Cu~(2+)和Pb~(2+)胁迫对多花黑麦草生长及饲草品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着土壤重金属污染的日益严重和可耕地面积的逐年减少,重金属污染土壤的开发利用越来越受到人们的关注。利用牧草适应性广、生长快、产量高的特点,在重金属污染不太严重的土壤上种植,能够产生很好的经济效益、社会效益和生态效益。
     多花黑麦草(Lolium multiflorum L.)品质优良,抗性好,是饲草生产和草坪绿化中常用的禾本科牧草。本实验以多花黑麦草品种特高(Tetragold)为材料,采用砂培和土培两种栽培方式,在其分蘖初期分别以系列浓度的Cu~(2+)和Pb~(2+)溶液进行处理,研究了Cu~(2+)和Pb~(2+)递进胁迫下多花黑麦草的萌发、分蘖期的生长以及植株的营养成分的变异。
     结果表明:本实验设置的浓度范围内,Cu~(2+)和Pb~(2+)处理对牧草的萌发影响不大。低浓度Cu~(2+)和Pb~(2+)处理下,多花黑麦草种子的萌发和幼芽的生长受到明显的促进,出现增效效应。随着Cu~(2+)和Pb~(2+)处理浓度的升高,种子发芽率、芽长、根长和生物量迅速下降,幼苗生长受到显著抑制。同一处理浓度下,Cu~(2+)和Pb~(2+)处理对种子根、芽和发芽率的抑制率存在明显的差异:根>芽>发芽率。Cu~(2+)对多花黑麦草种子发芽及幼苗生长的影响远远大于Pb~(2+)的影响。
     砂培和土培的研究结果表明,低浓度的Cu~(2+)和Pb~(2+)处理对多花黑麦草的生长无不利影响,其株高、单株叶面积、地上部生物量等出现增效效应。随Cu~(2+)和Pb~(2+)处理浓度的升高,多花黑麦草的株高、单株叶面积、分蘖数、单株干物质重、根系重等迅速下降,植株生长受到严重抑制。而且Pb~(2+)比Cu~(2+)表现出了更强的抑制效应;同一Cu~(2+)和Pb~(2+)处理浓度下,多花黑麦草根系生长的受抑程度远大于地上部生长。砂培条件下对多花黑麦草生长表现为抑制作用的浓度,土壤条件下则表现为明显的刺激作用。显示出土壤对Cu~(2+)和Pb~(2+)污染有很强的缓冲作用。
     低浓度的Cu~(2+)和Pb~(2+)处理下,多花黑麦草茎叶CP含量较对照有所增加,高于对照。随着Cu~(2+)和Pb~(2+)处理浓度的升高,茎叶CP含量迅速降低。植株地上部NDF含量随Cu~(2+)处理浓度升高而升高;Pb~(2+)处理下,NDF含量在土培和砂培两种种植方式间出现不同的变化趋势:砂培时NDF含量先降后升,土培时先升后降。相同Cu~(2+)和Pb~(2+)处理浓度下,土壤对多花黑麦草品质的降低有很强的缓冲作用;Cu~(2+)对多花黑麦草品
    
    cuZ十和PbZ‘胁迫对多花黑麦草生长及饲草品质的影响
    质降低的效应大于Pb2+的效应。
     cu2+和Pb2+的处理浓度不同,多花黑麦草体内cu2+和Pb2+的积累量不同。
    随着cu2+和Pb2+处理浓度的升高,多花黑麦草茎、叶、根各器官中的cu2+和
    PbZ十积累量急剧增加。相同的cuZ十或Pb2+处理浓度下,cu2+和Pb2+积累在植株
    体内的分布存在明显的器官差异性,根>>茎>叶,根部的cu2+或Pb2+含量远远
    高于茎和叶中的含量。多花黑麦草吸收的cu2+和Pb2+主要累积在植株根部,向
    地上部运输的很少。
     综合cu2+和Pb2+胁迫下多花黑麦草的生长效应、饲草品质变化以及牧草茎
    叶中c矿+和Pb2+的蓄积量,可以推测,土壤溶液中cu2+浓度15一30mg/L或
    <5 omg/kg(土壤)和Pb2+浓度<20omg/L或<500mg瓜g(土壤)为多花黑麦草
    用于畜教业生产的临界值。
     另外,cu2+浓度<700mg/kg(土壤)和Pb2+浓度<2 o00mg/kg(土壤)的地
    区种植多花黑麦草,植株体cu2+和 Pb2+的积累量虽然已远远超过家畜生产规定
    的标准,但较草的生长状况良好且产量高于对照。因此在此污染土壤上种植多
    花黑麦草,既可一美化环境,又可通过收获牧草带走土壤中的Pb2+,不失为一条
    改良与利用重金属污染土壤的可行之路。
With increasing heavy metal pollution and decreasing arable farmland, more attentions to the utilization of polluted soil have been paid. Forage grasses have wild adaptability and high yielding characteristics, which can grown on the heavy metal polluted soil.
    Italian ryegrass (Lolium multiftor-um L.) is a famous species used in forage production and turf establishment. In this experiment, Italian ryegrass (cv. Tetragold) was treated by Cu2+ or Pb2+ solutions with different concentrations in tillering period. Response of seed germination, plant growth and nutrition components was studied in pot experiments.
    The results showed that seed germination was not delayed obviously and that seeds germination rate and seedlings growth were promoted by low Cu2+ and Pb2+ concentration treatment. Compared with the control, with increasing Cu2+ and Pb2+ concentration, seed germination rater length of bud and seed root, dry weight of bud and seed root were decreased rapidly. In addition, the inhibition of Cu2+ treatment to germination rate, bud and seed root growth was stronger than that of Pb2+ treatment. At the same Cu2+ or Pb2+ concentration, the inhibition to root growth was more significantly than to bud growth and seed germination.
    Growth of young plants was promoted by low Cu2+ or Pb2+ concentrations. With increasing Cu 2+ and Pb2+ concentrations, plant height, tiller number, leaf area per plant, chlorophyll content in leaf and the dry weight of above ground part and root decreased rapidly. Growth was seriously inhibited under high Cu2+ or Pb2+ concentration.
    Compared with the control, forage quality of Italian ryegrass was not affected heavily under low Cu2+ and Pb2+ concentration. Crude protein (CP) in the stem and leaf increased and neutral detergent fiber (NDF) decreased or affected little. But with increasing Cu2+ or Pb2+ concentration, the NDF content was increased and
    
    
    total CP yield of plant was decreased rapidly. Forage quality was dropped significantly.
    Accumulation of Cu2+ or Pb2+ in root, stem and leaf increased with increasing the treatment concentrations. In the same stress concentration, Cu2+ or Pb2+ content in. root was obviously greater than that of stem and leaf. Cu2+ and Pb2+ were absorbed and attributed in root largely, few were transported to the above ground part.
    Concerning to the growth, the forage quality and the Cu2+ and Pb2+ accumulation in stem and leaf of Italian ryegrass, it is possible to grow Italian ryegrass for forage production on the soil , which Cu2+and Pb2+ concentration were not higher than 15-30mg/L( or 50mg/kg soil) and 200mg/L (or 500mg/kg soil), respectively
    During the experiment, It was also found that Italian ryegrass grew well on the polluted soil, with the concentration of Cu2+ 500 mg/kg (soil) and Pb2+^ 2000m g/kg( soil). So planting and reaping Italian ryegrass on polluted soil is a good method to relive the heavy metal pollution of soil
引文
1.张书海,沈跃文.污灌区重金属污染对土壤的危害[J].环境监测管理与技术,2000,12(2):22-24.
    2.张乃明.太原污灌区土壤重金属污染研究[J].农业环境保护,1996,15(1):21-23.
    3.周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    4.夏家淇.土壤环境质量标准详解[M].中国环境科学出版社,1996:56-68.
    5.梅旭荣,徐明岗,杨正礼,冀宏杰等.《半月谈》[J].2003年8月8日.
    6.郑喜坤,鲁安怀,高翔等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(2):79-84.
    7.王丽凤等.沈阳市蔬菜污染调查及防止途径研究[J].农业环境保护,1994,13(2):84-88.
    8.潘洁,陆文龙.天津市郊区蔬菜污染状况及对策[J].农业环境与发展,1997(4):21-24.
    9. Raskin I , Smith R D and Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment[J].Current Opinion in Biotechnology, 1997, 8: 221-226.
    10. Ebbs S D, Lasat M M, Brady D J, Cornish J, Gordon R, Kochian L V, Phytoextraction of cadmium and zinc from a contaminated site[J] , j, Environ, Rural , 1997 , 26: 1424-1430.
    11. Salt D E, Smith R D , Raskin I , Phytoremediation[J] , Annu, Rev, Plant Physiol, Plant Mol, Boil , 1998,49:643-668.
    12. Salt D E, et al. Phytoremedition: a novel strategy for the removal of toxic metal from the environment using plants [J]. Bio/Technology, 1995, 13:468-474.
    13. Carlos G , Itzia A. Phytoextration: a cost—effective plant—based technology for the removal of metal from the environment[J]. Bioresource Technology, 2001, 77:229-236.
    14.郑德富.调整结构采取措施促进牧业健康发展[J].饲料与畜牧,2000{2}:14-16.
    15.陈桔.粮、经、饲三元种植结构及其途径探讨[J].天津农林科技,1997,38-40.
    16.评论.发展牧草必须上规模.河北农民报,2002,5.
    17. AsamiJ. Maximum allowable limits of heavy metals in rice and soil, In: Kitagishik Yamane leds. Heavy Metal Pollution in Soil of Japan Tokyo Japan Science Society Press, 1981, 257-274.
    18.史瑞和编著.植物营养原理[M],江苏科学技术出版社,1989,59-72.
    19.渡边和彦著.作物营养元素缺乏与过剩症的诊断与对策[J].种苗(株)出版社,1998,
    
    77-89.
    20.张保莉主编.农业环境保护[M],北京:化学工业出版社,2002,2:24-41.
    21. Gardea-Torresdey J L, Tiemann K J, Gonzalez J H, et al. Removal of copper ions from solution by silica-immobilized Medi-cago Sativa (alfalfa)[A]. In: Erickson L E, Tillison D L, Gran T S C, et al., eds. Proceedings of the 10th Annual Conference on Hazardous Waste Research[C]. Manhattan, KS, May 23-24, 1995: 209-217.
    22.陈世俭,胡霭堂.土壤铜形态及有机物质的影响[J].长江流域资源与环境,1995,4(4):367-371.
    23.徐俊祥,董文瑞.永久性及长期渍水的水稻土中铜的供给情况和施铜效果的关系[J].土壤学报,1989,26(2):149-158.
    24.于狄,李锋民.铜的植物营养与植物蓄积的关系[J].土壤与环境,2000,9(2):146-148.
    25. Patsikka E, Aro E M, Trystjarvi E.Increase in the quantum yield of photo inhibition contributes to copper toxicity in vivo [J]. Plant Physiol. June, 1998, 117: 619-627.
    26.史吉平,董永华.重金属胁迫对小麦超氧物歧化酶活性的影响[J].华南农业大学学报,1997,18(2):66-71.
    27.王友保,刘登义,张莉,郭虎等.铜、砷及其复合污染对黄豆(Glycine max)影响的初步研究[J].应用生态学报,2001,12(1):117-121.
    28.陈果征.重金属对黄瓜幼苗生长效应的研究.环境科学,1990,7(1):240-243.
    29.黄细花,刘永厚等.铜对紫云英生长发育影响的研究[J].农业环境保护,1993,12(1):1-6.
    30.庞金华.Cu、Ni、As、Cr对萝卜出苗的影响[J].热带亚热带土壤科学,1995,4(3):156-160.
    31.赵树兰,多立安,刘祥君.pb~(2+)与Cd~(2+)胁迫高羊茅初期生长生态效应研究[J].中国草地,2002,24(4):1-7.
    32.秦普丰,铁柏清,周细红等.铅与镉对棉花和水稻萌发及生长的影响[J].湖南农业大学学报,2000(26)3:205-207.
    33.宋玉芳,许华夏等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应[J].环境科学,2002,23(1):103-107.
    34. Srivastava P C, Gupta U C, Trace Element in Crop Production [M]. Lebanon: Science Publishers Inc, USA, 1996.
    35.马国瑞,石伟勇主编.农作物营养失调症原色图谱[M].北京:中国农业出版社,2002.
    36.马国瑞,石伟勇主编.果树营养失调症原色图谱[M].北京:中国农业出版社,2002.
    37.刘文彰,孙典兰.铜对黄瓜幼苗生长及过氧化氢和乙酸氧化酶活性的影响[J].植物生理学通报,1985,3:22-24.
    
    
    38.匡少平,徐仲.玉米对土壤中重金属铅的吸收特性及污染防治[J].安全与环境学报,2002,2(1):28-30.
    39.秦天才,吴玉树等.镉、铅及其相互作用对小白菜根系生理生态效应的研究.[J].生态学报,1998,18(3):320-325.
    40. Fernando C Lidon and Fernando S Henriques. Effects of increasing concentration of Cu metal uptake kinetics biomass yield (J). Soil Sci. 1992, (154) 1: 44-49.
    41.夏增绿,黎从如.Cd、Zn、Pb及其相互作用对烟草、小麦的影响[J].生态学报,1984,4(3):231-235.
    42.陈素华,孙铁珩等.重金属复合污染对小麦种子根活力的影响[J].应用生态学报,2003,14(4):577-580.
    43. Kahle H. Response of roots of trees to heavy metals [J]. Environ Exper Botany, 1993,33: 99-119.
    44.刘永厚,黄细花,赵振纪等.铜对紫云英固氮作用及养分吸收的影响[J].土壤肥料,1993,5:23-27.
    45.黎耿碧,陈二钦.外界铜离子对柑桔小苗常量元素吸收特性的影响[J].广西农业大学学报,1996,3(15):195-201.
    46. Alva, A K Chen E Q. Effect of external copper concentrations on uptake of trace element by citrus seedlings [J]. Soil Sci, 1995, (159): 59-64.
    47.王果,陈建斌,庄卫民等.有机物料对镉、铜污染土壤水稻生长及镉、铜吸收的影响[J].福建农业学报,2002,(13):17-22.
    48.赵树兰,多立安.Cu~(2+)、Zn~(2+)递进胁迫下高羊茅的初期生长效应及生态阈限研究[J].生态学报,2002,22(7):1098-1105.
    49.康立娟,赵成爱等.铅在砂壤水稻土/水稻体系中污染效应及累积规律的研究[J].吉林农业大学学报,2000,22(2):368-70.
    50.王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,20(6):73-75.
    51.张义贤.重金属对大麦毒性的研究[J].环境科学学报,1997,17(2):199-205.
    52.黄玉山,邱国华.紫茅抗铜和敏感品种在发育早期对铜离子反应的生理差异[J].应用与环境生物学报,1998,39(3):197-201.
    53. Chatterjee J, Chatterjee C. Phytotoxicity of cobalt, chromium and copper in cauliflower[J]. Environmental pollution, 2000,110: 115-125.
    54. Chettri M K, Cook C M, Vardaka E, et al. The effect of Cu、Zn and Pb on the chlorophy Ⅱ content of the lichens Cladonia convoluta and Cladonia rangiform is[J]. Environ Exper
    
    Botany, 1998,39(1): 1-10.
    55.秦天才.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34.
    56.黄晓华,周青,程宏英,王云翔等.五种常绿树木对铅污染胁迫的反应[J].城市环境与城市生态,2000,13(6):48-50.
    57.彭鸣,王焕校.铅镉在玉米幼苗中的积累和迁移:X射线显微分析[J].环境科学学报 1989,9(1):61-67
    58. Heuer B, Nadler A. Physiological response of potato plants to soil salinity and water deficit [J]. Plant Science,1998, 137: 43-51.
    59. Kncel, Keles Y, Ustun A S. Interactive effects of temperature and heavy metal stress on the grow th and some biochemical compounds in wheat seedlings[J]. Environ Pollut,2000, 107: 315-320.
    60.俞慎.红壤铜污染的物理化学行为和生物学表征[D].2002.
    61. Celina M L, Claudid A G, Victorio S T. caused by an excess of copper in oat leaves [J]. 1994, 35: 11-15.
    62. Huang Y, Chen Y-J, Tao S, 2000. Effect of rhizospheric environment of VA-mycorrhizal plants on formds of Cu, Zn, Pb and Cd in polluted soil. Chin J Appl Ecol, 11(3): 431-434.
    63.李彩霞 张芬琴等.铅对绿豆幼苗生长的影响[J].植物资源与环境学报,2003,12(2):60-61.
    64. Mobride M B. Toxic metal accumulation from agricultural use of sludge:Are U SEPA regulations protective?[J]. J Environ Qual, 1995,24: 5-18.
    65. Stiborev M. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley [J]. Photosynthetica,1986, 20: 418-425.
    66. Tesseire H, Guy V. Copper induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor)[J]. Plant Science,2000,153: 65-72.
    67. Coombes A J. Effect of copper on IAA-oxidass activity in root tissue of barley[J]. P flanzenphysiol, 1976,80:236-242.
    68. Kim Y S, Choi D, Lee M, et al. Biotic and abexpression of I-amino cycliprane-I-caboxylate ox in Nicotiana blutinosa L [J]. Plant Cell Physiol, 1998.
    69.夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社.2001,5:28-44.
    70.于海彬,蔡葆,孙丽英.甜菜对铜和锰营养的吸收及积累动态的初步分析[J].中国甜菜,1995,(2):30-34.
    71.江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子
    
    生物学学报,2002,28(3):167-174.
    72.杨居荣等.镉、铅在植物细胞内的分布及可溶性结合形态[J].中国环境科学,1993,13(4):263-268.
    73.顾淑华、旭军,朱忠精等.红壤性水稻土铅环境容量研究[J].环境科学学报,1989,9:27-36.
    74.刘云惠,魏显有等.土壤中铅镉的作物效应研究[J].河北农业大学学报,1999,(22)1:24-28.
    75. Giller K E, Witter E, Mc Grath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soil: a review [J]. Soil Biology and Biochemistry, 1998, 30: 1389-1414.
    76.龙健,黄昌勇,腾应,姚槐应.我国南方红壤矿山复垦土壤的微生物特性研究[J].水土保持学报,2002,16:126-129.
    77.王秀丽,徐建民,谢正苗,姚槐应,石卫勇.重金属铜锌污染对土壤环境质量生物学指标的影响[J].浙江大学学报, 2002,28:190-194.
    78. Ellis R J, Neish B, Trett M W, Best J G, Weightman A J, Morgan P, Fry J C. Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination [J]. Journal of Microbiological Methods, 2001, 45: 171-185.
    79. Erg B, Ekbohm G, S oderstrom B, et al.1991. Reduction of decomposition rates of Scots pine needle litter due to heavy-metal pollution. Water Air Soil Pollut,59(1-2): 165-177.
    80. Hemida S K,Omar S A, Abdel Mallk A Y. Microbial populations and enzyme activity in soil treated with heavy metals[J]. Water, Air, And Soil Pollution, 1997, 95: 13-22.
    81.吴龙华,骆永明、黄焕盅等.铜污染土壤修复的有机调控研究[J]:可溶性物和EDTA对污染红壤的释放作用.土壤,2000,32(2):62-66.
    82.陈英旭 陆芳.有机酸对铅、镉植株危害的解毒作用研究[J].环境科学学报,2000,20(4):470-472.
    83.陈世俭.有机物质添加量对污染土壤铜形态及活性的影响[J].土壤与环境,1999,8(1):22-25.
    84.陈世俭.污染土壤添加有机物质对黑麦草吸收铜的影响[J].农村生态环境,2001,17(1):37-39.
    85. Alva A K, Graham J H. Role of Calcium in ameliorioration of copper phytotoxicity for citrus [J]. Soil Sci., 1993(155): 211-218.
    86. J H Graham, L W Timmer and D Farddmann. Toxicity of fungicidal copper in soil to citrus seedlings and Vesicular -Arbuscular Mycorrhizal Fungi[J]. Phytopathology, 1986, (76): 66-70.
    
    
    87. Chlopecka A, Adriano D C. Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops [J]. The Science of the Total Environment, 1997, 207(2-3): 195-206.
    88. Laperche V. Logan T J, Gaddam p, et al, Effect of apatite amendments on plant uptake of lead from contaminated soil [J]. Environmental Science and Technology, 1997, 31: 2745-2753.
    89. Laperche V. Traina S j , Gaddam P, et al. Chemical and mineralogical characterization of Pb in a contaminated soil: Reaction with synthetic apatite. Environmental Science and Technology, 1996,30: 3321-3326.
    90.郭朝晖,黄昌勇.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550.
    91.沈振国,刘友良.重金属超量积累植物研究进展[J].植物生理通讯 1998(34) 4:133-135.
    92.陈文莉,黄巧云等.根瘤菌对土壤铜、锌和镉形态分配的影响[J].应用生态学报,2003,14(8):1278-1282.
    93.姜理英,杨肖娥等.植物修复技术中有关土壤重金属活化机制的研究进展[J].土壤通报,2003,34(2):154-157.
    94.翟录.未来我国饲料将短缺.饲料工业,2000,10:25.
    95.唐咏.铅污染对辣椒幼苗生长及SOD和POD活性的影响[J].沈阳农业大学学报,2001-02,32(1):26-28.
    96.邹邦基主编.植物的营养[M].农业出版社,1985:57-65.
    97. Merry R H. Plant and Soil[M]. 1986, (91): 115-128.
    98. Hiroshi GAME Hiroki YAMA TO micro flora in soil polluted by copper mine drainage[J]. Journal of the Science of Soil and Meure, 1981 (52): 119-124.
    99. Sowell W F, R, Rouse and John I Woar. Copper toxicity of cotton plant in solution cwbur[J]. Agron. J. 1957(49): 206-207.
    100.倪才英,陈英旭。骆永明.土壤-植物系统铜污染与修复的研究进展[M].浙江大学学报(农业与生命科学版).2003,29(3):237-243.
    101. Brown D H, Beckeer R P. The role of the wall in the intracellular uptake of cations by lichens in lichen physiology and cell biology [M]. New York: Plenum Press, 1985. 247-258.
    102.董艺婷,王庆仁.单一与复合污染条件下两种敏感性植物对Cd、Zn、Pb的吸收效应[J].生态学报,2003,23(5):1018-1022.
    103.宁开桂.使用饲料分析手册[M].北京:中国农业科技出版社,1993.
    104.杨胜主编.饲料分析及饲料检测技术[M].北京:北京农业大学出版社,1993:40-75.
    
    
    105. Hunt J. Dilute hydrochloric acid extraction of plant material for routine cation analysis [J]. Commune in Soil Sci Plant Anal, 1982,13(1): 49-55.
    106.王艳,王金达,刘汝海,李仲根等.土壤铅的浓度与油彩生长相互影响的研究[J].农业环境科学学报,2004,23(1):47-50.
    107.罗方妮,蒋志伟编著.饲料卫生学[M].北京:化学工业出版社,2003,5.
    108. Branqutnho C. Brown D H. Gatarino F. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll florescence [J]. Environ Fop Rot. 1997.38:165-179.
    109.张宪政.作物生理研究法[M].北京:农业出版社,1990,148-150.
    110.李合生,孙群,赵世杰等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,195-197.
    111.山东农学院,西北农学院主编.植物生理学实验指导[M].济南:山东科技出版社,1980:25-47.
    112.林炎昆.常用的几种蒽酮比色定糖法的比较和改进[J].植物生理学通报,1989(4):53-55.
    113.李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究[J].河北农业大学学报,2002,25(增刊):74-77.
    114.周伟.镉和铅污染土壤对桑树生长的影响[J].蚕业科学,1995,21(4):265-266.
    115.刘霞,刘树庆.河北主要土壤中重金属镉、铅形态与土壤酶活性的关系[J].河北农业大学学报,2002,25(1):33-60.
    116.叶春和.紫花苜蓿对铅污染土壤修复能力及其机理的研究[J].土壤与环境,2002,11(4):331-334.
    117.王秀丽,徐建民,姚槐应,谢正苗等.重金属同、锌、镉、铅复合污染对土壤环境微生物生物群落的影响[J].环境科学学报,2003,23(1):22-27.
    118.屠乃美,郑华.不同改良剂对铅镉污染稻田的改良效应研究[J].农业环境保护,2000,19(6):324-326.
    119.谢正苗,卡里德,黄昌勇.镉铅锌污染对红壤中微生物生物量碳氮磷的影响[J].植物营养与肥料科学,2000,6(1):69-74.
    120.李静,陈宏.腐殖酸对土壤汞、镉、铅植物可利用性的影响[J].四川农业大学学报,2003,21(3):234-240.
    121.李玉红,宗良纲.不同有机酸对水稻吸收铅的影响[J].南京农业大学学报,2002,25(3):45-48.
    122.陈晓婷,王果.石灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响[J].土
    
    壤与环境,2001.11(1):17-21.
    123.王松华,杨志敏.植物铜素毒害及其抗性机制研究进展[J].生态环境,2003,12(3):336-341.
    124.王焕校主编.污染生态学.北京:高等教育出版社,2000,5(2001重印):69-70.
    125.潘瑞炽.植物生理学.北京:高等教育出版社,2001,279-280.