卵巢癌相关成纤维细胞CAFs的分离培养及其对卵巢癌细胞的生物学影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分卵巢癌相关成纤维细胞和正常卵巢成纤维细胞的分离培养鉴定及两者基因表达差异
     目的对卵巢癌相关成纤维细胞(carcinoma-associated fibroblasts,CAFs)及卵巢正常成纤维细胞(normal fibroblasts,NFs)进行分离、培养、纯化、并作初步的鉴定。分析CAFs与NFs中多种基因表达的差异。
     方法1.用组织块贴壁培养法获得原代卵巢癌CAFs和卵巢NFs,细胞铺满培养瓶后首次传代,通过胰酶消化法和反复传代法进行细胞的纯化;2.通过倒置显微镜观察细胞形态,透射电镜观察细胞内部结构和多种蛋白质的免疫细胞组化染色检测细胞膜波形蛋白(vimentin)、细胞角蛋白(keratin)和α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA),及相应mRNA的半定量分析,对CAFs和NFs进行初步鉴定;3.应用RT-PCR的方法对CAFs和NFs中多种基因进行分析比较。
     结果1.获得了纯化的卵巢CAFs和NFs;2.卵巢CAFs呈长梭形,胞质突减少,电镜下可见粗面内质网扩张;3.卵巢CAFs的细胞免疫组化染色波形蛋白、α-SMA染色呈阳性,角蛋白呈阴性,卵巢NFs波形蛋白阳性,而α-SMA和细胞角蛋白阴性;4.卵巢CAFs与NFs中波形蛋白与α-SMA的mRNA发现均有表达,但CAFs中表达增加,差异有显著性(P﹤0.05);5.与NFs相比,CAFs中多种mRNA的表达增加,其中包括有生长因子,基质金属蛋白酶,血管生成因子,同时也发现MMP1的表达显著减少。
     结论与NFs相比, CAFs在形态结构、mRNA、蛋白表达等方面均有显著差异;卵巢癌中CAFs的直接分子表达的检测表明,其分子表达有显著变化,提示这些成纤维细胞可能为卵巢癌细胞的生长提供了最适的微环境。推测卵巢-宿主界面微环境在上皮性卵巢癌的发展中可能起重要作用。
     第二部分卵巢癌相关成纤维细胞对上皮性卵巢癌细胞增殖、凋亡、迁移和侵袭的生物学活性的影响
     目的采用Transwell体外间接共培养体系,研究直接分离自卵巢癌的癌相关成纤维细胞CAFs对卵巢癌细胞增殖、凋亡、迁移和侵袭活性的影响,探讨CAFs在上皮性卵巢癌发展中的作用。
     方法1.采用0.4μm孔径的Tranwell小室进行CAFs或者NFs与卵巢癌细胞CAOV3体外共培养,用RT-PCR的方法检测共培养之后的卵巢癌细胞CAOV3中增殖细胞核抗原(PCNA)表达的改变,以了解卵巢癌细胞增殖的变化;2.用流式细胞仪检测共培养之后CAOV3细胞的细胞周期和Annexin V-FITC/PI检测CAOV3细胞的凋亡情况;3.用8μm孔径的Transwell小室建立卵巢癌CAFs与CAOV3细胞的交互作用模型,观测CAFs对CAOV3细胞迁移特性的影响;4.以Matrigel模拟重建基底膜,用8μm孔径的Transwell小室建立卵巢癌CAFs与CAOV3细胞的交互作用模型,观测CAFs对CAOV3细胞侵袭特性的影响。
     结果1.与CAFs共培养之后卵巢癌细胞CAOV3的PCNA基因表达显著增高,并且随着CAFs细胞量的增加,CAOV3细胞增殖活性显著增强。同时CAFs细胞的PCNA基因表达下降,随着CAOV3细胞数量的增加,PCNA表达明显减少;2.采用流式细胞仪检测细胞周期的方法可以发现,与CAFs共培养之后CAOV3细胞的凋亡显著减少,而在与NFs共培养之后的CAOV3细胞中未发现这一现象;3.同时用Annexin V-FITC/PI的方法,用流式细胞仪进行检测,也可以证实与与CAFs共培养之后CAOV3细胞的凋亡显著减少,而与NFs共培养之后,CAOV3的凋亡没有明显变化;4.与对照组相比CAFs或者NFs对CAOV3作用8小时后,CAOV3迁移明显增加,但CAFs组的增加有极显著性(P﹤0.01);5.侵袭实验中发现,与对照组相比CAFs或者NFs对CAOV3作用24小时后,CAOV3侵袭明显增加,但CAFs组的增加有极显著性(P﹤0.01)。
     结论CAFs能促进卵巢癌CAOV3细胞的增殖,减少其凋亡,并且两种成纤维细胞对卵巢癌细胞均有促迁移和侵袭的作用,但是CAFs的作用更加显著。这些发现提示我们,在CAFs与卵巢癌CAOV3细胞的交互作用中,能够促进卵巢癌的进展。
     第三部分卵巢癌相关成纤维细胞与卵巢癌细胞CAOV3交互作用中基因表达的改变及机制
     目的探讨在卵巢癌相关成纤维细胞与卵巢癌细胞交互作用的过程中基因表达的改变,及其相应的机制,探讨在体内环境下卵巢癌相关成纤维细胞对卵巢癌的影响,寻找卵巢癌治疗的新靶点。
     方法1.采用逆转录聚合酶链反应(RT-PCR)的方法分别检测交互作用48小时后的卵巢癌相关成纤维细胞与卵巢癌细胞中基因表达的改变,CAFs及CAOV3细胞外信号调节激酶通路的ERK,PI3K基因表达的变化;2.与CAFs细胞共培养后,CAOV3细胞外信号调节激酶通路ERK1/2的蛋白表达变化采用Western-blot的方法检测;3.建立人卵巢癌CAOV3与CAFs1:1裸鼠荷瘤模型,观察荷瘤裸鼠生长状况的变化,称量其体重,测量其大小;用HE染色观察裸鼠荷瘤的一般情况;4.用免疫组织化学染色技术检测裸鼠荷瘤中Ⅷ因子相关抗原,PCNA等蛋白表达的变化,以单纯卵巢癌细胞株CAOV3裸鼠荷瘤模型最为对照。
     结果1.在卵巢癌细胞CAOV3中,FGF1、tTG、PDGF-A经CAFs作用后表达增加(P﹤0.05),而与NFs共同培养后无显著变化,在CAFs组中TGF-β2的表达显著减少(P﹤0.05)。基质金属蛋白酶中MMP1在NFs组中表达减少,MMP7在NFs组中表达显著增加(P﹤0.05),TIMP3在成纤维细胞CAFs和NFs作用后,均减少,并且随着CAFs的细胞数量增加,TIMP3减少越显著;2.与CAOV3细胞共同培养后,CAFs中的tTG、VEGF-C、MMP1、MMP2、MMP9、TIMP3均显著减少(P﹤0.05);3.卵巢癌细胞CAOV3与卵巢CAFs共培养之后,CAOV3和CAFs细胞中ERK2,PI3K的表达均增加(P﹤0.05);4.Western blot检测蛋白表达,与NFs共培养后,CAOV3中ERK2蛋白的表达显著减少(P=0.002),而在与CAFs共同培养时,ERK1/2蛋白的表达显著增加(P=0.018);5.CAFs使荷瘤裸鼠体重迅速减轻,CAFs使裸鼠荷瘤产生粗大丰富的血管,促进增殖,并且微血管密度增加。
     结论CAFs与CAOV3的交互作用致使两者的生长因子、基质金属蛋白酶等表达改变,并且CAFs对癌细胞ERK和PI3K通路有活化作用,CAFs在体内促进了肿瘤血管的生长,加速了肿瘤的进展。因此,针对CAFs的研究为卵巢癌的治疗策略提供了新的思路。
Part I The Differential Gene Expression between Cancer-Associated Fibroblasts and Normal Fibroblasts separated、cultured and identified from Human Ovarian Carcinamas
     Objective: To separate, cultivate, purify and identify ovarian carcinoma-associated fibroblasts (CAFs) and ovarian normal fibroblasts (NFs) preliminarily. Analyze the distinct molecular expression profiles between CAFs and NFs.
     Methods:1. The primary ovarian CAFs and NFs of ovarian were obtained by tissue culture. The second passage was obtained after the cell overgrew the bottom of the culture flask and purified by trypsinization and adherence repeatedly methods. 2. The identity of the CAFs and NFs was through the observation of the shape of the cell with inverted microscope and the cellular organ with transmission electron microscope, the protein expression of vimentin, keratin andα-SMA in the cellular membrane with immunocytochemistry and mRNA expression of vimentin andα-SMA with RT-PCR. 3. Analyze the distinct molecular expression profiles between CAFs and NFs with RT-PCR.
     Results:1. The purified ovarian CAFs and NFs were maintained. 2. The characteristics of shape and growth of the ovarian CAFs changed significantly comparing to the NFs. They are in long-fusiform shape, cytoplasmic reduction, and expansion of rough endoplasmic reticulum. 3. The ovarian CAFs showed negative staining for cytokeratin , and positive staining for vimentin andα-SMA, while NFs showed negative staining for cytokeratin andα-SMA,positive staining for vimentin. 4.α-SMA was found mRNA expression in both CAFs and NFs, but the expression increased significantly in CAFs (P﹤0.05). 5. Control with the NFs, molecular expression profiles increased in CAFs, including growth factors, MMPs, angiogenesis factors, at the same time, MMP1 was found decreased.
     Conclusions:There are obvious differences of the morphological characteristics and expression of certain mRNA and proteins between the CAFs and NFs. The distinct molecular expression profiles of CAFs in ovarian cancer support the notion that these fibroblasts form a favorable microenvironment for cancer cells. The microecology of the oral tumor-host interface might be one of the most important factors affecting the progression of epithelial ovarian cancer.
     Part II The effect of Ovarian Carcinoma-associated Fibroblasts on the Proliferation, Apoptosis, Migration and Invasion of Epithelial Ovarian Carcinoma Cell
     Objective: To observe the effects of CAFs on the proliferation, apoptosis, migration and invasion of ovarian caicinoma cell line CAOV3 cells, and to elucidate the role of CAFs in ovarian carcinoma progression.
     Methods:1. The interaction model between primary ovarian CAFs,NFs and ovarian carcinoma cell line CAOV3 was established by Transwell chamber of 0.4μm diameter. In order to find out the effect of proliferation of CAFs to CAOV3, the RT-PCR assay was used to observe the changing of PCNA mRNA expression. 2. Cell cycle examination and Annexin V-FITC/PI assays to verify the apoptosis of CAOV3 after the co-culture with CAFs or NFs with flow cytometry. 3. The interaction model between primary ovarian CAFs,NFs and ovarian carcinoma cell line CAOV3 was established by Transwell chamber of 8μm pore to observe the effect of migration of CAOV3. 4. Matrigel was used to remodel the basement membrane, and the interaction model between primary ovarian CAFs,NFs and ovarian carcinoma cell line CAOV3 was established by Transwell chamber of 8μm diameter to observe the effect of invasion of CAOV3.
     Results:1. The expression of PCNA mRNA in CAOV3 was significantly increased after the co-culture with CAFs, and with the number of CAFs increased, the motility of proliferation in CAOV3 was significantly increased. 2. By flow cytometry of the cell cycle, the apoptosis of CAOV3 was found significantly decreased after the co-culture with CAFs, while it was not found in CAOV3 co-cultured with NFs. 3. Meanwhile, the decreasing apoptosis of CAOV3 was observed with flow cytometry in Annexin V-FITC/PI assay, but the apoptosis of CAOV3 did not change significantly after the co-culture with NFs. 4. When contrast with the control group, the migration of CAOV3 was significantly increased after the co-culture with CAFs or NFs for 8hours, moreover, there was an extremely significant increase in CAFs group. 5. In the invasion experiment, when CAOV3 was co-cultured with CAFs or NFs for 24hours, the invasion of CAOV3 was significantly increased, especially in CAFs group.
     Conclusions:CAFs can promote the proliferation and decrease the apoptosis of ovarian carcinoma CAOV3 cells, both CAFs and NFs can promote the migration and invasion of CAOV3, but it was much more obvious in CAFs. All the findings suggest, during the interaction between CAFs and ovarian carcinoma CAOV3 cells, the signaling can promote the progression of ovarian carcinoma.
     Part III The cross-talk of the change of genes expression between CAFs and ovarian cancer cell CAOV3 co-culture and the possible mechanisms
     Objective:To investigate the change of genes expression between CAFs and ovarian cancer cell CAOV3 co-culture and the possible mechanisms,and the effects of ovarian CAFs on ovarian cancer,new targets were to be found.
     Methods:1. To explore the reciprocal effects of host-tumor interaction, we developed a system to assess the gene expression patterns and the diversity of gene expression of ERK and PI3K pathway in CAOV3 human ovarian cancer cells and primary carcinoma-associated fibroblasts cocultured with each other for 48 hours with RT-PCR. 2. Western blot was used to detect the expression of extracellular signal-regulated kinase1/2 prtotein in ovarian cancer cell CAOV3 after the co-culture with CAFs. 3. We established the model of human ovarian carcinoma with human ovarian carcinoma cell CAOV3 and CAFs 1:1 of nude mice to observe the weight and volume of those carcinomas in nude mice,and hematoxylin and eosine staining of tumor-bearing nude mice in general. 4. Immunohistochemistry was used to determine the expression ofⅧfactors antigen and PCNA protein in those carcinomas in nude mice,compared with the carcinomas of CAOV3 in nude mice.
     Results:1. After the co-culture with CAFs, the expression of FGF1、tTG、PDGF-A were significantly increased(P﹤0.05).2. The expression of TGF-β2 was significantly decreased(P﹤0.05). In MMPs,the expression of MMP1 was decreased when co-cultured with NFs,while MMP7 was increased. But TIMP3 both were decreased after the co-culture with CAFs and NFs. 2. After the co-culture with CAOV3, the expression of tTG、VEGF-C、MMP1、MMP9 and TIMP3 were significantly decreased. 3. The expression of ERK2、PI3K mRNA and ERK1/2 protein in CAOV3 were increased after the co-culture with CAFs. 4. The weight of treated nude mice was decreased fast by CAFs, and a large number of vessels were generated、the proliferation inceased and the MVD raised.
     Conclusions:The expression of several growth factors and MMPs changed in CAFs and CAOV3 after the co-culture of them,and CAFs have the activation effect on ERK and PI3K pathway in CAOV3 cells. The cancer angiogenesis and progression were stimulated by CAFs in vivo. Therefore,the study targeting CAFs would afford us a new thincking of therapeutic strategies.
引文
[1] Wimberger P, Kimmig R. Surgical treatment of ovarian cancer. MMW Fortschr Med. 2005;147 (43):31-33.
    [2] Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer. 2004,4(11):839-849.
    [3] De Wever. O. & Mareel, M. Role of tissue stroma in cancer cell invasion. J. Pathol. 2003;200 (4),429–447.
    [4] Balkwill F & Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-545..
    [5] Skobe M, Rockwell P, Goldstein N, Vosseler S. & Fusenig, NE. Halting angiogenesis suppresses carcinoma cell invasion. Nature Med. 1997 ;3(11):1222-1227.
    [6] Mueller MM, Peter W, Mappes M, Huelsen A, Steinbauer H, Boukamp P, Vaccariello M, Garlick J, Fusenig NE. Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocytemacrophage colony-stimulating factor. Am. J. Pathol. 2001;159(4):1567-1579.
    [7] Liotta LA , Kohn EC. The microenvironment of the tumour-host interface. Nature . 2001;411(6835):375-379.
    [8] Rubin H. Selected cell and selective microenvironment in neoplastic development . Cancer Res. 2001;61(3):799-807.
    [9] Virchow, R. Die Cellularpathologie in Ihrer Begruendung auf Physiologische und Pathologische Gewebelehre (Hirschwald, A., Berlin, Germany, 1858).
    [10] Duvall, M. Atlas d’Embryologie (Masson, Paris, 1879).
    [11] Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392-401.
    [12] Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C & Brown RA. Myofibroblasts and mechanoregulation of connective tissue remodelling. Nature Rev. Mol. Cell Biol.2002;3(5):349-363.
    [13] Parsonage G, Filer AD, Haworth O, Nash GB, Rainger GE, Salmon M, Buckley CD. A stromal address code defined by fibroblasts. Trends Immunol. 2005;26(3):150-156.
    [14] Sieuwerts AM, Klijn JG, Henzen-Logmand SC, Bouwman I, Van Roozendaal KE, Peters HA, Setyono-Han B, Foekens JA. Urokinase-type-plasminogenactivator (uPA) production by human breast (myo) fibroblasts in vitro: influence of transforming growth factor-β1 (TGFβ1) compared with factor(s) released by human epithelialcarcinoma cells. Int. J. Cancer. 1998;76(6):829-835.
    [15] Sato T, Sakai T, Noguchi Y, Takita M, Hirakawa S, Ito A. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol. Oncol. 2004;92(1):47-56.
    [16] Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA. 2002;99(20):12877-12882.
    [17] Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001;128(16):3117-3131.
    [18] Wiseman, B. S. & Werb, Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046-1049.
    [19] Kopelovich, L. Genetic predisposition to cancer in man: in vitro studies. Int. Rev. Cytol. 1982;77:63-88.
    [20] Schor SL, Haggie JA, Durning P, Howell A, Smith L, Sellwood RA, Crowther D.. Occurrence of a fetal fibroblast phenotype in familial breast cancer. Int. J. Cancer.1986;37(6):831-836.
    [21] Muller, G. A. & Rodemann, H. P. Characterization of human renal fibroblasts in health and disease: I. Immunophenotyping of cultured tubular epithelial cells and fibroblastsderived from kidneys with histologically proven interstitial fibrosis. Am. J. Kidney Dis. 1991;17, 680–683..
    [22] Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005 ;120(3):303-313.
    [23] Stetler-Stevenson, W. G., Aznavoorian, S. & Liotta, L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 1993;9:541-573.
    [24] Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z. The stromal proteinase MMP3/ stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98(2):137-146.
    [25] Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-tomesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 1997;139(7):1861-1872.
    [26] Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N. Suppression of tumor development and metastasis formation in mice lacking the S100A4mts1 gene. Cancer Res. 2005;65(9):3772-3780.
    [27] Hanahan D and Weinberg RA. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57-70.
    [28] Matrisian LM, Cunha GR, Mohla S. Epithelial-stromal interactions and tumor progression: meeting summary and future directions. Cancer Res. 2001 May 1;61(9):3844-3846.
    [29] Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175-203.
    [30] Schmitt-Gr?ff A, Desmoulière A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch. 1994;425(1):3-24. Review.
    [31] Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999 Jul;277(1 Pt 1):C1-9. Review.
    [32] Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650-1659.
    [33] Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res. 2001,266(1):74-86.
    [34] Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev. Cancer. 2003,3(6):422-433.
    [35] Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):999-1003.
    [36] Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, Carswell EA, Cohen A, Larson SM, Old LJ, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol 1994, 12:1193-1203.
    [37] Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ: Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 1994, 91:5657-5661.
    [38] Rettig WJ, Garin-Chesa P, Beresford HR, Oettgen HF, Melamed MR, Old LJ: Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci USA 1988, 85:3110-3114.
    [39] Lebret SC, Newgreen DF, Thompson EW, Ackland ML. Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells bycarcinoma-associated fibroblast secreted factors. Breast Cancer Res. 2007;9(1):R19.
    [40] Ronnov-Jessen L, van Deurs B, Celis JE, Petersen OW: Smooth muscle differentiation in cultured human breast gland stromal cells. Lab Invest 1990, 63:532-543.
    [41] Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005;13(1):7–12.
    [42] Radisky DC, Kenny PA, Bissell MJ. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem. 2007 Jul 1;101(4):830-839.
    [43] Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005;8(3):241–254.
    [44] Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 2004;48(5–6):509–517.
    [45] Radisky ES, Radisky DC.Stromal induction of breast cancer: Inflammation and invasion. Rev Endocr Metab Disord. 2007 Sep;8(3):279-287.
    [46] Lambert E, Dasse E, Haye B, Petitfrere E: TIMPs as multifacial proteins. Crit Rev Oncol Hematol. 2004, 49:187-198.
    [47] Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, Kung HF, Colburn NH, Sun Y. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis. 1996 Sep;17(9):1805-1811.
    [48] Jeffery JJ. Interstitial collagenases. In: Parks WC, Mecham RP, editors. Matrix metalloproteinases. San Diego: Academic Press; 1998. p. 15– 42.
    [49] Pearce EG, Laxton RC, Pereira AC, Ye S. Haplotype Effects on Matrix Metalloproteinase-1 Gene Promoter Activity in Cancer Cells. Mol Cancer Res. 2007 Mar;5(3):221-227. Epub 2007 Mar 5.
    [50] Kuncio GS, Tsyganskaya M, Zhu J, Liu SL, Nagy L, Thomazy V, Davies PJ, ZernMA. TNF-alpha modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol. 1998 Feb;274(2 Pt 1):G240-5.
    [51] Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79(4):1283– 1316.
    [52] Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol 1998;16:249–284.
    [53] Zhang Y, Shang H, Sun LG, Liu N, Yu HY.Expression of aFGF and bFGF in Ovarian cancer and their effect on ovarian cancer cell proliferation. Ai Zheng. 2003 Nov;22(11):1162-1165.
    [54] Yamamoto T, Akisue T, Marui T, Fujita I, Matsumoto K, Hitora T, Kawamoto T, Nagira K, Nakatani T, Kurosaka M.Expression of Transforming Growth Factor _ Isoforms and Their Receptors in Malignant Fibrous Histiocytoma of Soft Tissues. Clin Cancer Res. 2004 Sep 1;10(17):5804-5807.
    [55] Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer . Cancer Res, 2002, 62(20):5930-5938.
    [56] Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002 Oct 10;419(6907):624-629.
    [57] Shibuya M. Structure and function of VEGF/VEGF-receptor system involved inangiogenesis. Cell struct funct 2001;26(1):25-35.
    [58] Landen CN Jr, Mathur SP, Richardson MS, Creasman WT. Expression of cyclooxygenase-2 in cervical, endometrial and ovarian malignancies. Am J Obstet Gynecol. 2003 May;188(5):1174-1176.
    [1] Coussens, L.M., Werb, Z. Inflammation and cancer. Nature. 2002 Dec 19-26;420(6917):860-867.
    [2] Jacobs TW, Byrne C, Colditz G, Connolly JL, Schnitt SJ. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N Engl J Med. 1999 Feb 11;340(6):430-436.
    [3] Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000 Mar 1;60(5):1254-1260.
    [4] Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G., and Moses, H.L. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004 Feb 6;303(5659):848-851.
    [5] Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001 Jan 1;15(1):50-65.
    [6] Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004 Nov 18;432(7015):332-337.
    [7] Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer. 2003 Oct 20;107(1):1-10.
    [8] Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999 Oct 1;59(19):5002-5011.
    [9] Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol. 2001Apr;11(2):97-104.
    [10] Lebret SC, Newgreen DF, Thompson EW, Ackland ML.Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res. 2007;9(1):R19.
    [11] Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer. 2004,4(11):839-849.
    [12] Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999 Aug 1;250(2):273-283.
    [13] Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001 Oct;1(1):46-54.
    [14] Orimo A, Tomioka Y, Shimizu Y, Sato M, Oigawa S, Kamata K, Nogi Y, Inoue S, Takahashi M, Hata T, Muramatsu M. Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin Cancer Res. 2001 Oct;7(10):3097-3105.
    [15] Parrott JA, Nilsson E, Mosher R, Magrane G, Albertson D, Pinkel D, Gray JW, Skinner MK.Stromal-epithelial interactions in the progression of ovarian cancer: influence and source of tumor stromal cells. Mol Cell Endocrinol. 2001 Apr 25;175(1-2):29-39.
    [16] Cardone A, Tolino A, Zarcone R, Borruto Caracciolo G, Tartaglia E. Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Med. 1997 Sep;39(3):174-177.
    [17] Maeshima AM, Niki T, Maeshima A, Yamada T, Kondo H, Matsuno Y. Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer. 2002 Dec 15;95(12):2546-2554.
    [18] Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004Jul;6(1):17-32.
    [19] Fan YZ, Fu JY, Zhao ZM, Chen CQ.Inhibitory effect of norcantharidin on the growth of human gallbladder carcinoma GBC-SD cells in vitro. Hepatobiliary Pancreat Dis Int. 2007 Feb;6(1):72-80.
    [20] Wang Z, Li M, Lu S, Zhang Y, Wang H. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther. 2006 Mar;5(3):256-260. Epub 2006 Mar 5.
    [21] Manabe Y, Toda S, Miyazaki K, Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol. 2003 Oct;201(2):221-228.
    [22] Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650-1659.
    [23] Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell. 2005, 121(3): 335-348.
    [24] Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW Jr, de la Chapelle A, Frankel WL. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 2004, 23(44):7366-7377.
    [1] De Wever. O. & Mareel, M. Role of tissue stroma in cancer cell invasion. J. Pathol. 2003;200 (4),429–447.
    [2] Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004 Nov 18;432(7015):332-337.
    [3] Micke P, O¨stman A.Tumour–stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004 Aug;45 Suppl 2:S163-175.
    [4] Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer. 2004,4(11):839-849.
    [5] Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998 Sep 18;94(6):715-725.
    [6] Vitolo D, Ciocci L, Cicerone E, Rossi C, Tiboni F, Ferrauti P, Gallo A, Baroni CD. Laminin alpha2 chain (merosin M chain) distribution and VEGF, FGF(2), and TGFbeta1 gene expression in angiogenesis of supraglottic, lung, and breast carcinomas. J Pathol. 2001 Sep;195(2):197-208.
    [7] Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 2002 Jun 1;62(11):3298-3307.
    [8] van Kempen LC, Rijntjes J, Claes A, Blokx WA, Gerritsen MJ, Ruiter DJ, van Muijen GN. Type I collagen synthesis parallels the conversion of keratinocytic intraepidermal neoplasia to cutaneous squamous cell carcinoma. J Pathol. 2004 Nov;204(3):333-339.
    [9] Micke P, O¨stman A. Exploring the tumour environment: cancer associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets. 2005 Dec;9(6):1217-1233.
    [10] LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P. Peripheral lymph nodestromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer. 2002 Jul 1;100(1):2-8.
    [11] De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide the convergent proinvasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 2004 Jun;18(9):1016-1018. Epub 2004 Apr 1.
    [12] Schnitt S, Guidi A. Pathology of invasive breast cancer. In: Harris JR, Lippman ME, Murrow M, Osborn CK (eds) Diseases of the breast, 2nd edn. Lippincott, Williams, and Wilkins, NY, (2000) p 425.
    [13] Radisky ES, Radisky DC.Stromal induction of breast cancer: Inflammation and invasion. Rev Endocr Metab Disord. 2007 Sep;8(3):279-287.
    [14] Noel A, Foidart JM. The role of stroma in breast carcinoma growth in vivo. J Mammary Gland Biol Neoplasia. 1998 Apr;3(2):215-225.
    [15] Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392-401.
    [16] Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003 Dec;3(12):921-930.
    [17] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A Laboratory Manual. 2nd ed. published by Cold Spring Harbor laboratory Press (Cold Spring Harbor, NewYork), 1989, 324-526.
    [18] Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res. 2001,266(1):74-86.
    [19] Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005;13(1):7–12.
    [20] Radisky DC, Kenny PA, Bissell MJ. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem. 2007 Jul 1;101(4):830-839.
    [21] Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-KingCA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–254.
    [22] Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol. 2004;48(5–6):509–517.
    [23] Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA. 2002;99(20):12877-12882.
    [24] Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001;128(16):3117-3131.
    [25] Lambert E, Dasse E, Haye B, Petitfrere E: TIMPs as multifacial proteins. Crit Rev Oncol Hematol 2004, 49:187-198.
    [26] Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, Kung HF, Colburn NH, Sun Y. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis. 1996 Sep;17(9):1805-1811.
    [27] Kuncio GS, Tsyganskaya M, Zhu J, Liu SL, Nagy L, Thomazy V, Davies PJ, Zern MA. TNF-alpha modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol. 1998 Feb;274(2 Pt 1):G240-245.
    [28] Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79(4):1283– 1316.
    [29] Zhang Y, Shang H, Sun LG, Liu N, Yu HY. Expression of aFGF and bFGF in Ovarian cancer and their effect on ovarian cancer cell proliferation. Ai Zheng. 2003 Nov;22(11):1162-1165.
    [30] Husain SS,Szabo IL,Pai R. MAPK(ERK2) kinase-a key target for NSAIDs-induced inhibition of gastric cancer cell proliferation and growth. Life Sci,2001,69(25-26):3045-3054.
    [31] Neri LM, Borgatti P, Capitani S. The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta, 2002,1584(2-3):73-80.
    [1] Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer. 2004,4(11):839-849.
    [2] De Wever. O. & Mareel, M. Role of tissue stroma in cancer cell invasion. J. Pathol. 2003;200 (4),429–447.
    [3] Manabe Y, Toda S, Miyazaki K, Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J. Pathol. 2003, (201): 221–228.
    [4] Sieuwerts AM, Klijn JG, Henzen-Logmand SC, Bouwman I, Van Roozendaal KE, Peters HA, Setyono-Han B, Foekens JA. Urokinase-type-plasminogenactivator (uPA) production by human breast (myo) fibroblasts in vitro: influence of transforminggrowth factor-β1 (TGFβ1) compared with factor(s) released by human epithelialcarcinoma cells. Int. J. Cancer. 1998;76(6):829-835.
    [5] Sato T, Sakai T, Noguchi Y, Takita M, Hirakawa S, Ito A. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol. Oncol. 2004;92(1):47-56.
    [6] Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422-433.
    [7] O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277-285.
    [8] Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem. Biophys. Biochem Biophys Res Commun. 2003 Sep 12;309(1):232-240.
    [9] Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841-844.
    [10] Coussens, L.M., Werb, Z. Inflammation and cancer. Nature. 2002 Dec 19-26;420(6917):860-867.
    [11] de Visser KE, Korets LV,Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7(5):411-423.
    [12] Virchow, R. Die Cellularpathologie in Ihrer Begruendung auf Physiologische und Pathologische Gewebelehre (Hirschwald, A., Berlin, Germany, 1858).
    [13] Duvall, M. Atlas d’Embryologie (Masson, Paris, 1879).
    [14] Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C & Brown RA. Myofibroblasts and mechanoregulation of connective tissue remodelling. Nature Rev. Mol. Cell Biol.2002;3(5):349-363.
    [15] Parsonage G, Filer AD, Haworth O, Nash GB, Rainger GE, Salmon M, Buckley CD. A stromal address code defined by fibroblasts. Trends Immunol. 2005;26(3):150-156.
    [16] Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA. 2002;99(20):12877-12882.
    [17] Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001;128(16):3117-3131.
    [18] Wiseman, B. S. & Werb, Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046-1049.
    [19] Castor CW, Wilson SM, Heiss PR, Seidman JC. Activation of lung connective tissue cells in vitro. Am Rev Respir Dis. 1979 Jul;120(1):101-106.
    [20] Muller, G. A. & Rodemann, H. P. Characterization of human renal fibroblasts in health and disease: I. Immunophenotyping of cultured tubular epithelial cells and fibroblasts derived from kidneys with histologically proven interstitial fibrosis. Am. J. Kidney Dis. 1991;17, 680–683.
    [21] Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003 Jul;83(3):835-870.
    [22] Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nature Rev. Nat Rev Cancer. 2003 Jun;3(6):401-410.
    [23] Mueller MM, Werbowetski T, Del Maestro RF. Soluble factors involved in glioma invasion. Acta Neurochir. Acta Neurochir (Wien). 2003 Nov;145(11):999-1008.
    [24] Stetler-Stevenson WG, Yu AE. Proteases in invasion: matrix metalloproteinases. Semin. Semin Cancer Biol. 2001 Apr;11(2):143-152.
    [25] McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001 Oct;13(5):534-540.
    [26] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002 Mar;2(3):161-174.
    [27] Bachmeier BE, Boukamp P, Lichtinghagen R, Fusenig NE, Fink E. Matrix metalloproteinases-2,-3,-7,-9 and -10, but not MMP-11, are differentially expressed in normal, benign tumorigenic and malignant human keratinocyte cell lines. Biol Chem. 2000 May-Jun;381(5-6):497-507.
    [28] Borchers AH, Steinbauer H, Schafer BS, Kramer M, Bowden GT, Fusenig NE.Fibroblast-directed expression and localization of 92-kDa type IV collagenase along the tumorstroma interface in an in vitro three-dimensional model of human squamous cell carcinoma. Mol Carcinog. 1997 Aug;19(4):258-266.
    [29] Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 2001 Mar 10;264(1):169-184.
    [30] Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene. 2000 Sep 7;19(38):4337-4345.
    [31] Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Müller GA. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int. 2000 Apr;57(4):1521-1538.
    [32] Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL. TGF-βsignaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004 Feb 6;303(5659):848-851.
    [33] Weeks BH, He W, Olson KL, Wang XJ. Inducible expression of transforming growth factorβ1 in papillomas causes rapid metastasis. Cancer Res. 2001 Oct 15;61(20):7435-7443.
    [34] L?hr M, Schmidt C, Ringel J, Kluth M, Müller P, Nizze H, Jesnowski R. Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res. 2001 Jan 15;61(2):550-555.
    [35] De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide the convergent proinvasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 2004 Jun;18(9):1016-1018. Epub 2004 Apr 1.
    [36] Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ. Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SFdependent invasion of squamous carcinoma cells. Br J Cancer. 2004 Feb 23;90(4):822-832.
    [37] Tsukada T, McNutt MA, Ross R, Gown AM. HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive, and neoplastic human tissues. Am. J. Am J Pathol. 1987 May;127(2):389-402.
    [38] Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):999-1003.
    [39] Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem. 1999 Dec 17;274(51):36505-36512.
    [40] Chauhan H, Abraham A, Phillips JR, Pringle JH, Walker RA, Jones JL. There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J Clin Pathol. 2003 Apr;56(4):271-276.
    [41] Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer. 2003 20;107(1):1-10.
    [42] Orimo A, Tomioka Y, Shimizu Y, Sato M, Oigawa S, Kamata K, Nogi Y, Inoue S, Takahashi M, Hata T, Muramatsu M. Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin Cancer Res.2001 ;7(10):3097-3105.
    [43] Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4966-4971. Epub 2004 Mar 29.
    [44] Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell. 2005, 121(3): 335-348.
    [45] Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005 ;120(3):303-313.
    [46] Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology. 1997 Sep;26(3):634-642.
    [47] Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, Friedman SL, Vidal-Vanaclocha F. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology. 2003 Mar;37(3):674-685.
    [48] Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N. Suppression of tumor development and metastasis formation in mice lacking the S100A4mts1 gene. Cancer Res. 2005;65(9):3772-3780.
    [49] Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL. Loss of TGF-βtype II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene. 2005 Jul 28;24(32):5053-5068.
    [50] Duda DG, Fukumura D, Munn LL, Booth MF, Brown EB, Huang P, Seed B, Jain RK.Differential transplantability of tumor-associated stromal cells. Cancer Res. 2004 Sep 1;64(17):5920-5924.
    [51] Wang XM, Yu DM, McCaughan GW, Gorrell MD. Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology. 2005 Oct;42(4):935-945.
    [52] Nakamura T, Matsumoto K, Mizuno S, Sawa Y, Matsuda H, Nakamura T. Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2131-2139.
    [53] Heeg MH, Koziolek MJ, Vasko R, Schaefer L, Sharma K, Müller GA, Strutz F. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int. 2005 Jul;68(1):96-109.