常压下吹脱法与气相氨催化氧化法串联处理高浓度氨氮废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氮是水体中的重要耗氧污染物,是造成富营养化的重要原因之一。随着工农业的迅速发展,氨氮的来源越来越广泛,排放量越来越大,除了生活污水、动物排泄物外,还有大量的工业废水,如氨加工废水、合金废水、炼油废水,以及垃圾渗滤液。工业对高浓度氨氮废水排放的贡献最大,而工业高浓度氨氮废水的治理是目前国内水处理领域的难题。因此,寻找经济有效的治理高浓度氨氮废水的技术成为环境工作者的重大研究课题。
     本文研究以吹脱法为基础,采用了气相氨催化氧化法作为后序处理方法,将吹脱出的氨加以氧化。实验方法为常压下将废水中的NH_3从液相吹脱至气相,以空气为载气及氧化剂,在催化剂作用下和一定的温度范围内将NH_3氧化,可能生成的氧化产物有NO_x、N_2、H_2O、肼等,通过温度控制使氧化产物主要为N_2和H_2O。实验的氨氮废水浓度为人工调配的1024mg/L。所用的四种催化剂按混合法和沉淀法制成,活性组分和助剂负载量分别为30%和50%。
     通过实验发现:①在空气流量≤2L/min、pH=14、水温98℃条件下,从1024mg/L的氨氮废水中吹脱出的NH_3的体积和浓度可视为定量。②沉淀法制备的负载量为50%的催化剂活性最高、反应温度最低、N_2生成选择性较好。其最佳反应温度是500℃,填装量10ml时的最佳空速为6000h~(-1)。③以该催化剂在最佳反应条件下处理1024mg/L的氨氮废水,经120min反应后废水中的NH_3-N浓度降为34mg/L,去除率为96.7%;气相NH_3转化率为95.7%,残余NH_3浓度为139ppm,产生的NO的浓度为360ppm,推算出N_2的生成率约为88.4%。④气相氨催化氧化反应遵循SCR机理,符合一级反应的特征,受化学动力学的控制。
     本论文研究的目的在于尝试一种新方法用于处理高浓度工业氨氮废水,探讨其可行性、反应机理和反应动力学,为今后更深入的研究奠定基础。
Ammonia nitrogen is one of the important oxide consumable pollutants in water, and one of the key reasons of eutrophication. With the agriculture and industry development, the pollution sources of wastewater containing ammonia nitrogen become more and more comprehensive, and does the amount of discharge, which are from all types of industrial wastewaters, such as, ammonia machining plant, metallurgical plant and petroleum refinery plant wastewater and landfill leachate, besides domestic wastewater and animal excrement. The most important source of wastewater with high concentration of ammonia nitrogen is the industry. However, how to deal with this wastewater is a puzzle in China's wastewater-control field. Therefore, seeking the effective and economical method to dispose it is an important task for environment researchers.
    In this thesis, based on the stripping method, the author adopts gaseous catalytic oxidation to remove ammonia as the following process. Firstly, in this experiment, ammonia is snipped from water to air under the atmospheric press, while air is carrier and oxidant. Secondly, in the range of reaction temperature, ammonia is oxidized to NOx, N2, H2O and NxHy etc. By controlling temperature, the chief oxide are N2 and H2O. The concentration of ammonia nitrogen in wastewater is 1024mg/L. The four kinds of catalysts, laden amount of active and secondary components being about 30% and 50%, are cranked out by mixing and deposition method apart.
    Though the experiment, it can be found mat:(1)the volume and concentration of ammonia stripped from wastewater could be regarded as ration, by the conditions of air flow<2L/min, pH=14, water temperature=98C; (2)the activity of the catalyst which contains 50% active and secondary components made by deposition method is highest, while its reaction temperature is lowest and its selectivity of producing N2 is comparatively well, under the optimal conditions of reaction temperature=500C and airspeed=6000h-1, when backfill volume of this catalyst is 10ml;(3)when the aforementioned catalyst is used under the optimal conditions, the concentration of NHs-N in wastewater can be cut down from 1024mg/L to 34mg/L after 120min, while the elimination quotiety of it is about 96.7%, and the transformation quotiety of NH3 is about 95.7%, with the concentration of remnant NH3 and
    
    
    
    NO being 139ppm and 360ppm respectively, and the producing quotiety of N2 is about 88.4%; (4)the reaction of ammonia catalytic oxidation abides by the mechanism of SCR, and it is controlled by chemistry kinetics.
    The aim of this study is to attempt a new method to dispose the wastewater with high concentration of ammonia nitrogen, and to discuss its feasibility, reaction mechanism and chemistry kinetics. Based on that, the study can proceed further in future.
引文
[1] 张希衡.水污染控制工程(修订版).北京:冶金工业出版社,1997
    [2] 徐寿昌.有机化学.北京:高等教育出版社,1990
    [3] 黄骏,陈建中.氨氮废水处理技术研究进展.环境污染治理技术与设备,2002,3(1):65
    [4] 王有显.我国氮肥工业氨流失现状及对策.化工环保管理与信息,1999,6:9~13
    [5] 汪大翚,徐新华,宋爽.工业废水中专项污染物处理手册.北京:化学工业出版社,2000
    [6] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.北京:中国环境科学出版社,2000 。
    [7] 徐亚同.废水中氮磷的处理.上海:华东师范大学出版社,1996
    [8] 环保工作者实用手册.北京:冶金工业出版社,1984
    [9] 郭士权.饮用水中氯消毒副产物的形成与去除.重庆建筑大学学报,1994,16(3):92~96
    [10] 孙治荣,王宝贞.饮用水处理中的几种消毒剂.环境保护科学,1999,5(1):10~12
    [11] 陈慧中,杨宏.给水系统中藻类研究现状及进展.现代预防医学,2001,28(1):79~80
    [12] Clarke S. J. and Mazzafro W. J. (1994) Nitric acid. In Encyclopedia of Chemical Technology, 4th ed.,Vol. 17:80~107
    [13] Nellinga C., Schellen A. Mulder J. et al. The Sharon process: an innovative method for nitrogen removal from ammonium rich waste water. Water Science and Technology, 1998, 37(9): 136~142
    [14] Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 1998, 102:717~726
    [15] Graaf A. A. van de, Mulder A., Bruijn P. de., et al. Anaerobic ammonium oxidation is a biologically mediated process. Appl. Environ Microbiol,1995, 61(4): 1246~1251
    [16] 文一波,钱易.焦化废水生物脱氮研究.环境科学,1994,13(3):45~50
    
    
    [17] Straous M, Gerven Van E, Zhfng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX) process in different reactor configurations. Water research, 1997, 31 (8): 1955~1962
    [18] 丁思慧.用物化法对高浓度氨氮废水的前期处理.安徽化工,2000,4(4):42~43.
    [19] 蒋林时,张洪林.含锌高浓度氨氮废水治理研究.水处理技术,2000,26(2):120~124
    [20] 何卿,李峰.高浓度氨氮废水处理试验.江苏环境科技,1999,12(4):12~13
    [21] 郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [22] 邓斌.利用烟道气处理焦化剩余氨水技术.环境工程,2000,18(3):17
    [23] 吴方同,苏秋霞,孟了等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮.给水排水,2001,27(6):20~24
    [24] 倪佩兰,郑学娟,徐月恩.垃圾填埋渗滤液氨氮的吹脱处理工艺技术研究.环境卫生工程,2001,9(3):133~135
    [25] 王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究.环境污染治理技术与设备.2001,2(2):67~63
    [26] 姜淑霞,朱莉.超重机处理含氨氮废水试验.齐鲁石油化工,1999,27(3):201~202
    [27] Struzeski, E. J. Ammonia Stream stripping at Miscellaneous Non-ferrous Metals Plants. Paper sented at the 33rd annual Purdue Industrial Waste Conference. West Lafayette, 1978
    [28] Kenchi Ebata, Kaoru Ichimayu. Ammonia removal from wastewaters. Japan: Kokai 7704,649,1977
    [24] 蒋时林.炼油厂含锌高浓度氨氮废水汽提性能研究.环境工程,2002,8(1):7~10
    [25] 顾毓刚.焦化废水中固定氮的去除的研究.上海环境科学,1999,6:7~12
    [26] Koyuncu I, Topacik D, Turan M, et al. Application of the membrane technology to control ammonia in surface water. Water Science and Technology: Water Supply 2001,1(1),117~124
    [27] 袁维芳,王国生,汤克敏.反渗透法处理城市垃圾填埋场渗滤液.水处理技术,1997,23(6):333~336
    [28] Li N N, Membrane Separation Process, US. BO 1 D, 3410794. 1968
    
    
    [29] 雷乐成,汪大翚.水处理高级氧化技术.北京:化学工业出版社,2001
    [30] 谭亚军.废水处理催化湿式氧化法及其催化剂的研究进展.环境工程,1998,17(4):14
    [31] 杨琦,钱易.湿式氧化法处理香料废水.给水排水,1998(24):35~37
    [32] 杨春光.对完善国内氨水湿式氧化法脱硫的建议.煤化工,1997(79):58~62
    [33] 杜鸿章.焦化污水湿式氧化净化技术.工业水处理,1996(16):11~13
    [34] Barner H. E. Huang, C. Y. Johnson T. et al. Supercritical water oxidation: an emerging technology, J. of Hazardous Materials, 1992, 31:1
    [35] Bischoff, M. Strauss G., and Schultz, E., Offenlegungsschrift Bundesrepublik Deutschland, DE 40 20 914 A1,1992.
    [36] G. J. Golodets. Heterogeneous catalytic reactions involving molecular oxygen, in: Studies in Surface Science and Catalysis. Elsevier, Amsterdam, 1983
    [37] van den Broek ACM, van Grondelle J, van Santen RA. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation. J Catal, 1999, 185: 297~306
    [38] Tung-Li Huang, Jordan M. Macinnes and Keith R. Cliffe. Nitrogen removal from wastewater by a catalytic oxidation method. Wat. Res, 2001(35): 2113~2120
    [39] Pignet T. and Schmidt L. D. Kinetics of NH_3 oxidation on Pt, Rh, and Pd. J. Catal, 1985, 40(2):212~224
    [40] 李忠来,梁长海,王德峥等.氧对氨在Pt/α-Al_2O_3催化剂上吸附和解离性能的影响.复旦学报(自然科学版),2003,42(3):351~353
    [41] 张钦辉,秦永宁.载体和助剂对NiO催化剂氨分解反应的影响.石油学报(石油加工),2002,18(4):43~46
    [42] 张黎明,秦永宁,沈美庆等.载体对Ni基氨分解催化剂催化性能的影响.燃烧科学与技术,2000,6(1):70~72
    [43] 黄仲涛.工业催化.北京:化学工业出版社,1994
    [44] 山中龙雄.催化剂的有效实际应用.北京:化学工业出版社,1988
    [45] 张高良.工业催化剂的生产.上海:上海科学技术出版社,1987
    [46] 清山哲郎.金属氧化物及其催化作用.中国科学技大学出版社,1989
    [47] 高正中.实用催化.北京:化学工业出版社,1996
    [48] 李荣生等.催化作用基础.北京:科学出版社.1988
    
    
    [49] 李绍芬.反应工程.北京:化学工业出版社,2000
    [50] Pajonk G M, Teichner S J, Germain J E, eds. Studies in Surface Science and Catalysis. Vol 17. Amsterdam: Elsevier, 1983
    [51] 水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [52] 空气和废气监测分析方法(第四版).北京:中国环境科学出版社,2002
    [53] 蒋展鹏.环境工程学.北京:高等教育出版社,1992
    [54] 张润铎,金燮,杨凤林等.蜂窝状筛网催化剂上NH_3选择性催化还原NO的动力学.大连理工学报,2002,42(2):158~162
    [55] Kenichi Ebata, Kaoru Ichimaru, Kyoji Ton. Ammonia removal from waste-waters. Japan. C02F, 649.1977
    [56] Hiroshi Ono, Naoki Okads. Removal of ammonia nitrogen from wastewaters. Japan. C02F, 860.1977
    [57] Schulze-Rettmer R. The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium-phosphate. Water Science and Technology, 1991(23): 669~667
    [58] Amblard M., Burch R., Southward B.W.L. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/Al_2O_3 under strongly oxidation conditions. Catal Today, 2000, 59:365~371