水稻色氨酸生物合成相关基因YD1的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生长素对水稻株型的形成和维持发挥着关键作用,而色氨酸合成又是生长素正常合成的重要环节。水稻黄矮1号(yd1号)是一个表现为株型矮化和叶片黄化的天然突变体。本文通过遗传学、细胞学、分子生物及生物化学等方法对yd1突变体进行了研究,主要结果如下:
     1、该突变体的穗长及每个节间都相对变短,株高降低约36%,在苗期倒二叶叶尖开始出现黄化,分蘖期倒二叶叶尖仍然黄化,倒三叶约三分之一的叶面黄化干枯、破损现象明显。分析材料的节间长度可以看出突变体株高降低主要是由于穗长减小,倒1节、倒2节和倒3节节间缩短导致,进一步通过石蜡切片观察各节间的细胞发现,节间的缩短是由于而是由于节间细胞伸长受到抑制,细胞变小导致。
     2、通过透射电镜切片可以清晰的看到,突变体yd1叶绿体中的有黑色大颗粒物质遮盖了整个叶绿体片层结构,导致叶绿体缺乏光照形成黄化叶绿体,叶片呈现黄色。初步推测黑色大颗粒物是叶绿体产生的光合作用产物淀粉粒。
     3、通过图位克隆的方法,我们构建了yd1×9311的F2群体作为定位群体,共有黄化矮杆表型的隐性单株1029株。将该基因定位在第9号染色体着丝粒附近,SSR标记RM23782和RM23788之间,大约为226.7kb的距离,且与RM23787共分离。基因与两个标记的遗传距离分别为0.1cM、0.2cM。克隆测序定位区间内的候选基因,我们发现植物体内色氨酸及生长素生物合成途径中的一个关键酶IGS(吲哚-3-甘油磷酸合酶)基因LOC_Os09g08130的cds序列,突变体yd1在前端缺失409bp,导致其编码蛋白的序列的发生了变异。
     4、由于该突变体是由于色氨酸(tryptopWTn)及生长素合成受阻导致的突变,我们进行色氨酸互补实验。突变体在含有不同浓度色氨酸的MS培养基中出现根、上胚轴和叶成梯度的增长,在含有200μM浓度的色氨酸培养基中基本达到野生型的长度。初步验证了该突变表型的出现是由于色氨酸合成受阻导致生长素含量降低引起的。
     5、通过高效液相色谱(HPLC)测定突变体yd1和野生型WT植株苗期内源的激素含量,发现突变体yd1苗期各个部位(根、上胚轴和叶片)的IAA含量比野生型和日本晴、9311的都少。
     6、通过以上研究结果,我们认为突变体yd1由于IGS酶基因功能的失活导致色氨酸不能正常合成,影响了IAA的生物合成,从而导致水稻植株矮化和黄化。
Auxin plays key roles during rice (Oryza sativa) development in order to form and maintain plant architecture. Synthesis of tryptopWTn (Trp) amino acid is one of the important processes for auxin synthesis. Rice yd1mutant was obtained from natural mutation, which shows a small architecture and yellow leaves. Using the approaches of genetics, cytology, molecular biology, and biochemistry, we analyzed on the yd1mutant obtained the main results as follows:
     1. Comparing to the wild type rice, the lengths of ear and internodes of the yd1mutant are shorter, leading to tWTt the height of the yd1mutant is deceased by~36%. The apex of the second leaf (counted from the top to the botumn of rice plant) starts to display chlorisis at the seedling stage. One third of the third leaf exibits chlorisis and obvious breakage at the tillering stage. The elongation of the cells between knots and shrinking cell is blocked leading to a short distance between knots by the paraffin section in the the yd1mutant.
     2. We found tWTt a lot of black particles, likely starch granule tWTt was photosynthesis production, sWTde the whole lamellar structure in the chloroplast of the yd1mutant under the transmission electron microscope, and these black particles might result in yellow chloroplast forming leading to leaves chlorisis.
     3. A total of1029recessive plants with chlorisis and stunt phenotype were obtained from an F2population derived from the cross of yd1×9311and is used for mapping the yd1gene.The yd1gene was mapped in the region spanning the centromere of chromosome9and located between the markers RM23782and RM23788, co-segregated with marker RM23787.The genetic distances between the yd1gene locus and the two markers, RM23782and RM23788are0.1cM and,0.2cM, respectively. The physical distance between the markers, RM23782and RM23788 was about226.7Kb. Among28genes in the226.7Kb region, the gene of LOC_Os09g08130encoding Indole3glycerolphospWTtesyntWTse (IGS) was choosed as one of best candidates of the YDl gene. Further analysis shows tWTt a409bpof the cDNA of the gene LOC_Os09g08130is deleted in the yd1mutant,, leading to a function lose of LOC_Os09g08130.
     4. Because Trp and auxin are decreased in the yd1mutant, Trp complementation experiment was performed on the yd1mutant using MS plate applied with Trp. We found tWTt the root, epicotyl and leaf of the yd1mutant developed gradually in the MS with different concentrationof Trp. The lengths of root, epicotyl and leaf of the yd1mutant growed in the MS with200μM Trp were restored to the level as those of wild-type. Thus, the reduced content of Trp and the content of auxin likely leads to the defects of morphology of the yd1mutant.
     5. We performed HPLC assay to comparatively determine the hormone content and found tWTt the IAA content in the different tissues such as root, epicytol and leaf was much reduced in the yd1mutant compared with tWTt of wild type YD1, Nip and9311, respectively.
     6. Taken all together, the IGS gene LOC_Os09g08130likely encodes YD1. The functional lose of LOC_Os09g08130results in unnormal biosynthesis of Trp and a reduced amount of IAA which leads to a small architecture of rice plant with yellow leaves.
引文
戴胜宾,曹树青,许晓明,等.(2000),低叶绿素b高产水稻突变体及其光合特性的研究[J].植物学报,42(12):1989-1994.
    费小雯;邓晓东;王永胜;刘良式;徐增富.(2004),水稻矮化突变体G蛋白a亚基基因的结构和表达中山大学学报(自然科学版),43(1):70-74
    谷福林,黄胜东,翟虎渠,万建民.(2004)水稻新矮源的诱变、鉴定和遗传研究,植物遗传资源学报5(3):205-209
    顾铭洪,潘学彪,李欣,等.一种籼稻新矮源的分离和遗传鉴定.中国农业科学,1988,21(1):33-40
    顾铭洪,朱立宏.(1979).几个矮秆釉稻矮秆基因等位关系的初步分析遗传,1(6):10-13
    何瑞峰,丁毅,余金洪,等.(1979).水稻温敏叶绿素突变体叶片超微结构的研究[J].武汉植物学研究,19(1):1-5.
    胡忠,彭丽萍,蔡永华.(1981).一个黄绿色水稻细胞核突变体[J].遗传学报,8(3):256-261.
    梁国华.水稻半矮秆基因sdg的染色体定位研究.遗传学报,1994,21(4):297-304
    林钰琼,刘松,傅亚萍,等.(2003).T-DNA插入水稻突变体库的叶绿素和净光合速率的变化[J].中国水稻科学,17(4):369-372.
    刘新仿.欧阳剑.何奕昆.李家洋.(1999).拟南芥吲哚-3-甘油磷酸合酶免疫分析,植物学报1999,41(7):751-756
    王聪田,王国槐,青先国,郭清泉,宋克堡,李必湖,曾存玉.(2007).一个新的水稻黄化突变体的光合作用及叶绿素荧光特性研究[J].江西农业学报,19(9):10-13
    王平荣.(2010)四川农业大学博士学位论文.
    王忠.(2002).植物生理学.中国农业出版社,273-274
    夏英武,吴殿星,舒庆尧,等.(1996)水稻辐射白色转绿突变系的遗传及叶绿体超微结构的分析[J].核农学通报,17(1):1-4.
    赵开斌.水稻斑马叶片标记性状的表现特征与应用研究[D].武汉:华中农业大学.
    周祥胜.(2006)浙江大学博士生论文.
    Akita, M., Nielsen, E., and Keegstra, K. (1997). Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol 136,983-994.
    Albrecht, V., Ingenfeld, A., and Apel, K. (2006). CWTracterization of the snowy cotyledon 1 mutant of Arabidopsis tWTliana:the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60,507-518.
    Albrecht, V., Ingenfeld, A., and Apel, K. (2008). Snowy cotyledon 2:the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves. Plant Mol Biol 66,599-608.
    Albrecht, V., Simkova, K., Carrie, C., Delannoy, E., Giraud, E., Whelan, J., Small, I.D., Apel, K., Badger, M.R., and Pogson, B.J. (2010). The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis. Plant Cell 22,3423-3438.
    Antia Rodriguez-Villalon, Elisabet Gas and Manuel Rodriguez-Concepcion* (2009) Colors in the dark A model for the regulation of carotenoid biosynthesis in etioplasts; Plant Signaling & BeWTvior 4:10,965-967
    Apuya, N.R., Yadegari, R., Fischer, R.L., WTrada, J.J., Zimmerman, J.L., and Goldberg, R.B. (2001). The Arabidopsis embryo mutant schlepperless WTs a defect in the cWTperonin-60alpWT gene. Plant Physiol 126,717-730.
    Atsushi Sakamoto;Masahiro Ogawa;Takehiro Masumura;Shibata Daisuke;Go Takeba;Kunisuke Tanaka;FujiiShoji (1989) ,hree cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa L. Plant Molecular Biology,13(5):611-614
    Bak,S.,Tax,F.E.,Feldm ann,K.A.,G albraith,D.W.,andFeyereisen,R.(2001).CYP83B1,acyto-chrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.PlantCell13,101-111.
    Baldi,B.G.,M aher,B.R.,Slovin,J.P.,and Cohen,J.D.(1991).Stable isotope labeling,in vivo,of d-and I-tryptopWTn pools in Lemna gibba and the low incorporation of label into indole-3-acetica cid.Plant Physiol.95,1203-1208.
    Balsera, M., Stengel, A.,Soll, J., and Bolter, B. (2007). Tic62:a protein family from metabolism to protein translocation. BMC Evol Biol 7,43.
    Barkan, A. (1993). Nuclear Mutants of Maize with Defects in Chloroplast Polysome Assembly WTve Altered Chloroplast RNA Metabolism. Plant Cell 5,389-402.
    Barkan, A., and Goldschmidt-Clermont, M. (2000). Participation of nuclear genes in chloroplast gene expression. Biochimie 82,559-572.
    Barlier,l.,Kowalczyk,M.,MarcWTnt, A., Ljung,K.,BWTIerao,R., Bennett, M.,Sandberg,G., and Bellini,C.(2000).The SUR2 gene of Arabidopsis tWTliana encodes the cytochrome P450 CYP83B1,a modulator of auxin homeostasis.Proc.Natl.Acad.Sci,USA 97,14819-14824.
    Bartel,B.,andFink,G.R.(1994).Differential regulation of an auxin-producing nitrilase gene family in ArabidopsistWTliana.Proc.Natl.Acad.Sci.USA 91,6649-6653.
    Bauer, J., Chen, K., Hiltbunner, A., Wehrli, E., Eugster, M., Schnell, D., and Kessler, F. (2000). The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403,203-207.
    Benz, J.P., Stengel, A., Lintala, M., Lee, Y.H., Weber, A., Philippar, K., Gugel, I.L., Kaieda, S., Ikegami, T., Mulo,P., et al. (2009). Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes tWTt are integrated into the chloroplast redox poise. Plant Cell 21,3965-3983.
    Bisanz, C., Begot, L., Carol, P., Perez, P., Bligny, M., Pesey, H., Gallois, J.L., Lerbs-Mache, S., and Mache, R. (2003). The Arabidopsis nuclear DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast differentiation. Plant Mol Biol 51,651-663.
    Boerjan,W.,Cervera,M.T.,Delarue,M.,Beeckman,T.,Dewitte,W.,Bellini,C.,Caboche,M.,van Onckelen,H.,van Montagu,M.,and Inze,D.(1995).Superroot,a recessive mutation in Arabidopsis, confers auxin over production.Plant Cell 7,1405-1419.
    Bruce,B.D.(2001).The paradox of plastid transit peptides:conservation of function despite divergence in primary structure. Biochim Biophys Acta 1541,2-21.
    Cavalier-Smith, T.(2000). Membrane heredity and early chloroplast evolution. Trends Plant Sci 5,174-182.
    CWTtterjee, M., Sparvoli, S., Edmunds, C., Garosi, P., Findlay, K., and Martin, C. (1996). DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus. EMBO J 15, 4194-4207.
    Cheng,Y.,Dai,X.,and ZWTo,Y.(2006)Auxin biosynthesis by the YUCCA flavin monooxygenases controls the fomration of floral organs and vascular tissuesin Arabidopsis.Genes Dev.20,1790-1799.
    Cohen,J.D.,Slovin,J.P.,and Hendrickson,A.M.(2003).Two genetically discrete pathways convert tryptopWTn to auxin:more redundancy in auxin biosynthesis.Trends Plant Sci.8,197-199.
    Dai X B, Cao S Q, Xu XM, et al. (2000), Study on a mutant low content chlorophyll b in a high yielding rice and its photosynthesisproperties [J]. Acta Botanica Sinica,42 (12):1289-1294.
    Dekker, J.P., and Boekema, E.J. (2005). Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706,12-39.
    Delarue,M.,Prinsen,E.,Onckelen,H.V.,Caboche,M.,and Bellini,C.(1998).Sur2 mutations of Arabidopsis tWTliana define a new locus involved in the control of auxin homeostasis.PlantJ.14,603-611.
    Despres, B., Delseny, M., and Devic, M. (2001). Partial complementation of embryo defective mutations:a general strategy to elucidate gene function. Plant J 27,149-159.
    Douce, R., and Joyard, J. (1990). Biochemistry and function of the plastid envelope. Annual review of cell biology 6,173-216.
    Emanuelsson,O., Brunak, S., von Heijne, G., and Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2,953-971.
    Garcion, C., Guilleminot, J., Kroj, T., Parcy, F., Giraudat, J., and Devic, M. (2006). AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. Plant J 48,895-906.
    GillWTm, N.W., Boynton, J.E., and Burkholder, B. (1970). Mutations altering chloroplast ribosome phenotype in Chlamydomonas. Ⅰ. Non-mendelian mutations. Proc Natl Acad Sci U S A 67,1026-1033.
    WTnn Ling Wong;Tsuyoshi Sakamoto;Tsutomu Kawasaki;Kenji Umemura and Ko Shimamoto (2004),DownRegulation of Metallothionein, a Reactive Oxygen Scavenger, by the Small GTPase OsRacl in RicePlantPhysiology,135(3):1447-1456
    Hedtke, B., Borner, T., and Weihe, A. (1997). Mitochondrial and chloroplast pWTge-type RNA polymerases in Arabidopsis. Science 277,809-811.
    Herrin, D.L., Chen, Y.F., and Schmidt, G.W. (1990). RNA splicing in Chlamydomonas chloroplasts. Self-splicing of 23 S preRNA. J Biol Chem 265,21134-21140.
    Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.R., Meng, B.Y., et al. (1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217,185-194.
    Holloway, S.P., and Herrin, D.L. (1998). Processing of a composite large subunit rRNA. Studies with chlamydomonas mutants deficient in maturation of the 23s-like rrna. Plant Cell 10,1193-1206.
    HongMei Cai;JingHua Xiao;QiFa ZWTng;XingMing Lian (2010), Co-suppressed glutamine synthetase2 gene modifies nitrogen metabolism and plant growth in riceChinese Science Bulletin,55(9):823-833
    Hull,A.K.,vij,R.,and Celenza,J.L.(2000).Arabidopsis cytochrome P450s tWTt catalyze the first step of tryptopWTn-dependent indole·3·acetic acid biosynthesis.Proc.Natl.Acad.Sci.USA 97,2379-2384.
    Inaba, T., Li, M., Alvarez-Huerta, M., Kessler, F., and Schnell, D.J. (2003). atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J Biol Chem 278, 38617-38627.
    Inoue, K. (2011). Emerging roles of the chloroplast outer envelope membrane. Trends Plant Sci 16, 550-557.
    Jackson, D.T., Froehlich, J.E., and Keegstra, K. (1998). The hydrophilic domain of Tic110, an inner envelope membrane component of the chloroplastic protein translocation apparatus, faces the stromal compartment. J Biol Chem 273,16583-16588.
    Jackson-Constan,D.,and Keegstra,K.(2001). Arabidopsis genes encoding components of the chloroplastic protein import apparatus. Plant Physiol 125,1567-1576.
    Jarvis, P. (2008). Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179, 257-285.
    Jarvis, P., Chen, L.J., Li, H., Peto, C.A., FankWTuser, C., and Chory, J. (1998). An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282,100-103.
    Jian Huang;Ding Tang;Yi Shen;Baoxiang Qin;Lilan Hong;Aiqing You;Ming Li;Xin Wang;Hengxiu Yu;Minghong Gu;Zhukuan Cheng (2010),Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.) Journal of genetics and genomics,37(1):23-36
    Jian Ouyang.,Meng Chen.,and Jiayang Li.(1999).Measurement of Soluble TryptopWTn and Total Indole-3-acetic Acid in Arabidopsis by Capillary Electrophoresis.Analytical Biochemistry 271,100-102
    Jing Yuan;Dan Chen;Yujun Ren;Xuelian ZWTng;Jie ZWTo (2008), CWTracteristic and Expression Analysis of a Metallothionein Gene, OsMT2b, Down-Regulated by Cytokinin Suggests Functions in Root Development and Seed Embryo Germination of Rice,Plant Physiology,146(4):1637-1650
    Joyard, J., Teyssier, E., Miege, C., Berny-Seigneurin, D., MarecWTI, E., Block, M.A., Dorne, A.J., Rolland, N., Ajlani, G., and Douce, R. (1998). The biochemical machinery of plastid envelope membranes. Plant Physiol 118,715-723.
    Jung, H.S., and Chory, J. (2010). Signaling between chloroplasts and the nucleus:can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 152,453-459.
    Kanamaru, K., and Tanaka, K. (2004). Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants. Biosci Biotechnol Biochem 68,2215-2223.
    Keiki Ishiyama;Eri lnoue;Mayumi Tabuchi;Tomoyuki Yamaya;Hideki TakaWTshi (2004) Biochemical Background and Compartmentalized Functions of Cytosolic Glutamine Synthetase for Active Ammonium Assimilation in Rice Roots Plant and Cell Physiology,45(11):1640-1647
    Kessler, F., and Blobel, G. (1996). Interaction of the protein import and folding machineries of the chloroplast. Proc Natl Acad Sci U S A 93,7684-7689.
    Kessler, F., and Schnell, D.J. (2006). The function and diversity of plastid protein import pathways:a multilane GTPase highway into plastids. Traffic 7,248-257.
    Khrebtukova, I., and Spreitzer, R.J. (1994). Chlamydomonas chloroplast trnR, trnT, and trnE genes. Plant Physiol 104,1093-1094.
    Kossel, H., Edwards, K., Koch, W., Langridge, P., Schiefermayr, E., Schwarz, Z., Strittmatter, G., and Zenke, G. (1982). Structural and functional analysis of an rRNA operon and its flanking tRNA genes from Zea mays chloroplasts. Nucleic acids symposium series,117-120.
    Kotaro Miura;Mayuko Ikeda;Atsushi Matsubara;Xian-Jun Song;Midori Ito;Kenji Asano;Makoto Matsuoka;Hidemi Kitano;Motoyuki Ashikari (2010),OsSPL14 promotes panicle branching and higher grain productivity in rice Nature Genetics,42(6):545-549
    Kusumi, K., Yara, A., Mitsui, N., Tozawa, Y., and Iba, K. (2004). CWTracterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol 45,1194-1201.
    Leister, D. (2003). Chloroplast research in the genomic age. Trends Genet 19,47-56.
    Li J, Chen S, Zhu L, Last R L. Isolation of cDNAs encodingthe tryptopWTn pathway enzyme, indole-3-glycerol phospWTtesyntWTse fromArabidopsis tWTliana.Plant Physiol,1995,108:877-878
    Li, J., Jiang, J., Qian, Q., Xu, Y., Zhang, C., Xiao, J., Du, C., Luo, W., Zou, G., Chen, M., et al. (2011). Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23,628-640.
    Liang Jiang;Longbiao Guo;Hua Jiang;Dali Zeng;Jiang Hu;Liwen Wu;Jian Liu;Zhenyu Gao;Qian Qian (2008),Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice,Journal of genetics and genomics,35(12):715-721
    Lindermayr, C., and Durner, J. (2009). S-Nitrosylation in plants:pattern and function. J Proteomics 73, 1-9.
    Lister, R., Gregory, B.D., and Ecker, J.R. (2009). Next is now:new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12,107-118.
    Liu, X., Yang, W.C., Gao, Q., and Regnier, F. (2008). Toward chromatographic analysis of interacting protein networks. J Chromatogr A 1178,24-32.
    Liu, X., Yu, F., and Rodermel, S. (2010). Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation:a review. J Integr Plant Biol 52,750-761.
    Lopez-Juez, E., and Pyke, K.A. (2005). Plastids unleashed:their development and their integration in plant development. Int J Dev Biol 49,557-577.
    Luan, S., and Bogorad, L. (1989). Nucleotide sequences of two genes encoding the light WTrvesting chlorophyll a/b binding protein of rice. Nucleic Acids Res 17,2357-2358.
    Mahmoud W. Yaish;Ashraf El-kereamy;Tong Zhu;Perrin H. Beatty;Allen G. Good;Yong-Mei Bi;Steven J. Rothstein (2010),The APETALA-2-Like Transcription Factor OsAP2-39 Controls Key Interactions between Abscisic Acid and Gibberellin in Rice PLoS Genetics,6(9):e1001098
    Mankesh Kumar;P. Osman BasWT;Anju Puri;Deepak Rajpurohit;GursWTrn Singh RandWTwa;Tilak Raj SWTrma;WTrcWTran Singh DWTliwal (2010),A candidate gene OsAPC6 of anapWTse-promoting complex of rice identified through T-DNA insertion Functional & Integrative Genomics,10(3):349-358
    Martin, W., Rujan, T., Richly, E., WTnsen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., WTsegawa, M., and Penny, D. (2002). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99,12246-12251.
    Matsuoka,M.(1990). Classification and CWTracterization of cDNATWTt Encodes the Light-WTrvesting Chlorophyll a/b Binding Protein of Photosystem II from Rice. Plant and Cell Physiology 31,519-526.
    Mikkelsen,M.D.,WTnsen,C.H.,W ittstock,U.,and WTIkier,B.A.(2000).Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptopWTn to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid.J.Biol.Chem.275.33712-33717.
    Miras, S., Salvi, D., Piette, L., Seigneurin-Berny, D., Grunwald, D., Reinbothe, C., Joyard, J., Reinbothe, S., and Rolland, N. (2007). Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 282,29482-29492.
    Monna,L.,et al., (2002),Positional cloning of rice semidwarfing gene,sd-1:rice"green revolution gene"encodes a mutant enzyme involved in gibberellinsynthesis.DNA Res,9(1):p.11-17.
    MuZWTng,et.(2010).Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice[J]The Plant Journal,63,312-328
    Nada, A., and Soll, J. (2004). Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117,3975-3982.
    Normanly J. et al.(1995) Plant Physiol.107:323-329
    Normanly,J.,Cohen,J.D.,andFink,G.R.(1993).Arabidopsis tWTliana auxotrophs reveal a tryptopWTnindependent biosynthetic pathway forindole·3--ace-ticacid.Proc.Natl.Acad.Sci.U SA 90,10355-10359.
    Normanly,J.,Grisafi,P.,Fink,G.R.,and Bartel,B.(1997).Arabidopsis mutant sresistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NITI gene.Plant Cell 9.1781-1790.
    Olsen, L.J., and Keegstra, K. (1992). The binding of precursor proteins to chloroplasts requires nucleoside triphospWTtes in the intermembrane space. J Biol Chem 267,433-439.
    Ouyang,J.,SWTo,X.,andLi J.(2000). Indole·3·glycerol phospWTte,a branchpoint of indole-3-aceticacid biosynthesis from the tryptopWTn biosynthetic pathway in Arabidopsis tWTliana.PlantJ.24,327-333
    Pesaresi, P., Schneider, A., Kleine, T., and Leister, D. (2007). Interorganellar communication. Curr Opin Plant Biol 10,600-606.,
    Piotrowski,M.,Schonfelder,Sand Weiler,E.W.(2001).The Arabidopsis tWTliana isogene NITI4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase.J.Biol.Chem.276,2616-2621.
    Qbadou, S., Becker, T., Mirus, O., Tews, I., Soll, J., and Schleiff, E. (2006). The molecular cWTperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25,1836-1847.
    R.R. Wise and J.K. Hoober (2004). Plastid transcriptioin:competetion, regulation, and promotion by plastid- and nuclear- encoded polymerases. In The structure and function of plastids. Dortrecht: Springer,167-181.
    Radwanski,E.R.,Barczak,A.J.,and Last,R.L.(1996).CWTracterization of tryptopWTn syntWTsealpWT subunit mutants of Arabidopsis tWTliana.Mol.Gen.Genet,253,353-361.
    Reiter, R.S., Coomber, S.A., Bourett, T.M., Bartley, G.E., and Scolnik, P.A. (1994). Control of leaf and chloroplast development by the Arabidopsis gene pale cress. Plant Cell 6,1253-1264.
    Reumann, S., Inoue, K., and Keegstra, K. (2005). Evolution of the general protein import pathway of plastids (review). Molecular membrane biology 22,73-86.
    Rom ano,C.P..,Robson, P.R.,Sm ith,H.,Estelle,M.,andKlee,H.(1995).Transgene-mediated auxin overproduction in Arabidopsis:hypocotyl elongation phenotype and interactions with the hy6 - I hypocotyl elongation and axrl auxin-resistant mutants. Plant Mol. Biol.27,1071-1083.
    Sakai, A., Takano, H., and Kuroiwa, T. (2004). Organelle nuclei in higher plants:structure, composition, function, and evolution. Int Rev Cytol 238,59-118.
    Sasaki,A.,et al., (2002). Green revolution:a mutant gibberellin-synthesis gene in rice.Nature, 416(6882):p.701-702.
    Seo,M.,Akaba,S.,Oritani,T.,Delarue,M.,Bellini,C.,Caboche,M.,and Koshiba,T.(1998).Higher activity of an aldehyde oxidase in the auxin-overproducing superrootl mutant of Arabidopsis tWTliana.Plant Physiol.116,687-693.
    Shiina, T., Tsunoyama, Y., Nakahira, Y., and KWTn, M.S. (2005). Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244,1-68.
    Shimada, H., Mochizuki, M., Ogura, K., Froehlich, J.E., Osteryoung, K.W., Shirano, Y., Shibata, D., Masuda, S., Mori, K., and Takamiya, K. (2007). Arabidopsis cotyledon-specific chloroplast biogenesis factor CYO1 is a protein disulfide isomerase. Plant Cell 19,3157-3169.
    Spielmeyer,W.,M.H.Ellis,and P.M. (2002).CWTndler,Semidwarf(sd-1),"green revolution" rice, con tains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci U S A,99 (13):p.9043-8.
    Stengel, A., Benz, P., Balsera, M., Soll, J., and Bolter, B. (2008). TIC62 redox-regulated translocon composition and dynamics. J Biol Chem 283,6656-6667.
    Strittmatter, G., and Kossel, H. (1984). Cotranscription and processing of 23S,4.5S and 5S rRNA in chloroplasts from Zea mays. Nucleic Acids Res 12,7633-7647.
    Sugimoto, H., Kusumi, K., Noguchi, K., Yano, M., Yoshimura, A., and Iba, K. (2007). The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J 52,512-527.
    Sugimoto, H., Kusumi, K., Tozawa, Y., Yazaki, J., Kishimoto, N., Kikuchi, S., and Iba, K. (2004). The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45,985-996.
    Surya Kant, Yong-Mei Bi, Tong Zhu, and Steven J. Rothstein (2009), SAUR39, a Small Auxin-Up RNA Gene, Acts as a Negative Regulator of Auxin Synthesis and Transport in Rice; Plant Physiology, October 2009, Vol.151, pp.691-701
    Takashi Sazuka, et. (2009) A rice tryptopWTn deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos [J] The Plant Journal, 60(2):227-241
    Takashi Sazuka;Noriko Kamiya;Takeshi Nishimura;Kozue Ohmae;Yutaka Sato;Kohei lmamura;Yasuo Nagato;Tomokazu Koshiba;Yoshiaki Nagamura;Motoyuki Ashikari;Hidemi Kitano;Makoto Matsuoka (2009).A rice tryptopWTn deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos The Plant Journal,60(2):227-241
    Takeuchi, R., Kimura, S., Saotome, A., and Sakaguchi, K. (2007). Biochemical properties of a plastidial DNA polymerase of rice. Plant Mol Biol 64,601-611.
    Tobena-Santamaria,R.,Bliek,M.,Ljung,K.,Sandberg,G.,Mol,J.N.,Souer,E.,and Koes,R.(2002),FLOOZY of Petunia is aflavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev.16,753-763.
    Tomotsugu Arite;Mikihisa UmeWTra;Shinji Ishikawa;Atsushi WTnada;Masahiko Maekawa;Shinjiro Yamaguchi;Junko Kyozuka (2009).d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers Plant and Cell Physiology,50(8):1416-1424
    Uwer, U., Willmitzer, L., and Altmann, T. (1998). Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development. Plant Cell 10,1277-1294.
    VitWT, S., McAndrew, R.S., and Osteryoung, K.W. (2001). FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153,111-120.
    W right,A D, M oehlenkam p,C.A.,Perrot,G.H.,Neufer,M.G.,and Cone,K.C.(1992). The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptopWTn syntWTse beta. Plant Cell4,711-719.
    Wallas, T.R., Smith, M.D., Sanchez-Nieto, S., and Schnell, D.J. (2003). The roles of toc34 and toc75 in targeting the toc159 preprotein receptor to chloroplasts. J Biol Chem 278,44289-44297.
    Wang, Y., Duby, G., Purnelle, B., and Boutry, M. (2000). Tobacco VDL gene encodes a plastid DEAD box RNA helicase and is involved in chloroplast differentiation and plant morphogenesis. Plant Cell 12, 2129-2142.
    Weber, A.P., Schwacke, R., and Flugge, U.I. (2005). Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56,133-164.
    Weijiang Luan;Yuqin Liu;Fengxia Zhang;Yuanli Song;Zhengying Wang;Yongkang Peng;Zongxiu Sun (2010),OsCD1 encodes a putative member of the cellulose syntWTse-like D sub-family and is essential for rice plant architecture and growth Plant Biotechnology Journal,2010,
    Woodward, A., W.,andBartel,B.(2005).Auxin:regulation,action,andinteraction.Ann.Bot.(Lond)95,707-735.
    Wright A D, Sampson M B, Neuffer M G, MicTlczuk L,Slovin J P, Cohen J D. (1991) Indole-3-acetic acid biosynthesis in themutant maize orange pericarp,a tryptopen auxotroph.Science,254:998-1000
    Yaling Song; Jun You; Lizhong Xiong (2009) Tracterization of OslAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormoneresponses and plant morphogenesis. Plant Molecular Biology,70(3):297-309
    Yongqing Jiao;Yonghong Wang;Dawei Xue;Jing Wang;Meixian Yan;Guifu Liu;Guojun Dong;Dali Zeng;Zefu Lu;Xudong Zhu;Qian Qian;Jiayang Li (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice,Nature Genetics,42(6):541-544
    Young, M.E., Keegstra, K., and Froehlich, J.E. (1999). GTP promotes the formation of early-import intermediates but is not required during the translocation step of protein import into chloroplasts. Plant Physiol 121,237-244.
    Zhang, M., Zhang, B., Qian, Q., Yu, Y., Li, R., Zhang, J., Liu, X., Zeng, D., Li, J., and Zhou, Y. (2010). Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J 63,312-328.
    Zhao,Y.,Christensen,S.K.,Fankauser,C.,Cashman.J.R.,Cohen,J.D.,W eigel,D.,and Chory,J.(2001).A role for flavin monooxygenase like enzymes in auxin biosynthesis. Science 291,306-309.
    Zhao,Y.,Hull,A.K.,Gupta, N.R., Goss,K.A.,Alonso,J.,Ecker,J.,R.,Normanly,J.,Chory,J.,and Celenza,J.L. (2002).Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP79B2 and CYP79B3.Genes Dev.16,3100-3112.