重组对虾素3-2微胶囊制备及释放特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重组抗菌是一类利用基因工程的方法生产的小分子多,具有分子量小、热稳定好、广谱抗菌活性,被认为是解决病原微生物对抗生素不断增强的抗性问题的很好选择。水产动物的养殖特点决定了该类物质的应用一般只能进行口服给药,由于蛋白类药物普遍存在半衰期短、易被体内酶降解等问题,在口服给药体系中受到极大的限制,人们通常采用可以对药物进行控/缓释作用的微胶囊化技术解决上述问题。
     本研究对重组表达的对虾素3-2进行亲和层析纯化,以海藻酸钠为壁材,采用凝聚法制备了重组抗菌-海藻酸钠微囊,以微囊的形态和包封率为指标优化制备工艺,对制备的微囊进行体外释放特征的初步研究。结果显示,在氯化钙浓度为1.5%,海藻酸钠浓度为2.0%时,制备的微囊为完整的球形,冷冻干燥后的直径约为1.1mm,包封率为83.87%。微囊在模拟胃液(pH2.0)中2h左右释放量趋于稳定,释放量低于14%;微囊在模拟肠液(pH7.8)中不断释放,5h时释放量达98%,表明微囊具有良好的肠溶性而可以抵抗胃液的破坏,可以用作重组抗菌缓释/控释制剂,为抗菌在水产病害防治过程的口服给药提供实验基础。
     将制备的重组抗菌-海藻酸钠微囊口服给药罗非鱼,另设特异性饲料组和空白对照组,连续投喂20d后取其肝脏、胃、肠道、血清和肌肉组织,利用Western Blot技术检测样品中是否含有重组抗菌。结果发现,空白对照组各样品均未检测到目的蛋白,而特异性饲料组和海藻酸钠微囊组也未发现重组抗菌。重组抗菌的口服导入及检测技术还有待于深入研究。
     以纯化的重组抗菌为模型蛋白,乳酸/羟乙酸共聚物(PLGA)为载体,采用复乳溶剂挥发法制备重组抗菌-PLGA微球,通过正交化设计法对微球制备的7种因素进行优化,以粒径、包封率及24h释放率为观察指标。结果发现,在重组抗菌的浓度为10mg,PLGA用量200mg,PVA浓度为1%,初乳超声功率100W,复乳超声功率为100W,PEG用量为5%,氯化钠的浓度为5%的条件下制备的重组抗菌-PLGA微球,SEM下具有光滑的表面且形态规整,大部分微球粒径集中在3μm左右,但微囊的包封率都比较低。
Recombinant antimicrobial peptide is a kind of minor polypeptides produced through genetic engineering method. Due to their small molecular weight, heat stability, broad-spectrum of antimicrobial activities, the AMP were considered to be excellent candidates for potential novel antibiotic agents. This protein drugs should be generally delivered by oral approach for the aquaculture characteristics. However the clinic applications through oral delivery systems are still not successful for most of them because of their short half-life resulting from acid-catalytic or proteolytic degradation in the gastrointestinal tracts. A potential solution is microencapsulation through which the protein drugs are encapsulated, preventing from the degradation, and releasing in sustained and controlled manners.
     In this paper, the recombinant antimicrobial peptides (penaeidin 3-2) were purified with affinity chromatography, and recombinant antimicrobial peptides sodium alginate microcapsules were prepared by using coacervation technology. The morphology and encapsulation rate were introduced as indexes of microcapsules formulation. Afterward, in vitro releasing characteristics of the optimal microcapsules was investigated. The results showed that the microcapsules with a diameter of 1.1mm and an encapsulation rate of 83.87% were prepared when the concentrations of calcium chloride and sodium alginate were 1.5% and 2.0%, respectively. The releasing rate of recombinant AMP after standing for 2 h in simulated gastric fluid (pH2.0) was less than 14%. However, after standing in simulated intestinal fluid (PH7.8) for 5 h, the releasing rate of recombinant AMP reached 98%.Which indicated that the intestinal-lysis microcapsules have the potential to be used as sustained-release and controlled-release preparations, providing the experimental basis for oral drug delivery system in aquaculture.
     Recombinant antimicrobial peptides-sodium alginate microcapsules were orally given to Tilapia and fishes in the control groups were given with special and ordinary forage.20d after that liver, stomach, intestine, sera and muscle were analyzed by Western Blot. The recombinant AMP was not discovered in simples of all groups. In this case, the oral administration of recombinant AMP still need to be further researched.
     Using purified recombinant AMP as model protein and PLGA as controlled-release carrier, recombinant AMP-PLGA microspheres were prepared by W/O/W multiple emulsion volatilizing method. Using entrapment efficiency, particle size, and 24h-release amount as the evaluating indicators, we optimized the 7 factors that influenced the preparation technique for microspheres by orthogonal factorization method. The morphology was investigated using scanning electron microscope(SEM) .The results showed that the microspheres seemed to be smooth and uniform with mean particle size of 3μm under conditions of recombinant AMP of 10 mg, PLGA of 200 mg, 1%PVA, ultrasonic power of 100 W, 5%PEG, 10%NaCl. However, the encapsulation efficiency of microspheres was only 10%.
引文
[1]吴淑勤.加强水产养殖病害防治保障水产养殖业可持续发展[J].中国水产, 2006, 1: 13-14.
    [2]曾令兵.我国水产养殖动物病害的现状及发展方向[J].科学养鱼, 2010, 3: 1-3.
    [3] Boman H G. Antibacterial Peptides - Key Components Needed in Immunity [J]. Cell, 1991, 65(2): 205-207.
    [4]崔艳红,黄现青.抗菌的抗菌机理及其应用[J].中国兽医杂志, 2006, 42(9): 51-52.
    [5]汪以真,韩新燕,等.哺乳动物抗菌及其在畜牧生产上的应用前景[J].中国畜牧杂志, 2002, 38(4): 52-54.
    [6] Boman H. Cecropins: antibacterial peptides from insects and pigs [J]. Phylogenetic perspectives in immunity: the insect host defense, 1994, 3-17.
    [7] Bevins C, Zasloff M. Peptides from frog skin [J]. Annual review of biochemistry, 1990, 59(1): 395-414.
    [8]温刘发,黄自然,黄达华等.新型饲料添加剂抗菌饲养肉猪的效果[J].广东蚕业, 2007, 41(1): 39-42.
    [9]黄自然,黄国庆,等.新型饲料添加剂抗菌养殖对虾的效果[J].广东蚕业, 2006, 40(3): 23-28.
    [10]黄自然,黄国庆,黄水彤.新型饲料添加剂抗菌饲养肉鸡的效果[J].广东蚕业, 2006, 40(1): 30-34.
    [11] http://www.xumuren.cn/topic-huanglihui_04.html,
    [12] Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by a-helical antimicrobial and cell non-selective membrane-lytic peptides [J]. Biochim Biophys Acta, 1999, 1462(122): 55-70.
    [13] Christensen B, Fink J, Merrifield R B, et al. Channel-Forming Properties of Cecropins and Related Model Compounds Incorporated into Planar Lipid-Membranes [J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(14): 5072-5076.
    [14] Toke O. Antimicrobial peptides: New candidates in the fight against bacterial infections [J]. Biopolymers, 2005, 80(6): 717-735.
    [15] Epand R M, Vogel H J. Diversity of antimicrobial peptides and their mechanisms of action [J]. Biochimica Et Biophysica Acta-Biomembranes, 1999, 1462(1-2): 11-28.
    [16] Oren Z, Lerman J C, Gudmundsson G H, et al. Structure and organization of the humanantimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity [J]. Biochemical Journal, 1999, 341:501-513.
    [17]王云起,蔡继业,马淑媛等.抗菌magaininⅡ对E.coli杀伤作用的AFM观察[J].电子显微学报, 2006, 25(1): 52-56.
    [18] Zelezetsky I, Tossi A. Alpha-helical antimicrobial peptides - Using a sequence template to guide structure-activity relationship studies [J]. Biochimica Et Biophysica Acta-Biomembranes, 2006, 1758(9): 1436-1449.
    [19] Blondelle S E, Houghten R A. Hemolytic and Antimicrobial Activities of the 24 Individual Omission Analogs of Melittin [J]. Biochemistry, 1991, 30(19): 4671-4678.
    [20]赵亚华,刘霭珊,李日清等.蜂毒溶血作用机理研究进展[J].昆虫学报, 2007, 50(7): 737-744.
    [21] Fehlbaum P, Bulet P, Chernysh S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3): 1221-1225.
    [22] Harder J, Bartels J, Christophers E, et al. Human beta-defensin-3: Discovery of a novel skin-derived peptide antibiotic [J]. Journal of Investigative Dermatology, 2000, 115(3): 532-532.
    [23]王军,庞广昌.抗菌抗菌机理的研究现状及趋势[J].食品科学, 2005, 26(8): 526-529.
    [24] Park C B, Yi K S, Matsuzaki K, et al. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8245-8250.
    [25]温刘发,翁照南,等.抗菌酵母制剂的生产及其作饲料添加剂应用价值的探讨[J].广东蚕业, 2001, 35(2): 34-36.
    [26]卢宇,王素珍,王凯民.抗菌s807提高肉鸡生产性能的研究[J].广东畜牧兽医科技, 2010, 35(4): 17-20.
    [27]王秀青,朱明星,张爱君等.抗菌CecropinB对鸡生长发育及免疫功能的影响[J].宁夏医科大学学报, 2010, 32(1): 39-41,46.
    [28]王文道,王征.抗菌对肉鸡大肠杆菌病的影响[J].山东畜牧兽医, 2008, 3: 7-7.
    [29]何丹林,温刘发,邓春柳等.蚕抗菌ad-酵母制剂对粤黄鸡肠道消化酶和饲料品质的影响[J].中国家禽, 2004, 26(7): 9-10.
    [30]王素珍,卢宇,张宝康.抗菌s807提高仔猪生产性能的研究[J].中国猪业, 2007, 5(6): 44-45.
    [31]万遂如.抗菌在猪病防治中的应用[J].吉林畜牧兽医, 2007, 28(5): 24-25.
    [32]姜兰,黄自然,等.重组抗菌的制备及其对水产养殖中常见病原菌的抑菌效果[J].中国水产科学, 2002, 9(2): 152-156.
    [33]陈冰,曹俊明,陈平洁等.家蝇抗菌对凡纳滨对虾生长性能及免疫相关指标的影响[J].中国水产科学, 2010, 17(2): 258-266.
    [34]王广军,谢骏,余德光.抗菌蛋白在南美白对虾养殖中的应用试验[J].饲料工业, 2005, 26(8): 33-34.
    [35]黄自然,黄亚东,温刘发等.抗菌生物工程及其应用[J].蚕业科学, 2005, 31(004): 375-381.
    [36]李晓华,陶冉,孙杰.对虾抗菌的研究进展及其在水产养殖业的应用前景[J].安徽农业科学, 2009, 37(1): 167-168.
    [37]温刘发,翁照南,等.抗菌酵母制剂作为饲料添加剂的应用前景[J].中国饲料, 2001, 23: 22-23.
    [38]张杰.蛋白类药物海藻酸盐微胶囊的制备及体外释放行为的研究[D].大连;大连理工大学, 2007.
    [39] Eslami A, Hosseini S G, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles [J]. Progress in Organic Coatings, 2009, 65(2): 269-274.
    [40] Machluf M, Orsola A, Atala A. Controlled release of therapeutic agents: slow delivery and cell encapsulation [J]. World J Urol, 2000, 18(1): 80-83.
    [41] Ueda S, Yamaguchi H, Kotani M, et al. Development of a Novel Drug-Release System, Time-Controlled Explosion System (Tes) .2. Design of Multiparticulate Tes and in-Vitro Drug-Release Properties [J]. Chemical & Pharmaceutical Bulletin, 1994, 42(2): 359-363.
    [42] Lubbe a S, Bergemann C, Riess H, et al. Clinical experiences with magnetic drag targeting: A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors [J]. Cancer Research, 1996, 56(20): 4686-4693.
    [43] Grasdalen H, Larsen B, Smidsrod O. C-13-Nmr Studies of Monomeric Composition and Sequence in Alginate [J]. Carbohydrate Research, 1981, 89(2): 179-191.
    [44] Gombotz W R, Wee S F. Protein release from alginate matrices [J]. Advanced Drug Delivery Reviews, 1998, 31(3): 267-285.
    [45]李红兵.海藻酸作为新型药物转运载体的开发[J].高分子通报, 2006, 8: 39-43,69.
    [46] Tamura H, Tsuruta Y, Tokura S. Preparation of chitosan-coated alginate filament [J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002, 20(1-2): 143-147.
    [47] Ribeiro a J, Neufeld R J, Arnaud P, et al. Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres [J]. International Journal of Pharmaceutics, 1999, 187(1): 115-123.
    [48] Li X Y, Jin L J, Uzonna J E, et al. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY): In vivo evaluation in a pig model of enteric colibacillosis [J]. Veterinary Immunology and Immunopathology, 2009, 129(1-2): 132-136.
    [49] Li X Y, Jin L J, Lu Y N, et al. Chitosan-Alginate Microcapsules for Oral Delivery of Egg Yolk Immunoglobulin (IgY): Effects of Chitosan Concentration [J]. Applied Biochemistry and Biotechnology, 2009, 159(3): 778-787.
    [50] Cleland J L. Protein delivery from biodegradable microspheres [J]. Protein Delivery, 2002, 1-43.
    [51] Ohagan D T, Rahman D, Mcgee J P, et al. Biodegradable Microparticles as Controlled Release Antigen Delivery Systems [J]. Immunology, 1991, 73(2): 239-242.
    [52] Kranz H, Bodmeier R. A novel in situ forming drug delivery system for controlled parenteral drug delivery [J]. International Journal of Pharmaceutics, 2007, 332(1-2): 107-114.
    [53] Wei G, Pettway G J, Mccauley L K, et al. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. [J]. Journal of Bone and Mineral Research, 2003, 18:S164-S164.
    [54] Lam X M, Duenas E T, Daugherty a L, et al. Sustained release of recombinant human insulin-like growth factor-I for treatment of diabetes [J]. Journal of Controlled Release, 2000, 67(2-3): 281-292.
    [55] Coppi G, Iannuccelli V, Leo E, et al. Protein immobilization in crosslinked alginate microparticles [J]. Journal of Microencapsulation, 2002, 19(1): 37-44.
    [56] Coppi G, Iannuccelli V, Leo E, et al. Chitosan-alginate microparticles as a protein carrier [J]. Drug Development and Industrial Pharmacy, 2001, 27(5): 393-400.
    [57] Oliveira B F, Santana M H A, Re M I. Spray-dried chitosan microspheres cross-linked with D,L-glyceraldehyde as a potential drug delivery system: Preparation and characterization [J]. Brazilian Journal of Chemical Engineering, 2005, 22(3): 353-360.
    [58] Quaglia F, De Rosa G, Granata E, et al. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared byspray-drying [J]. Journal of Controlled Release, 2003, 86(2-3): 267-278.
    [59] Maa Y F, Nguyen P A, Sweeney T, et al. Protein inhalation powders: Spray drying vs spray freeze drying [J]. Pharmaceutical Research, 1999, 16(2): 249-254.
    [60] Costantino H R, Firouzabadian L, Wu C C, et al. Protein spray freeze drying. 2. Effect of formulation variables on particle size and stability [J]. Journal of Pharmaceutical Sciences, 2002, 91(2): 388-395.
    [61] Costantino H R, Firouzabadian L, Hogeland K, et al. Protein spray-freeze drying. Effect of atomization conditions on particle size and stability [J]. Pharmaceutical Research, 2000, 17(11): 1374-1383.
    [62]付加雷,宋长征,张更林.用壳聚糖/海藻酸钠制备干扰素-τ缓释微囊[J].生物技术通讯, 2007, 18(1): 93-94.
    [63] Wu-Qi Z. Controlled Release of Salidroside from Chitosan/Alginate Microsphere [J]. Journal of JiLin Agriculture University, 2006, 28(6): 687-693.
    [64] Yang Y Y, Chia H H, Chung T S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method [J]. Journal of Controlled Release, 2000, 69(1): 81-96.
    [65] Khoee S, Yaghoobian M. An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion [J]. European Journal of Medicinal Chemistry, 2009, 44(6): 2392-2399.
    [66]Janovsky C. Encapsulated Ingredients for the Baking Industry [J]. Cereal Foods World, 1993, 38(2): 85-87.
    [67] Jackson L S, Lee K. Microencapsulated Iron for Food Fortification [J]. Journal of Food Science, 1991, 56(4): 1047-1050.
    [68] Pedersen J L, Lilleso J, Hammer N A, et al. Bupivacaine in microcapsules prolongs analgesia after subcutaneous infiltration in humans: A dose-finding study [J]. Anesthesia and Analgesia, 2004, 99(3): 912-918.
    [69]黎满香,卢帅,刘坷等.重组表达抗菌Hadrurin抗菌活性分析[J].中国预防兽医学报, 2010, 3: 205-209.
    [70]高春凤,赵秀丽,李新刚等.雷公藤多苷提取物壳聚糖-海藻酸钠缓释微球的制备及体外释放研究[J].中国药剂学杂志(网络版), 2009, 7(5):382-390.
    [71]于钢,刘文波,等.海藻酸钠作纸用微囊壁材[J].中国造纸, 2001, 20(5): 29-32.
    [72] Ma G H, Zhang Y L, Wei W, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin [J]. European Journal of Pharmaceutics andBiopharmaceutics, 2011, 77(1): 11-19.
    [73] Bhattacharya S, Roopa B S. Alginate gels: I. Characterization of textural attributes [J]. Journal of Food Engineering, 2008, 85(1): 123-131.
    [74]贾云,戴传云,赵宏伟等.海藻酸钠微囊对蛋白质控制释放的分析[J].重庆大学学报:自然科学版, 2005, 28(10): 108-110.
    [75]曾明慧,曾志华,李瑛等.骨桥蛋白在涎腺肿瘤中的表达及临床意义[J].重庆医科大学学报, 2010, 35(008): 1138-1140.
    [76]李伟,陈松林.大菱鲆抗菌基因酵母表达载体的构建及表达[J].长江大学学报:农学卷, 2008, 5(4): 61-66.
    [77]仲燕,刘军华,张建鹏等.东海贻贝抗菌Myticin A基因的克隆表达及其生物学活性[J].第二军医大学学报, 2005, 26(1): 65-68.
    [78]李星星,冷向军,李小勤.不同诱食剂对异育银鲫,奥尼罗非鱼作用效果的研究[J].粮食与饲料工业, 2006, 11:37-39.
    [79]刘欣,郭星尧,韩亚等.海藻酸钠为囊材锐孔法制备铁叶绿酸钠微囊[J].现代食品科技, 2009, (9): 1043-1045,1015.
    [80] Pillay V, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract - II. Physicochemical characterization of calcium-alginate, calcium-pectinate and calcium-alginate-pectinate pellets [J]. Journal of Controlled Release, 1999, 59(2): 243-256.
    [81] Chan L W, Heng P W S, Wan L S C. Effect of cellulose derivatives on alginate microspheres prepared by emulsification [J]. Journal of Microencapsulation, 1997, 14(5): 545-555.
    [82]陈丽,姜代勋,任超等.猪磷酸二酯酶4b2的原核表达和活性鉴定[J].中国畜牧兽医, 2010,9: 70-74.
    [83]李荔,刘志刚,喻海琼等.一种新型鱼病口服疫苗的研制和示踪研究[J].热带医学杂志, 2006, 6(4): 382-384.
    [84]张小江,任燕,常藕琴等.斜带石斑鱼口服PELA-OmpK微球疫苗的示踪及免疫效果[J].中国水产科学, 2008, 15(5): 837-844.
    [85]曾晗冰,李万里,徐华梓等. BSA-PLGA缓释微球制备工艺的优化[J].实用医学杂志, 2009, 25(17): 2935-2938.
    [86]梅林,龙大宏,黄婉丹等.载牛血清蛋白的PLGA纳米粒制备工艺的优化及特性研究[J].解剖学研究,2010, 1: 1-5.
    [87]凌旭,张良珂,李攀等.硫酸长春新碱plga微囊的制备及体外释放性质研究[J].重庆医科大学学报, 2009, 34(12): 1696-1698.
    [88]辛鹏程,王炜,周秦武等.低频超声诱导改进的plga微囊药物释放的体外研究[J].中国康复理论与实践, 2009, 15(7): 687-690.
    [89]曹梅,管萍,胡小玲等. W/O/W复乳溶剂蒸发法制备微胶囊的影响因素及研究新进展[J].化学与生物工程, 2009, 26(9): 1-6,10.
    [90] Zhu Y Y, Zhang G Y, Hong X L, et al. Influence of emulsifiers on the synthesis of insulin-loaded nanocapsules in double emulsion [J]. Chinese Journal of Chemistry, 2006, 24(1): 109-113.