松嫩平原两种生境羊草种群根茎可溶性碳水化合物含量动态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可溶性碳水化合物是参与植物生命代谢的重要物质。羊草根茎不仅是重要的营养繁殖器官,也是养分的重要贮藏器官。通过对松嫩平原沙地和盐碱地2种生境羊草种群根茎可溶性碳水化合物含量变化的分析,结果表明:
     (1) 从开花期至生长季末期,2个生境根茎中可溶性碳水化合物含量呈现出相似地规律性变化。从花期到腊熟期可溶性碳水化合物含量呈现增加的趋势,但在果后营养初期出现最低值,生长季末期达到最高值。
     (2)沙地和盐碱地不同生长季根茎可溶性碳水化合物含量皆为1a﹥2a﹥3a。即随着龄级的升高,可溶性碳水化合物含量呈递减趋势。除果后营养初期外,各龄根茎可溶性碳水化合物含量的差异都达到了显著水平(P≤0.05)。根茎是按照实际生活年限划分的,根茎可溶性碳水化合物含量随龄级升高而降低的趋势,非常充分地说明了不同龄级根茎生活力和生育力的差别,从而为羊草无性系种群年龄结构的划分方法的科学性提供了佐证。
     (3)根茎顶端芽是羊草进行营养繁殖、扩展其生态位空间的重要构件,但其可溶性碳水化合物含量在各生长季(生长季末期除外)的含量并不高,甚至还低于3a根茎可溶性碳水化合物含量。
    (4) 除了沙土地果后营养初期之外,就贮藏可溶性碳水化合物的绝对含量而言,茎基部占第一位,其次是根茎,最少的是分蘖节。
     (5)通过方差分析,沙地和盐碱地不同生育期节和节间的差异达到了显著水平(P≤0.05)。
    (6) 方差分析表明,除了开花期,不同龄级分蘖节之间差异都没有达到显著水平(P﹥0.05)。
    (7)根茎无芽节始终大于有芽节中可溶性碳水化合物含量。
Water-soluble carbohydrate plays an important role in metabolism of the plant. The rhizome of Leymus chinensis is not only the important organ of vegetative reproduction, but also the important storage organ.The contents of water-soluble carbohydrate of the rhizome of Leymus chinensis in two inhabits of sand soil and saline soil during the different development stages were studied on the Songnen Plain of China. The results showed that:
    (1) The contents of water-soluble carbohydrate of rhizome in two inhabits changed similarly and regularly from the flowering stage to the end of growth season. From the flowering stage to the dough ripe stage, the contents of water-soluble carbohydrate increased, while were the lowest values at the beginning of the stage after fruiting, and reached the highest values at the end of the growing season.
    (2) The contents of water-soluble carbohydrate of rhizome at different development stages in the inhabits of sand soil and saline soil decreased with the ages increasing, and the order was 1a﹥2a﹥3a. The difference of the content of water-soluble carbohydrate between the different age classes of the rhizomes in the inhabits of sand soil and saline soil during the different development stages reached the significant level(P≤0.05). Because the ages of rhizome were divided according to actual living years, the trend of decreasing of the contents of water-soluble carbohydrate of rhizome with the age increasing adequately showed the obvious difference of viability and fecundity of different ages of rhizome, which was a direct support for scientific method of division of age structure of Leymus chinensis population, a clonal population of rhizome type grass.
    (3) The bud of the rhizome apex is an important module for Leymus chinensis population in the process of vegetative propagation to expand eco-space. But the contents of water-soluble carbohydrate in the bud of the rhizome apex were not high except for the end of growth season, and even lower than that of the rhizome of the 3rd age class.
    
    (4) Except for the beginning of the stage after fruiting of sand soil, as for the absolute contents of water-soluble carbohydrate which were stored, the base stem was the most, the second was the rhizome, the least was the tillering node.
    (5) The variance analysis showed that the difference of the content of water-soluble carbohydrate between the rhizome node and the rhizome internode in the inhabits of sand soil and saline soil reached the significant level(P≤0.05)during the different development stages.
    (6) The variance analysis showed that the difference of the content of water-soluble carbohydrate between rhizome node and rhizome internode in the inhabits of sand soil and saline soil during the different development stages did not reach the significant level(P﹥0.05)except for the flowering stage.
    (7) The contents of water-soluble carbohydrate of budless node were higher than that of gemmate node.
引文
Graber, L. F. Food reserves in relation to other factors limiting the growth of grasses. Plant Physiol., 1931, 6: 31~43.
    Troughton, A. Chemical composition p49~68, in Arthur Troughton. The underground organs of herbage grasses. Commonwealth Bur. Pastures Field crops Bull. 1957, 44.
    Ward, C. Y.,and R.E.Blaser. Carbohydrate food reserves and leaf area in regrowth of orchadgrass.Crop Sci., 1961,1:366~370.
    Cairns A. J, Nash R, Machado de carvalho M-A ,Sims I M,. Characterization of the enzymatic polymerization of 2,6-linked fructan by leaf extracts from timothy grass ( Phleum pratense) . New Phytol , 1999,142 : 79~91.
    Davies A. Carbohydrate levels and regrowth in perennial ryegrass. Journal of Agricultural Science , 1965 , 65 : 213~221.
    Donaghy D J,Fulkerson WJ. Priority for allocation of water-soluble soluble carbohydrate reserves during regrowth of Lolium perenne. Grass Forage Science , 1998,53 : 211~218.
    Fulkerson W J , Slack K. Leaf number as a criterion for determining defoliation time for Lolium perenne. Ⅰ. Effect of water-soluble carbohydrates and senescence. Grass and Forage Science , 1994, 49 : 373~377.
    Garcia A B, Engler J A, Iyer S , Gerats T , van Montague M. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol , 1997, 115 : 159~169.
    Gaudet D A,Laroche A,Yoshida M. Low temperature-wheat-fungal interactions:A carbohydrate connection. Physiol Plant , 1999,106 : 437~444.
    Gibson S I. Plant sugar- response pathway. Part of a complex regulatory web. Plant Physiol , 2000 , 124 : 1532~1539.
    Housley T L ,Gibeaut D M,Carpita N C ,Sims I , Pollock C J. Fructosyl transfer from sucrose and oligosaccharides during fructan synthesis in excised leaves of Lolium temulentum L. New Phytol , 1991 , 119 : 491~497.
    Jeong B R , Housley TL. Fructan metabolism in wheat in alternating warm and cold temperatures. Plant Physiol , 1990 , 93 : 902~906.
    Kuhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced
    
    
    by sink- source manipulation. J Plant Physiol , 1989 ,34 : 243~250.
    Koch K E. Carbohydrate-modulated gene expression in plants. Ann Rev Plant Physoil and Plant Mol Bio , 1996, 47 : 509~540.
    Loewe A, Einig W, Shi L, Dizengremel P, Hampp R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol , 2000,145 : 65~574.
    Quick W P, Chaves MM, wendler R , David M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell and Environment , 1992, 15 : 25~35.
    SchellenbaumL, Sprenger N , Schuepp H , Wiemken A , Boller T. Effects of drought, transgenic expression of a frnctan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol ,1999 ,142 : 67~77.
    Sheen J, Zhou L , Jang J-C. Sugar as signaling molecules. Curr Opin Plant Biol ,1999 , 2 : 1001~1008.
    Vanderklein D W, Reich P B. The effect of defoliation intensity and history on photosynthesis, growth , and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytol , 1999 ,144 : 121~132.
    Vassey T L, Sharkey T D. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol , 1989,89 : 1066~1070.
    Volaire F, Gandoin J M.The effect of age of the sward on the relationship between water-soluble carbohydrate accumulation and drought survival in two contrasted populations of cocksfoot (Dactylis glomerata L). Grass and Forage science , 1996, 51 : 190~198.
    白可喻,赵萌莉,卫智军,韩国栋,许志信. 刈割对荒漠草原几种牧草贮藏碳水化合物的影响[J]. 草地学报,1996,4(2):6~133.
    潘庆民,韩兴国,白永飞,杨景成. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报,2002,19(1):30~38.
    许志信,白永飞,段淳清. 草原牧草贮藏碳水化合物含量变化规律的研究[J].草业学报,1994,3(4):27~31.
    白永飞,段淳清,额尔敦达来,王明玖,许志信. 刈割对牧草贮藏碳水化合物含量变化的影响[J]. 内蒙古农牧学院学报,1994,15(4):48~53.
    白永飞,许志信,李德新. 典型草原主要牧草植株贮藏碳水化合物分布部位的研究[J]. 中国草地,1996,(1):7~9.
    白可喻, 赵萌莉, 卫智军等. 刈割对荒漠草原中牧草储藏碳水化合物的影响[J]. 草业学报,1996,4(2):127~132.
    
    于友民,H. Schnyder,H. V ianden等. 多年生黑麦草刈后再生草碳水化合物及氮素的变化[J]. 草业学报,1999,8(4):65~70.
    戎郁萍, 韩建国, 王培等. 刈割强度对新麦草产量和储藏碳水化合物及含氮化合物影响的研究[J]. 中国草地,2000,(2): 28~34.
    杨允菲,郑慧莹,李建东. 根茎禾草无性系种群年龄结构的研究方法[J]. 东北师大学报(自然科学版),1998,(1): 53~59.
    杨允菲,张宝田. 松嫩平原羊草种群营养繁殖的季节动态及其生物量与密度关系的分析[J]. 生物学报,1992,34(6):443~449.
    杨允菲,刘庚长,张宝田. 羊草种群年龄结构及无性繁殖对策的分析[J]. 植物学报,1995,37(2):147~153.
    张春华,杨允菲,李建东.不同干扰条件下羊草种群营养繁殖的研究[J]. 草业科学,1995,12(6):61~62.
    杨允菲,郑慧莹,李建东. 松嫩平原2个趋异类型羊草无性系种群特征的比较研究[J]. 植物学报,199739(11):1058~1064.
    杨允菲,郑慧莹,李建东.不同生态条件下羊草种群分蘖植株年龄结构的比较分析[J].生态学报,1998,18(3):302~308.
    杨允菲,李建东.松嫩平原几种根茎型禾草种群的营养繁殖特性及其持续更新分析[J].草业学报,1996,5(2):43~48.
    杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,37 (2):147~152.
    陆静梅,李建东,同种不同生态环境植物解剖结构比较研究[J].东北师范大学自然科学版,1994(3):100~103.
     杜占池,杨宗贵. 不同土壤类型羊草光合和蒸腾作用特性的比较研究[J] . 植物学报,1995,37(10):66~73.
     杨允菲,祝廷成.不同生境条件下羊草种群种子生产的探讨[J].生态学报,1988,8(3):256~262.
    杨允菲, 杨利民,张宝田, 李建东.东北草原羊草种群种子生产与气候波动的关系[J].植物生态学报,2001,25(3)337~343.
    杨允菲,祝廷成.羊草种群种子生产的初步研究[J].植物生态学与地植物学学报,1989,13(1):73~78.
    杨允菲,杨利民,张宝田,李建东.东北草原羊草种群结实特性与气候年变化的关
    
    
    系[J].植物学报,2000,42(3):294~299.
    杨允菲,杨利民,张宝田,李建东. 东北草原羊草种群结实特性与气候年变化的关系[J]. 植物学报,2000,42(3):294~299.
    马鹤林,宛涛,王风刚. 羊草结实特性及结实率低的原因[J]. 中国草原,1984,(30):15~21.
    杨允菲,李建东.郑慧莹. 松嫩平原光稃茅香无性系种群的营养繁殖特征[J].应用生态学报,1997,8(6):571~574.
    杨允菲,郑慧莹. 松嫩平原假苇拂子茅无性系种群的年龄结构[J]. 草业学报,2000,9(3):8~13.
    刘颖,王德利,韩士杰,程志茹,杜娟,王旭. 不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化[J]. 应用生态学报,2003,14(12):2167~2170.
    周瑞莲,张普金. 春季高寒草地牧草根中营养物质含量和保护酶活性的变化及其生态适应性研究[J]. 生态学报,1996,16(4):402~407.
    杨允菲,张洪军,张宝田. 松嫩平原野古草无性系种群的营养繁殖特征[J]. 草业学报,1998,7(1):1~5.
    杨允菲,郎惠卿. 不同生态条件下芦苇无性系种群调查分析[J]. 草业科学,1998,7(2):1~9.
    杨允菲,郑慧莹,李建东. 松嫩平原牛鞭草无性系种群的营养繁殖策略[J]. 草业学报,1997,6(2):36~40.
    杨允菲,郑慧莹. 松嫩平原假苇拂子茅无性系种群的年龄结构[J]. 草业学报,2000,9(3):8~13.
    郑慧莹,李建东,1999.松嫩平原盐生植物与盐碱化草地的恢复.北京:科学出版社,2~4.