聚酰胺聚醚有机硅三元共聚型锦纶织物亲水柔软整理剂的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锦纶纤维分子结构含有众多亲水酰胺基团,但结晶度相对高,无定形区相对较少,因此锦纶纤维亲水性差。为此,有必要对锦纶织物进行亲水改性。锦纶纤维后整理亲水改性是一种较为简便和有效的方法之一。目前锦纶后整理亲水改性多数采用几种亲水组分混合而成的亲水整理剂或者水溶性聚醚改性硅油对其进行整理,然而存在着整理织物手感不良或者亲水耐洗性差等缺陷。
     为此,本论文采用聚醚和丁二酸酐为原料,通过单酯化反应合成双端羧基聚乙二醇(CT-PEG),替代部分己二酸与己二胺缩合,合成一种聚酰胺聚醚共聚型锦纶织物亲水整理剂。在此基础上,再采用双端氨基聚醚硅油(di-APEMS)功能性单体对聚酰胺聚醚共聚型亲水整理剂改性,合成聚酰胺聚醚有机硅共聚型多功能锦纶织物亲水整理剂AGS,期望通过AGS分子中引入聚酰胺链段与锦纶纤维发生熔融共晶作用,来提高整理剂的亲水耐洗性,通过AGS分子中引入聚醚,赋予整理剂亲水性。同时,引入有机硅链段,改善了整理剂整理织物手感,从而解决传统亲水整理剂所带来的不良缺陷。本论文具体内容和结果如下:
     第一部分单酯化法合成双端羧基聚乙二醇CT-PEG及其表征:本部分采用分子量1500的聚乙二醇(PEG)和丁二酸酐(SA)为原料,甲苯为反应性溶剂,通过酯化反应合成双端羧基改性聚乙二醇(CT-PEG)。研究了单酯化反应各因素对双端羧基改性聚乙二醇转化率影响,优化了双端羧基聚乙二醇合成的工艺条件,并采用傅里叶红外(FTIR-ATR)、核磁(1H-NMR)分析表征了双端羧基改性聚乙二醇的结构,采用热重分析仪(TG-DTG)测试了双端羧基改性聚乙二醇的热稳定性。结果表明:双端羧基改性聚乙二醇最优化合成条件为:丁二酸酐与聚乙二醇的物料摩尔比为2.5:1,反应温度110℃,反应时间70min,溶剂为甲苯。傅里叶红外(FTIR-ATR)、核磁(1H-NMR)分析证实了合成物的双端羧基聚乙二醇结构,双端羧基改性聚乙二醇具有一定的热稳定性。
     第二部分聚酰胺聚醚有机硅三元共聚型锦纶多功能亲水柔软整理剂AGS的制备、表征和物化性能研究:本部分以己二胺(HAD)、己二酸(AA)和双端羧基聚乙二醇(CT-PEG,1700)为原料,采用熔融缩聚反应合成了聚酰胺聚醚二元嵌段共聚物锦纶织物亲水整理剂AG。研究了缩聚反应各因素对整理剂AG整理效果的影响,优化了合成工艺条件;并在AG优化后工艺的基础上,以双端氨基聚醚硅油(di-APEMS)作为功能性单体对AG进行改性,制备了聚酰胺聚醚有机硅三元嵌段结构的多功能亲水柔软整理剂AGS。研究了di-APEMS添加量对整理剂AGS结晶度、亲水性及柔软性的影响,优化了合成工艺条件。实验采用了傅里叶红外光谱仪(FTIR-ATR)分析了其结构,用凝胶渗透色谱(GPC)测定了其分子量以及利用X射线衍射仪(XRD)、热重分析仪(TG)对整理剂AGS的结晶度和耐热稳定性进行了测试分析。结果表明:整理剂AG的合成最佳工艺为:缩聚温度为240℃,n(AA)/n(HDA)/n(CT-PEG)物料配比为1:3:1,缩聚反应时间为2.5h,真空度保持在0.04MPa。当(n(di-APEMS)/n(CT-PEG))摩尔比为0.2:1时,整理剂具有聚酰胺聚醚有机硅三元嵌段结构特征,数均分子量Mn为27124,具有良好的热稳定性,呈现非结晶型聚合物特性,具有较好的水溶性,呈现表面活性,其浊点为78℃,表面张力(CMC为0.9g/L的水溶液)为20.60mN/cm。
     第三部分多功能亲水柔软整理剂AGS应用工艺及性能的研究:本部分采用了浸渍法对锦纶织物进行了整理,研究了各整理工艺因素对织物的亲水性能影响,优化了多功能亲水整理剂AGS的整理工艺条件,测试了AGS整理锦纶织物的亲水性、耐洗性、抗静电性和手感,并与聚醚硅油和国外相关产品常规亲水整理剂进行了比较。考察了整理剂AGS对锦纶织物的适用性。实验结果表明:AGS整理锦纶织物优化工艺条件为:整理剂AGS用量2.5g/L,焙烘温度170℃,焙烘时间30s。与其它亲水整理剂相比,AGS具有良好的亲水、抗静电性和柔软性能,同时具有良好的耐久性。
     论文研究表明以己二酸、己二胺和自制的双端羧基聚乙二醇为原料,采用双端氨基聚醚硅油(di-APEMS)为功能性改性单体对聚酰胺聚醚亲水整理剂进行改性制备的聚酰胺聚醚有机硅三元嵌段共聚型锦纶织物多功能亲水整理剂AGS,其整理锦纶织物具有较好的亲水性以及一定的柔软性和抗静电性,同时具有一定的耐洗水平,较好地解决了一般亲水整理剂耐洗性差以及织物手感欠佳等问题,是一种理想的锦纶织物多功能亲水整理剂。
In the molecule structure of polyamide fiber,there are many hydrophilic amide groups, butthe crystallinity of fiber was relatively high and the amorphous area of fiber was relativelysmall, therefore the hydrophilicity of polyamide fiber was poor. Therefore, it is necessary tomodify the fiber with hydrophilic method. Hydrophilic modification for polyamide fiber in thefinishing process has been demonstrated as a feasible and effective way. At present, mosthydrophilic modification adopt several hydrophilic compounds mixed or water-solublepolyether modified polysiloxane to finish polyamide fiber. However, there are some defectslike poor washing resistance of hydrophilicity and harsh handle after finishing of polyamidefabrics with the finishing agents.
     In view of this,a kind of polyamide-polyether block copolymer hydrophilic finishingagent (AG) for polyamide fabrics was synthesized by polycondensation reaction with adipicacid, hexamethylene diamine and carboxylic-terminated polyethylene glyco(lCT-PEG)whichwas prepared by mono esterification with polyethylene glycol and succinic anhydride as rawmaterials. On this basis, polyamide-polyether-organic silicon block copolymermulti-functional hydrophilic finishing AGS for polyamide fabrics was synthesized bycopolymerization modification of polyamide-polyether block copolymer hydrophilic finishingagent with functional monomer of amine-terminated polyether modified polysiloxanedi-APEMS). Furthermore, it hopes to improve the hydrophilicity of AGS by introducingpolyethylene glycol segments into the molecule of AGS, to improve the washing durability ofhydrophilicity of AGS by introducing polyamide segments into the molecule of AGS, and toimprove the handle of finished fabric by introducing polysiloxane segments into the moleculeof AGS, then to solve the deficiencies which being brought by traditional finishing agent.Specific research content and its results of this thesis are as follows:
     Part one: Preparation of carboxylic-terminated polyethylene glycol by mono esterificationand its characterization.
     In this part, Carboxylic-terminated polyethylene glycol(CT-PEG)was prepared by monoesterification with polyethylene glycol(PEG,Mn=1500)and succinic anhydride (SA)asmonomers in toluene solvent. The effects of factors of mono esterification on the reactionconversion were studied, and the esterification conditions were optimized. The structure ofcarboxylic-terminated polyethylene glycol was characterized with FTIR and1H-NMR, and itsthermal property was tested by TG. The results indicated that the optimum esterificationreaction conditions were that the mole ratio of succinic anhydride and polyethylene glycol was2.5:1, the reaction temperature was110℃, reaction time was70min, the toluene was used asthe system solvent and not any catalyst need to be used. the molecular structure ofcarboxylic-terminated polyethylene glycol was determined by Fourier transform infrared(FTIR)and proton-nuclear magnetic resonance(1H-NMR), and polyethylene glycol aftermodified possesses better thermal stability.
     Part two: Studies on the preparation of multi-functional hydrophilic and soft finishingagent AGS,its characterization and properties
     In this part, Polyamide-polyether block copolymer hydrophilic finishing AG forpolyamide fabrics was synthesized by polycondensation at melt phase with hexamethylenediamine(HAD), adipic acid(AA)and carboxylic-terminated polyethylene glycol(CT-PEG)as raw materials. The influences of several key factors of polycondensation on hydrophilicityof AG were studied and then synthesis conditions of AG were optimized. On the optimumsynthesis conditions, AG was modified by amine-terminated polyether modifiedpolysiloxane(di-APEMS) to prepare polyamide-polyether-organic silicon block copolymermulti-functional hydrophilic and soft finishing AGS. The influence of amount of di-APEMSon solubility in water,softness, hydrophilicity and its durable-washing of AGS were studiedand then synthesis conditions of AGS were optimized. Molecular structure of AGS wasanalyzed by infra-red spectrometer (FTIR), molecular weight and its distribution,crystallization degree and thermal characteristic of AGS were determined respectively by gelchromatography instrument(GPC), X-Ray diffraction (XRD) and gravitational thermalanalysis instrument(TG). The results indicate that optimum synthesis conditions of AG are asfollows: mole ratio of adipic acid, hexamethylene diamine and carboxylic-terminatedpolyethylene glycol is1:3:1, the polycondensation temperature is240℃, the polycondensation time is2.5h and vacuum degree of condensation reaction is0.04MPa. when mole ratio ofdi-APEMS and CT-PEG was0.2:1,the averaged molecular weights(Mn) of AGS was27124,the thermal property of AGS was good, AGS was non-crystalline with good water-solubility,shows surface active nature, with78℃of cloud points and20.60mN/cm of surface tension,and0.9g/L of critical micelle concentration(CMC)..
     Part three: Research on application technology of multifunctional hydrophilic and softfinishing agent AGS and its properties.
     In this part, the influences of these factors such as dosage of AGS, curing temperature andcuring time on hydrophilicity of AGS were studied, the pad finishing process conditions ofmultifunctional hydrophilic AGS was optimized. Hydrophilicity,its washability,antistaticproperty and handle of AGS were measured. Compared with polyether modified polysiloxaneand the foreign same kind hydrophilic finishing agent, the fitnesses for polyamide fabric ofAGS were evaluated. The results indicate that optimal pad finishing process of AGS are asfollows: dosage of AGS is2.5g/L, baking temperature is170℃and baking time is30s.Compared with the other finishing agent, AGS not only has good hydrophilicity and antistaticproperty,but also favorable handle with durable-washing properties.
     The results of this thesis showed that polyamide-polyether-organosilicon block copolymermultifunctional hydrophilic finishing agent AGS was synthesized by copolymerization withamine-terminated hydrosilation(di-APEMS)and hexamethylene diamine(HAD), adipic acid(AA)and carboxylic-terminated polyethylene glyco(lCT-PEG)which was prepared by monoesterification with polyethylene glycol and succinic anhydride as raw materials. The AGS havegood hydrophilicity, handle, antistatic property and durable-washing properties. Thus, thefinishing agent AGS can solve the problem of poor washing resistance and harsh handle in acertain extent, which is a kind of multifunctional hydrophilic finishing agent for polyamidefabrics.
引文
[1]蔡再生.纤维化学与物理[M].北京:中国纺织出版社,2004.267-269
    [2]沈阳化工研完院染抖情报组.国外锦纶及锦纶用染料发展概况[J].染料与染色.1975(6).
    [3]顾利霞刘兆峰等.亲水性纤维[M].北京:中国石化出版社,1997.206-207.
    [4]高称意.锦纶纤维特性及纤维骨架材料的发展[J].中国橡胶,2004,(20):20-24.
    [5] W.O. Ney,W.R. Nummy, C.E. Barnes. Polymers from pyrrolidone[P].U.S.P.2638463(1953).
    [6] G.L.Woo,P.H.Parker,S.Rafael.Stabilized polypyrrolidone composition[P].U.S.P.4383065(1983).
    [7]张国胜,李勇进颜德岳.新型尼龙214,414,614,814,1014和1214的合成与表征[J].化学学报,2002,11:78-82.
    [8] D.S.Breslow,et al. Biologically active synthetic polymers[J]. Pure Appl Chem,1976:103-113.
    [9]赵清香,王玉东等.尼龙66纤维与丙烯酸的接枝共聚反应研究[J].高分子材料科学与工程,1998,14(4):46-49.
    [9]顾丽霞,等.亲水性纤维[M].北京:中国石化出版社,1997:90-100.
    [10] B.J. Spalding. Encapsulated pigment for Latex Paint [J].Chemical Week,1985,136(18):40.
    [11] K.Kajiwara,王妮.日本的高性能新纤维[J].国外纺织技术,2001,11:1-9.
    [12] R. A. Lofquist. Hydrophilic Nylon for Improved Apparel Comfort[J]. Textile Research Journal.1985,55(6):325.
    [13]魏腾芳,何文岳等.含咪唑盐的尼龙共聚合物[P]. CN:1814649A,2006.
    [14]木下直之,加藤哲也,泽井由美子.高吸湿性聚酰胺纤维、它的制造方法和用途[P].CN:1167844A,1997.
    [15]赵建青,张世杰.一种吸湿改性剂及其制备方法与在锦纶纤维中的应用[P]. CN:1743516A,2006.
    [16]叶美明.锦纶吸湿排汗纤维的生产方法和产品[P].CN:101158056A,2008.
    [17]宁佐龙,缪国华.一种吸湿聚酰胺6纤维及其制作方法[P]. CN:101195934A,2008.
    [18] JP,80-116811.
    [19]蔡兵等.离子体处理对非织造布表面润湿性的效应[J].非织造布,1998,(4):20~22.
    [20] BY Ji-Yun Kang. Plasma Treatment of Textiles-Synthetic Polymer-Based Textiles[J]. AATCCREVIEW,2004,4(11):29-32.
    [21] M.G.McCord,Y.J.Hwang,P.J.Hauser,Y.Qiu, J.J.Cuomo. Modifying Nylon and Polypropylene Fabricswith Atmospheric Pressure Plasmas [J]. Textile Res.J,2002,72(6):491-498.
    [22]吕立斌,王春霞,邱夷平.常压等离子体处理对锦纶6纤维性能的影响[J].纺织学报,2009,11(30):93-98.
    [23] Anthony Julian East, WendyDenise Thackray. Polymeric compositions containing polyesters,polyamides and polyethers[P]. NLP,6608121,1966,12,12.
    [24]张世杰,庞纯,杨得志,赵建青.吸湿性PA6/PEG共混物的研究(英文)[J].合成橡胶工业,2003,(01):40.
    [25]韦军,朱亚伟,彭桃芝.涤纶织物的碱减量和功能性整理[J].丝绸,2002(8):17-28.
    [26]董永春.织物亲水整理剂及其应用[J].广西纺织科技,1992(21):10-14.
    [27]王胜.水溶性有机硅的聚氨酯的改性初探[J].印染助剂,1999,16(3):56-59.
    [28]杨栋梁.亲水整理剂(2)[J].印染,1985(2):9-14.
    [29]王雅珍.聚酯纤维的改性[J].合成纤维,1998(3):9-14.
    [30]董建朋,陈金辉,戴霞等.涤纶织物耐久性多功能亲水整理剂的合成及应用性能研究[J].印染助剂,2009,26(02):12-15.
    [31]胡欢鸟,林鹤鸣,吴明华.聚酯聚醚嵌段共聚型亲水整理剂PPBC的应用研究[J].浙江理工大学学报,2007,24(02):134-138.
    [32]崔永珠,周全凯,夏建明等.聚酯纤维耐久性多功能整理剂的研制及应用[J].印染,2006,12:5-8.
    [33]吴明华,胡欢鸟,林鹤鸣.影响聚酯聚醚嵌段共聚型整理剂亲水性的因素[J].功能高分子学报,2007,19(01):64-67.
    [34]陈光杰,蔡再生.聚醚酯型抗静电整理剂的研究[J].合成纤维工业,2005,28(02):33-35.
    [35]尹宇,王春梅.聚酯聚醚亲水抗静电剂的合成研究[J].染料与染色,2004,41(04):229-233.
    [36]贺宝元,贾顺田,魏单.亲水性非离子型抗静电剂的合成及应用性能研究[J].印染助剂,2006,23(10):31-33.
    [37]王敏哲,吴明华,林鹤鸣.亲水易去污整理剂LW应用性能的研究[J].浙江理工大学学报,2008,25(01):19-23.
    [38]陈光杰,蔡再生.聚醚酯抗静电剂合成工艺的优选及其应用[J].广西纺织技,2004,28-30.
    [39]魏赛男,党宁,吴焕领等.涤纶亲水后整理的现状[J].合成纤维工业,2007,30(06):47-49.
    [41]谭剑,杨绍军,胡毅等.丙纶亲水整理剂的制备及应用[J].印染,2009,6:1-4.
    [42]周向东,李纯清.封端型水系聚氨酯抗静电剂的研制及应用[J].纺织学报,2003,24(4):13-15.
    [43] Knott W, Landers R Windbiel D. Process for preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalky-leneblock copolymers: US,20070049717A1[P],2007,03,01.
    [44]安秋凤,路德待,黄良仙.生态织物整理剂—聚醚/氨基硅油的性能研究[J].印染助剂,2004,21(1):18-22.
    [45]范艳苹,贺江,李杰等.亲水性有机硅柔软剂的合成及应用研究[J].染整技术,2006,28(2):33-36.
    [46] J.C.Lark,St Charles. Hydrophilic finishing process for hydrophobic fibers[P].U.S.P.4073993(1978).
    [47]彭锦荣,谭英伟,严玉蓉.芳香族聚酰胺纤维功能化改性[J].合成材料老化与应用,2007,2:40-43.
    [48]白桂捷.亲水性聚酰胺纤维[J].合成纤维,1989,01:49-56.
    [1]李先红,崔萍,刘榛榛.双端羧基聚乙二醇的合成[J].化学与生物工程,2005,(10):42-43.
    [2] Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules[J]. AdvDrug Deliv Rew,1995,16(2):157-182
    [3] Zalipsky S, Gilon C, Zilkha A. Attachment of drugs to polyethylene glycols[J]. Eur Polym J,1983,19(12):1177-1183.
    [4] Zalipsky S, Chang JL, Albericio F, et al. Preparation and applications of polyethyleneglycol-polystyrene graft resin supports for solid-phase peptide-synthesis[J]. React Polym,1994,22:243-258.
    [5]杨保珍,张天民,王树歧.聚乙二醇修饰超氧化物歧化酶的研究[J].药物生化技术,1998,5(l):12-16.
    [6]董炎明.高分子材料实用剖析技术[M].北京:中国石化出版社,1997:80-81.
    [7]蔡振云,魏巍.乙二醇与马来酸酐酯化反应的研究[J].浙江化工,2006,37(9):3-5.
    [8]马保国,潘伟.马来酸双聚乙二醇单甲醚酯合成影响因素分析[J].武汉理工大学学报,2008,30(1):44-47.
    [9]陈志明,胡广群,邵利.聚醚与马来酸酐的缩合反应研究[J].化学反应工程与工艺,2001,17(2):192-196.
    [10]廖白霞,李玉泉,李银奎.乙二醇及聚乙二醇的酯化反应研究[J].高分子学报,1992(01):34-41
    [11] Bernard Taub,N.Y.Buffalo. Rapid-curing epoxy resin compositions and method of making[P].U.S.P.3036975(1962).
    [12] Ning R Y,Madan P B,Sternbach L H.Quinazolines and1,4-benzodiazepines. LXI. Syntheses of7-Acetyl-1,4-benzodiazepines.[J]Heterocycl Chem,1974,11:107
    [13]董炎明.高分子手册[M].北京:中国石化出版社.2004,3:93.
    [14]蔡振云,魏巍.乙二醇与马来酸酐酯化反应的研究[J].浙江化工,2006,37(9):3-5.
    [15]宋智博.聚醚酯热塑性弹性体合成[D].北京化工大学博士论文,2008,6:68-69.
    [16]赵路军,胡望明.甲基乙烯基醚/马来酸酐共聚物的合成及表征[J].浙江大学学报(工学版),2005,39(7):1082-1085.
    [17]覃超国,李湘.甲基丙烯酸聚乙二醇(400)单酯的合成研究[J].广东化工,2007,34(8):16-19.
    [18]张夏虹,陈龙等.傅立叶变换红外光谱法研究马来酸酐与聚乙二醇酯化反应[J].华南港工,2008,111(2):10-12.
    [19]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].上海:科学技术文献出版社,1994,12:320-326.
    [20]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989,7(1):152-158.
    [1]蔡再生.纤维化学与物理[M].北京:中国纺织出版社,2004.267-269
    [2]沈阳化工研完院染料情报组.国外锦纶及锦纶用染料发展概况[J].染料与染色.1975(6).
    [3]叶美明.锦纶吸湿排汗纤维的生产方法和产品[P].CN:101158056A,2008.
    [4] M.G.McCord,Y.J.Hwang,P.J.Hauser,Y.Qiu, J.J.Cuomo. Modifying Nylon and Polypropylene Fabrics withAtmospheric Pressure Plasmas [J]. Textile Res.J,2002,72(6):491-498
    [5]贺宝元,贾顺田,魏单.亲水性非离子型抗静电剂的合成及应用性能研究[J].印染助剂,2006,23(10):31-33.
    [6]黄正强.双端氨基聚乙二醇的制备及尼龙1212/聚乙二醇嵌段共聚物的合成[D].郑州大学,2007.
    [7]陈荣圻.低黄变和亲水性氨基聚二甲基硅氧烷的开发.[J].有机硅材料,2006,20(3):138~143.
    [8]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2002.10:194
    [9]孙楠,沈勇等.聚酯织物吸湿排汗亲水整理工艺的研究[J].上海纺织科技,2004,32(2):101-104.
    [10]宋吉清,赵恒迎.吸湿排汗涤纶织物的亲水整理探讨[J].山东纺织科技,2004(5):89-94.
    [11]钱平,王深喜,袁晓峰等.DP系列合成纤维亲水整理剂[J].印染,2004(8):12-14.
    [12]尹宇,王春梅.涤纶织物亲水抗静电剂的合成[J].染料助剂,2005,22(2):15-20.
    [13]陈稀,付波涛,王依民,等.聚酯聚醚系列嵌段共聚物结晶性能的研究[J].中国纺织大学学报,1991,17(3):9-15.
    [14]潘祖仁.高分子化学(第二版)[M].北京:化学工业出版社,2003.6-10.
    [15]赵德仁,张慰盛.高聚物合成工艺学[M].北京:化学工业出版社,2009.110-116.
    [16]陈稀,付波涛,王依民,等.聚酯聚醚系列嵌段共聚物动态力学性质的研究[J].中国纺织大学学报,1992,2(3):21-23.
    [17]肖为维,陈明生.聚酯聚醚嵌段共聚物的合成及抗静电性能研究[J].高分子材料科学与程,1994,5(3):20-25.
    [18]吴玉萍,罗红林.聚酯聚醚嵌段共聚酯的合成及性能研究[J].江西教育学院学报,2001,22(6):11-14.
    [19]陈峰.水溶性聚酯的合成与表征[D].青岛大学硕士论文,2004,4:26-27.
    [20]宋密钊.聚甲基氢硅氧烷的改性及其性能研究[D].四川大学博士论文,2004.4.20:3-4
    [21]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].上海:科学技术文献出版社,1994,12:320-326.
    [22]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989,7(1):152-158.
    [1]徐迪方,罗巨涛,杨兴明,项丽萍.亲水性氨基硅油的制备及应用[J].有机硅材料,2004,18(4):13~17.
    [2]阎克路.染整工艺学教程[M].第一分册,北京:中国纺织出版社,2005.9:299-301,380.
    [3]陈荣圻.低黄变和亲水性氨基聚二甲基硅氧烷的开发[J].有机硅材料,2006,20(3):138~143.