.W.α-Bisabolol, a possible safe penetration enhancer for dermal and transdermal therapeutics. Int J Pharm, 1991, 70: 87–94.
    99. Jain A.K., Thomas N.S., Panchagnula R. Transdermal drug delivery of imipramine hydrochloride: I. Effect of terpenes. J Control Rel, 2002, 79: 93–101.
    100.El-Kattan A.F., Asbill C.S., Michniak B.B. The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems. Int J Pharm, 2000, 198: 179–189.
    101.Monti D., Chetoni P., Burgalassi S., et al. Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin. Int J Pharm, 2002, 237: 209–214.
    102.Cal K., Janicki S., Sznitowska M. In vitro studies on penetration of terpenes from matrix-type transdermal systems through human skin. Int J Pharm, 2001, 224: 81–88.
    103.Cornwell P.A., Barry B.W., Bouwstra J.A., et al. Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int J Pharm, 1996, 127: 9–26.
    104.Barry B.W. Lipid-Protein-partitioning theory of skin penetration enhancement. J Control Rel, 1991, 15: 237–248.
    105.Williams A.C., Barry B.W. Penetration enhancers. Adv Drug Del Rev, 2004, 56: 603–618.
    106.Rischin D., Boyer M., Smith J., et al. A phase I trial of docetaxel and gemcitabine in patients with advanced cancer. Ann Oncol, 2000, 11: 421–426.
    107.Diaz J.F., Andreu J.M. Assemblly of purified GDP-tubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition. Biochemistry, 1993, 32: 2747–2755.
    108.Manfredi J.J., Horowitz S.B. Taxol: An antimitotic anent with a new mechanism of action. Pharmacol Ther, 1984, 25: 83–125.
    109.Pienta K.J. Preclinical mechanisms and action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol (Supply), 2001, 28: 3–7.
    110.Halder S., Chintapalli J., Croce C.M. Taxol induces bcl-2 by phosphorylation and death of prostate cancer cells. Cancer Res, 1996, 26: 1253–1255.
    111.Naholtz J.M., Senn H.J., Bezwoda W.R., et al. Prospective randomized trial of docetaxel versus mitomycin plus vinbastine in patients with metastatic breast cancer progressing despite previous anthracycline-containing chemotherapy. J Clin Oncol, 1999, 17: 1413–1424.
    112.Aventis Pharmaceuticals Inc, Taxotere (docetaxel) Injection Concentrate. http://www. Aventis-us.com/Pls/taxotere-TXT.html# (Feb 2005).
    113.Nabholtz J.M., Falkson C., Campos D., et al. Docetaxel and doxorubicin compared with doxorubicin and cycolphosphamide as first-line chemotherapy for metastatic breast cancer: results of a randomized multicenter phase III trial. J Clin Oncol, 2003,21: 968–975.
    114.Roche Group, European Commission approves Herceptin plus Taxotere as first-line therapy in HER2-positive metastatic breast cancer. http://www.roche.com/med-cor-2004-06-22 (June, 22, 2004)
    115.Shaughnessy J., Miles D., Vukelja S., et al. Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol, 2002, 20: 2812–2823.
    116.Fossella F., Pereira J.R., von Pawel J., et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations verus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J Clin Oncol, 2003,21: 3016–3024.
    117.Pujol J.L., Breton J.L., Gervais R., Gemcitabine-docetaxel versus cislatin-vinorelbine in advanced or metasatic non-small-cell lung cancer: a phase III study addressing the case for cisplatin. Ann Oncol, 2005, 16: 602–610.
    118.Tannock I.F., de Wit R., Berry W.R., et al. Docetaxel plus prednisone ormitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 2004, 351: 1502–1512.
    119.Petrylak D.P., Tangen C.M., Hussain M.H., et al. Docetaxel and estramusline compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 2004, 351: 1513–1520.
    120.Straubinger R.M., Balasubramanian S.V. Preparation and characterization of taxane-containg liposomes. Methods Enzymol, 2005, 391: 97–107.
    121.Immordino M.L., Brusa P., Arpicco S., et al. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containg docetaxel. J Control Rel, 2003, 91: 417–429.
    122.Xu Z., Chen L., Gu W., et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009, 30: 226–232.
    123.Hwang H., Kim I., Kwon I., et al. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Rel, 2008, 128: 23–31.
    124.Garrec D.L., Gori S., Luo L., et al. Poly(N-vinylpyrrolidone)-block- poly(D,L-lactide) as a new polymeric solubillizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Rel, 2004, 99: 83–101.
    125.Yang M., Ding Y., Zhang L., et al. Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res A, 2007, 81: 847–857.
    126.Khandavilli S., Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Derm, 2007, 127:154–162.
    1. Elsayed M.M.A., Abdallah O.Y., Naggar V.F., et al. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int J Pharm, 2007, 332: 1–16.
    2. Cevc G., Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochem Biophys Acta, 1992, 1104: 226–232.
    3. Touitou E., Dayan N., Bergelson L., et al. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Rel, 2000, 65: 403–418.
    4. El Maghraby G.M., Williams A.C., Barry B.W. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol, 1999, 51: 1123-1134.
    5. Rao B.M., Chakraborty A., Srinivasu M.K., et al. A stability-indicating HPLC assay method for docetaxel. J Pharm Biomed Anal, 2006, 41:676-691.
    6.李晓锋,石炳兴,元英进. RP-HPLC法测定多烯紫杉醇及注射浓缩液的含量及有关物质.中草药,2001,32:991-992.
    7.郑俊民.经皮给药新剂型,p279,人民卫生出版社,2006.
    8. Panchagnula R., Desu H., Jain A., et al. Effect of lipid bilayer alteration on transdermal delivery of a high-molecular-weight and lipophilic drug: studies with paclitaxel. J Pharm Sci, 2004, 93: 2177-2183.
    9. Dubey V., Mishra D., Asthana A., et al. Transdermal delivery of a pineal hormone: Melatonin via elastic liposomes. Biomaterials, 2006, 27: 3491-3496.
    10. Guo J., Ping Q., Sun G., et al. Lecithin vesicular carriers for transdermal delivery of cyclosporine A. Int J Pharm, 2000, 194: 201-207.
    11. Dubey V., Mishra D., Jain N.K. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm, 2007, 67: 398-405.
    12.傅洪兰.电镜冷冻复型技术在非生物材料研究中的应用.电子显微学报,2002,21:207-212.
    13. Carafa M., Santucci E., Lucania G. Lidocacine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm, 2002, 231: 21-32.
    14. Imura T., Otake K., Hashimoto S., et al. Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method. Colloids Surf A, 2002, 27: 133-140.
    15.平其能主编.现代药剂学,p607,中国医药科技出版社,1998.
    16.高丹玲,林怡.葡聚糖凝胶柱层析法分离测定头孢尼西钠中的聚合物.中国药事,2006,20:493-495.
    17. Immordino M.L., Brusa P., Arpicco S., et al. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Rel, 2003, 91: 417-429.
    18. El Maghraby G.M.M., Williams A.C., Barry B.W. Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. Int J Pharm, 2000, 204: 159-169.
    19.张岩.盐酸青藤碱柔性脂质体的制备及评价.沈阳药科大学硕士学位论文,2008,p29.
    20. Honeywell-Nguyen P.L., Frederik P.M., Bomans P.H.H., et al. Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: Characterization and in vitro transport studies. Pharm Res, 2002, 19: 991-997.
    21. Straubinger R.M., Balasubramanian S.V. Preparation and characterization of taxane-containing liposomes. Methods Enzymol, 2005, 391: 97-117.
    22. El Maghraby G.M.M., Williams A.C., Barry B.W. Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. Int J Pharm, 2000, 204: 159-169.
    1. Seki T., Kawaguchi T., Juni K. Enhanced delivery of zidovudine through rat and human skin via ester prodrugs. Pharm Res, 1990, 7: 948-952.
    2. Guo J., Ping Q., Sun G., et al. Lecithin vesicular carriers for transdermal delivey of cyclosporine A. Int J Pharm, 2000, 194: 201-207.
    3. Zhang C., Yang Z., Luo J., et al. Effects of cinnamene enhancers on transdermal delivery of ligustrazine hydrochloride. Eur J Pharm Biopharm, 2007, 67: 413-419.
    4. Ebtessam A.E., Michael C.B., Barry B.W. Electrically assisted skin delivery of liposomal estradiol; phospholipid as damage retardant. J Control Rel, 2004, 95: 535-546.
    5. Dubey V., Mishra D., Asthana A., et al. Transdermal delivery of a pineal hormone: Melatonin via elastic liposomes. Biomaterials, 2006, 27: 3491-3496.
    6. El Maghraby G.M.M., Williams A.C., Barry B.W. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmcol, 2001, 53: 1069-1077.
    7. El Maghraby G.M.M., Williams A.C., Barry B.W. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm, 2000, 196: 63-74.
    8. Cevc G., Schatzlein A., Blume G. Transdermal drug carriers- basic properties, Optimization and transfer efficiency in the case of epicutaneously applied peptides. J Control Rel, 1995, 36: 3-16.
    9. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliver Rev, 2004, 56: 675-711.
    10. Cevc G., Blume G. Lipid vesicles penetrate into the skin owing to the transdermal osmetic gradients and hydration force. Biochem Biophys Acta, 1992, 1104: 226-232.
    11. Gesztes A., Mezei M. Topical anaesthesia of skin by liposome-encapsulated tetracaine. Anesth Analg, 1988, 67: 1079-1081.
    12. Foldvari M., Gesztes A., Mezei M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul, 1990, 7: 479–489.
    13. Foldvari M. In vitro cutaneous and percutaneous delivery and in vivo efficacy of tetracaine from liposomal and conventional vehicles. Pharm Res, 1994, 11: 1593–1598.
    14. Hung O.R., Comeau L., Riley M.R., et al. Comparative topical anaesthesia of EMLA and liposome-encapsulated tetracaine. Can J Aneasth, 1997, 44: 707–711.
    15. Godin B., Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Rel, 2004, 94: 365–379.
    16. Graves C.J., Edwards C., Marks R. The occlusive effects of protective gloves on the barrier properties of the stratum corneum, in: P Elsner, HI Maibach (Eds.), Irritant Dermatitis. New Clin Experimental Aspects. Current Problem in Dermatology, Karger, Basel, 1995.
    17. Bucks D.A., McMaster J.R., Maibach H.I., et al. Bioavailability of topically administered steroids: a‘mass balance’technique. J Invest Dermatol, 1988, 91: 29–33.
    18. Treffel P., Muret P., Muret-D’Aniello P., et al. Effect of occlusion on in vitro percutaneous absorption of two compounds with different physicochemical properties. Skin Pharmacol, 1992, 5: 108–113.
    19. Carstens M.G., Jong P.H.J.L.F., Nostrum C.F., et al. The effectof core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm, 2008, 68: 596–606.
    20. Sato K., Sugibayashi K., Morimoto Y. Species difference in percutaneous absorption of nicorandil. J Pharm Sci, 1991, 80: 104–107.
    21. Finnin B.C., Morgan T.M. Transdermal penetration enhancers: applications, limitations and potential. J Pharm Sci, 1999, 88: 955–958.
    22. Elsayed M.M.A., Abdallah O.Y., Naggar V.F., et al. Lipid vesicles for skin deliveryof drugs: reviewing three decades of research. Int J Pharm, 2007, 332: 1-16.
    23. Touitou E., Dayan N., Bergelson L., et al. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Rel, 2000, 65: 403-418.
    24. Kirjavainen M., Urtti A., Jaaskelainen I., et al. Interaction of liposomes with human skin in vitro- the influence of lipid composition and structure. Biochem Biophys Acta, 1996, 1304: 179-189.
    25. Williams A.C., Barry B.W. Penetration enhancers. Adv Drug Deliver Rev, 2004, 56: 603-618.
    26. Panchagnula R., Desu H., Jain A., et al. Effect of lipid bilayer alteration on transdermal delivery of a high-molecular-weight and lipophilic drug: studies with paclitaxel. J Pharm Sci, 2004, 93: 2177-2183.
    27. Kirjavainen M., Urtti A., Koskela R.V., et al. Liposome-skin interactions and their effects on the skin permeation of drugs. Eur J Pharm Sci, 1999, 7: 279-286.
    28. Suhonen T.M., Pirskanen L., Raisanen M., et al. Transepidermal delivery ofβ-blocking agents: evaluation of enhancer effects using stratum corneum lipid liposomes. J Control Rel, 1997, 43: 251-259.
    29. El Maghraby G.M.M., Williams A.C., Barry B.W. Can drug-bearing liposomes penetrate intact skin. J Pharm Pharmacol, 2006, 58: 415-429.
    30. Cevc G., Schatzlein A.G., Richardsen H., et al. Overcoming semipermeable barriers, such as the skin with ultradeformable mixed lipid vesicles, transfersomes, liposomes, or mixed lipid micelles. Langmuir, 2003, 19: 10753-10763.
    1. Kaushik S., Hord A.H., Denson D.D., et al. Lack of pain associated with microfabricated microneedles. Anesth Analg, 2001, 92: 502-504.
    2. Chabri F., Bouris K., Jones T., et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol, 2004, 150: 869-877.
    3. Mishra D., Garg M., Dubey V., et al. Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: propranolol hydrochloride. J Pharm Sci, 2006, 96: 145-155.
    4. Jain S., Sapre R., Tiwary A.K., et al. Proultraflexible lipid vesicles for effective transdermal delivery of levonorgestrel: development, characterization, and performance evaluation. AAPS PharmSciTech, 2005, 6: 513-522.
    5.徐百,高云华.微型实心硅针阵列芯片及其制备方法和用途.中国专利,CN200310122500(2003)。
    6. Yan W., Qiu Y., Zhang S., et al. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevices, 2008, 10: 601-610.
    7. Dubey V., Mishra D., Asthana A., et al. Transdermal delivery of a pineal hormone: Melatonin via elastic liposomes. Biomaterials, 2006, 27: 3491-3496.
    8. McAllister D.V., Wang P.M., Davis S.P., et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA, 2003, 100: 13755–13760.
    9. Honeywell-Nguyen P.L., de Graaff A.M., Junginger H.E., et al. Interaction between elastic and rigid vesicles with human skin in vivo. Proc Int Symp Control Release Bioact Mater, 2000, 27: 237-238.
    10. Schatalein A., Cevc G. Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high resolution confocal laser scanning microscopy study using highly deformable vesicles (transfersomes). Br J Dermatol, 1998, 138: 583-592.
    11. Cevc G., Schatzlein A., Richardsen H. Ultradeformable lipid vesicles can penetratethe skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochem Biophys Acta, 2002, 1564: 21–30.
    12. Honeywell-Nguyen P.L., Bouwstra J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today: Technologies, 2005, 2: 67-74.
    1. Khandavilli S., Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Derm, 2007, 127:154–162.
    2. Mallikarjuna R.B., Chakraborty A., Srinivasu M.K., et al. A stability-indicating HPLC assay method for docetaxel. J Pharm Biomed Anal, 2006, 41: 676-681.
    3.陈永法,龚明涛,张钧寿等.紫杉醇冻干纳米乳在大鼠体内的药动学.中国天然药物,2005,3:370-372.
    4.张学农,唐丽华,阎雪莹等.紫杉醇冻干注射剂在大鼠体内的药代动力学.中成药,2005,27:556-558.
    5.周卫,吕琦,翁帼英.紫杉醇脂质体在大鼠体内的药动学.中国药科大学学报,2000,31:443-446.
    6. Kim S.C., Kim D.W., Shim Y.H., et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Rel, 2001, 72: 191-202.
    7. Xu Z., Gu W., Huang J., et al. In vitro and in vivo evaluation of actively targetable nanaparticles for paclitaxel delivery. Int J Pharm, 2005, 288: 361-368.
    8. Wang C.H., Tang C.W., Liu C.L., et al. Inhibitory effect of octreotide on gastric cancer growth via MAPK pathway. World J Gastroenterol, 2003, 9: 1904-1908.
    9. Baker S.D., Zhao M., He P., et al. Simultaneous analysis of docetaxel and the formulation vehicle polysorbate 80 in human plasma by liquid chromatography /tandem mass spectrometry. Anal Biochem, 2004, 324: 276-284.
    10. Wang L.Z., Goh B.C., Grigg M.E., et al. A rapid and sensitive liquid chromatography/tandem mass spectrometry method for determination of docetaxel in human plasma. Rapid Commun Mass Spectrom, 2003, 17: 1548-1552.
    11. Grozav A.G., Huston T.E., Zhou X., et al. Rapid analysis of docetaxel in human plasma by tandem mass spectrometry with on-ling sample extraction. J Pharm Biomed Anal, 2004, 36: 125-131.
    12. Huang Q., Wang G.J., Sun J.G., et al. Simultaneous determination of docetaxel and ketoconazole in rat plasma by liquid chromatography/electrospray ionizationtandem mass spectrometry. Rapid Commun Mass Spectrom, 2007, 21: 1009-1018.
    13. Mortier K.A., Renard V., Verstraete A.G., et al. Development and validation of a liquid chromatography-tandem mass spectrometry assay for the quantification of docetaxel and paclitaxel in human plasma and oral fluid. Anal Chem, 2005, 77: 4677-4683.
    14. Extra J.M., Rousseau R., Bruno R., et al. PhaseⅠand pharmacokinetic study of taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res, 1993, 53: 1037-1042.
    15.魏树礼主编.生物药剂学与药物动力学.北京医科大学出版社,2001.
    16. Bissery M.C. Preclinical pharmacology of docetaxel. Euro J Cancer, 1995, 31A (Suppl 4): S1-S6.
    17.郑俊民主编.经皮给药新剂型.人民卫生出版社,2006.
    18. Lee C.M., Maibach H.I. Deep percutaneous penetration into muscles and joints. J Pharm Sci, 2006, 95: 1405-1413.
    19. McNeill S.C., Potts R.O., Francoeur M.L. Local enhanced topical delivery (LETD) of drugs: does it truly exist? Pharm Res, 1992, 9: 1422-1427.
    20. Monteiro-Riviere N.A., Inman A.O., Riviere J.E., et al. Topical penetration of piroxicam is dependent on the distribution of the local cutaneous vasculature. Pharm Res, 1993, 10: 1326-1331.
    21. Singh P., Roberts M.S. Dermal and underlying tissue pharmacokinetics of lidocaine after topical application. J Pharm Sci, 1994, 83:773-782.
    22. Singh P., Roberts M.S. Deep tissue penetration of bases and steroids after dermal application in rat. J Pharm Pharmacol, 1994, 46: 956-964.
    23. Francoeur M.L., Monteriro-Riviere N.A., Riviere J.E. Piroxicam: evidence for local delivery following topical application. Eur J Pharm Biopharm, 1995, 41: 175-183.
    24. Guy R.H., Maibach H.I. Drug delivery to local subcutaneous structures following topical administration. J Pharm Sci, 1983, 72: 1375-1381.