颜面赝复体粘接剂的研制与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颜面赝复体的固位主要有组织倒凹固位、机械固位、粘接固位和种植体固位等方式。目前常用的是种植体固位和粘接固位。种植体固位效果理想、取戴方便,患者满意度高,但因操作复杂、成本较高或其它原因致患者不能接受手术时,就不得不依赖粘接固位。粘接固位因其固位可靠,修复体制作技术较简单、价格低廉,故仍是临床上最常用且有效的方法之一。关于颜面赝复体粘接剂的研究,国外学者多关注市售产品的性能测试,然而,在国内这方面的研究尚属空白。
     就化学成分而言,传统的颜面赝复体粘接剂可分为两类,各有优缺点。其中,聚丙烯酸酯类粘接剂价廉,粘接强度较有机硅类低,皮肤上粘接剂容易残留且较难去除;有机硅类粘接剂粘接强度高,皮肤上残留少,但含有机溶剂具有潜在刺激性。聚有机硅氧烷具有优异的性能,如生理惰性、耐候性、低表面张力和低表面能等。利用有机硅对聚丙烯酸酯压敏胶进行改性成为研究热点之一,目前主要应用于涂料、粘接剂等工业生产。本课题旨在利用有机硅改性聚丙烯酸酯压敏胶,使其兼具两类传统粘接剂的优点,即有一定的内聚强度,与皮肤和硅橡胶粘接良好,皮肤残留少且容易去除,应用于硅橡胶赝复体的粘接。
     本课题采用正交分析试验对配方进行优选,通过乳液聚合方法合成了一种聚丙烯酸酯颜面赝复体粘接剂(Non-modified Adhesive,NMA)和一种有机硅改性聚丙烯酸酯颜面赝复体粘接剂(Facial Prosthesis-skin Adhesive,FPSA),对二者基本性能、生物安全性进行了评价;比较了四种颜面赝复体粘接剂(Secure2 Adhesive,SA;B-200-R Regular,RE;NMA;FPSA)的生物力学性能;并考察了水分对这些颜面赝复体粘接剂的影响;最后对FPSA临床应用进行了评价。
     实验结果表明:
     1.通过半连续乳液聚合工艺可以合成性能较佳的有机硅改性聚丙烯酸酯共聚乳液压敏胶。
     2.影响有机硅改性聚丙烯酸酯乳液性能的因素很多,实验中发现使用复合乳化剂用量为2%、复合引发剂用量0.6%、官能单体用量1%、有机硅用量2%时,合成出的乳液性能较佳。
     3. DSC结果显示,改性聚合物的Tg为-45℃,符合皮肤用压敏胶的要求。FTIR表明,有机硅单体在聚合过程中已接枝成为共聚物分子的一部分。有机硅单体的引入明显改善了乳液的诸多性能。TEM结果表明,制得的乳液乳胶粒分散均匀,球体规则,核/壳结构明显,直径约为350 nm。
     4.所合成两种颜面赝复体粘接剂NMA和FPSA经生物安全性评价未发现明显刺激性,符合生物材料的要求。
     5.四种粘接剂中,有机硅类粘接剂SA粘接强度最大,有机硅改性聚丙烯酸酯类FPSA次之,聚丙烯酸酯类RE、NMA最小。
     6.RE、NMA在进行拉伸、剥离时皮肤上有粘接剂残留,四种粘接剂拉剪时残留均少,提示摘取赝复体时使用拉剪力可以减少粘接剂残留。
     7.耐水性由高到低分别为SA,FPSA,RE和NMA。浸水对有机硅类粘接剂影响小,对聚丙烯酸酯类粘接剂影响大。经有机硅改性者耐水性有所改善但还有待提高。
     8.临床上经颜面部缺损患者使用,FPSA粘接赝复体固位可靠,在皮肤上残留少,无明显皮肤刺激症状,性能基本能满足临床需要。
Facial prostheses can stay in place by the means of anatomic undercuts, mechanical means, adhesives or implants. Retention with implants or adhesives is commonly used in clinic. Implants are preferred for the ideal retention, but for the complicated and expensive operation or the patients can’t accept implants for other reasons, the patients will have to rely on prosthetic adhesives. Retention with prosthetic adhesive is one of the most commonly used and useful techniques for its cheapness and convenience. Most of previous researches have been focused on investigation of the performance of commercial prosthetic adhesives; however, even no studies about prosthetic adhesive have been carried out domestically.
     Traditional facial prosthetic adhesives can be classified into two categories based on the components. Poly-acrylate adhesive is cheap and shows medial bond strength, however,with difficult removable adhesive residue left on skin. Silicone-based adhesive shows higher bond strength and leaves little residue on skin, but the organic solvent in it could be a potential irritation. Polysiloxane has perfect properties, such as physiological inaction, heat- resistantce and lower surface tension etc. Therefore the modification of poly-acrylate adhesive with organic siloxane has become one of the hot research topics. Most of the previous researches focused on paintings or adhesives for industrial application. The purpose of this study was to modify the poly-acrylate adhesive with organic siloxane, and make it have the advantages of both traditional adhesives to retain silicone prostheses with enough cohesive strength and appropriate bond strength and leaving little adhesive residue on skin.
     In this study, the best combination of materials was determined by using an orthogonal experimental design. A kind of poly-acrylate prosthetic adhesive (Non-modified Adhesive, NMA), and a kind of poly-acrylate prosthetic adhesive modified with organic siloxane (Facial Prosthesis-skin Adhesive, FPSA), were developed by using seed emulsion polymerization. The basic performances and biosafety of two newly produced prosthetic adhesives were evaluated. The biomechanical bond strengths of four prosthetic adhesives (Secure2 Adhesive, SA; B-200-R Regular, RE; NMA and FPSA) were compared; and the influence of water on these four adhesives were investigated further. At last clinic application of the adhesive FPSA was tried on some volunteers.
     The results showed that:
     1. Poly-acrylate PSA modified with organic siloxane was produced through semi-continuous emulsion polymerization.
     2. When taking addition of organic siloxane (2%), with combined emulsifiers (2%), combined initiators (0.6%) and functional monomers (1%), the polymerization procedure remained stable and the polymer emulsion showed good properties.
     3. The result of DSC showed the Tg of the modified emulsion was -45℃, which was appropriate for poly-acrylate emulsion PSA for skin application. FTIR showed organic siloxane had been grafted onto the acrylic polymer. Organic siloxane has improved the performances of acrylic polymer. TEM result showed the emulsion was homogeneous morphologically. The emulsion particles, about 350 nm in diameter, dispersed regularly. The core/shell structure was shown clearly.
     4. Biosafety evaluation of two newly produced facial prosthetic adhesives showed no serious irritation, which indicated that these two adhesives were safe to be used.
     5. Among the four facial prosthetic adhesives, SA had the highest bond strength with silicone elastomer and skin, followed by FPSA, in order, RE and NMA had the lowest.
     6. Observations of the failure mode showed that RE and NMA failed at the adhesive layer, with adhesive residue left on skin. When peeling off the prosthesis retained with prosthetic adhesives, tensile-shear force can be used to reduce adhesive residue on skin.
     7. The capacity for water-resistance from higher to lower was SA, FPSA, RE and NMA. Immersion in water didn’t influence the behavior of silicone-based adhesive, but influenced that of the poly-acrylate adhesives. The capacity for water-resistance of the adhesive modified with organic siloxane was enhanced, but need to be improved further.
     8. Through clinic application on some volunteers, the prosthetic adhesive of FPSA showed enough bond strength and little irritation, with little residue left on skin, which indicates that this prosthetic adhesive can be used in clinic after further modification.
引文
[1] 赵铱民. 颌面赝复学[M]. 西安: 世界图书出版社. 2005,1.
    [2] Chalain VA, Phillips RW. Materials in maxillofacial prosthetics [J]. J Biomed Mater Res. 1974; 8(4 Pt 2): 349-63.
    [3] Lewis DH, Castlebery DJ. An assessment of recent advances in external maxillofacial materials [J]. J Prosthet Dent. 1980; 43(4): 426-32.
    [4] Cowper TR. The relative value of provider work for maxillary prosthetic services [J]. J Prosthet Dent. 1996; 75(3): 294-301.
    [5] Haug SP. Effects of environmental factors on maxillofacial elastomers: Part IV -- Optical properties [J]. J Prosthet Dent. 1992; 68(5): 820-3.
    [6] Polyzois GL. Some physical properties of an improved facial elastomer: A comparative study [J]. J Prosthet Dent. 1993; 70(1): 26-31.
    [7] 邵龙泉, 赵铱民, 赵信义. SY-1 和 MDX4-4210 硅橡胶老化性能实验[J]. 口腔材料器械杂志. 2003; 12(1): 9-11.
    [8] 邵龙泉, 赵铱民, 赵信义. SY-1 和 MDX4-4210 硅橡胶吸水率溶解率撕裂强度的对比测定[J]. 口腔颌面修复学杂志. 2003; 4(1): 52-4.
    [9] Wolfaardt JF. Mechanical behavior of three maxillofacial prosthetic adhesives: A pilot project [J]. J Prosthet Dent. 1992; 68(6): 943-9.
    [10] 邵龙泉, 赵铱民, 赵信义. 西安地区人群领面部皮肤色度值的采集与分析[J].实用口腔医学杂志. 1999; 15(4): 274-6
    [11] Polyzois GL. Evaluation of a new silicon elastomer for maxillofacial prostheses [J]. J Prosthodont. 1995; 4(1): 38-41.
    [12] Sanchez RA, Moore DJ, Togacoo MJ. Comparison of the physical properties of two type of polydimethyl siloxane for fabrication of facial prostheses [J]. J Prosthet Dent. 1992; 67(5): 679-82.
    [13] Han Ying, ZHAO Yi-min, SHAO Long-quan. Evaluation of mechanical properties of ZY-1 maxillofacial prosthetic materials [J]. J US-China Med Sci. 2007; 4(1): 30-3.
    [14] 李有光. 有机硅高分子化学[M]. 北京: 科学出版社. 1998; 32-56.
    [15] Moore DJ, Glaser ZR, Togacoo MJ, et al. Evaluation of polymeric materials for facial prosthetics [J]. J Prosthet Dent. 1977; 38(3): 319-26.
    [16] Parel SM. Diminishing dependence on adhesives for retention of facial prostheses [J]. J Prosthet Dent. 1980; 43(5): 552-60.
    [17] Chalian VA. Maxillofacial prosthetic materials. In: Smith DC, Williams DF, eds. Biocompatibilitic materials. Boca Raton, Fla: CRC Press Inc, 1982: 261-2.
    [18] Page K. Assessment of the mechanical properties of some facial prothetic adhesives. A preliminary report. In: Conroy B, editor. Proceedings International Congress on Maxillofacial Prosthetics and Technology. Southampton: Millbrook Press, 1983; 410-9.
    [19] Seals RR Jr, Cortes AL, Parel SM. Fabrication of facial prostheses by applying the osseointegration concept for retention [J]. J Prosthet Dent. 1989; 61(6): 712-6.
    [20] Udagama A, King GE. Mechanically retained facial prosthesis: helpful or harmful? [J]. J Prosthet Dent. 1983; 49(1): 85-6.
    [21] Shifman A. Selective pressure impression technique for nasal prosthesis [J]. J Prosthet Dent. 1987; 58(3): 349-51.
    [22] Nadeau J. Maxillofacial prosthesis with magnetic stabilizers [J]. J Prosthet Dent. 1956; 6(1): 114-9.
    [23] Nadeau J. Special prosthesis [J]. J Prosthet Dent. 1968; 20(1): 62-76.
    [24] Bimbach S, Herman GL. Coordinated intraoral and extraoral prosthesis in therehabilitation of the orofacial cancer patient [J]. J Prosthet Dent. 1987; 58(3): 343-8.
    [25] Martone AL. Anatomy of facial expression and its prosthodontic significance [J]. J Prosthet Dent. 1962; 12(6): 1020-42.
    [26] Parel SM, Tjellstr?m A. The United States and Swedish experience with osseointegration and facial prostheses [J]. Int J Oral Maxillofac Implants. 1991; 6(1): 75-9.
    [27] Albrektsson T, Branemark IP, Jacobsson M, Tjellstrom A. Present clinical applications of osseointegrated percutaneous implants [J]. Plast Reconstr Surg. 1987; 79(5): 721-31.
    [28] Jacobsson M, Tjellstr?m A, Fine L, et al. A retrospective study of osseointegrated skin-penetrating titanium fixtures used for retaining facial prostheses [J]. Int J Oral Maxillofac Implants. 1992; 7(4): 523-8.
    [29] Jensen OT, Brownd C, Blacker J. Nasofacial prostheses supported by osseointegrated implants [J]. Int J Oral Maxillofac Implants. 1992; 7(2): 203-11.
    [30] Kovács AF. A follow-up study of orbital prosthesis supported by dental implants [J]. J Oral Maxillofac Surg. 2000; 58(1): 19-23.
    [31] Nishimura RD, Roumanas E, Sugai T, et al. Auricular prosthesis and osseointegrated implants: UCLA experience [J]. J Prosthet Dent. 1995; 73(6): 553-8.
    [32] Boucher LJ, Heupel EM. Prosthetic restoration of a maxilla and associated structures [J]. J Prosthet Dent. 1966; 16(1): 154-68.
    [33] McClelland RC. Facial prosthesis following radical maxillofacial surgery [J]. J Prosthet Dent. 1977; 38(3): 327-30.
    [34] Dumbrigue HB, Fyler A. Minimizing prosthesis movement in a midfacialdefect: a clinical report [J]. J Prosthet Dent. 1997; 78(4): 341-5.
    [35] Hecker DM. Maxillofacial rehabilitation of a large facial defect resulting from an arteriovenous malformation utilizing a two-piece prosthesis [J]. J Prosthet Dent. 2003; 89(2): 109-13.
    [36] Cheng AC, Morrison D, Wee AG. Immediate maxillofacial prosthodontic rehabilitation after radical mid-face tumour resection [J]. J Prosthod. 1997; 6(4): 265-7.
    [37] Gomes MF, Teixeira RT, Plens G, et al. Naso-orbicular tissue necrosis by streptococcus parasanguis in a patient with Fanconi anemia: clinical and laboratory aspects [J]. Quintessence Int. 2004; 35(7): 572-6.
    [38] Rodrigues S, Shenoy VK, Shenoy K. Prosthetic rehabilitation of a patient after partial rhinectomy: a clinical report [J]. J Prosthet Dent. 2005; 93(2): 125-54.
    [39] Beumer J, Ma T, Marunick MT, et al. Restoration of facial defects: Etiology, disability, and rehabilitation. In: Beumer J, Curtis TA, Marunick MT, eds. Maxillofacial rehabilitation: prosthodontic and surgical considerations. St Louis: Ishiyaku EuroAmerica Inc. 1996; 402-8.
    [40] Brockmann W, Huther R. Adhesion mechanisms of pressure sensitive adhesives [J]. Int J Adhesion and Adhesives. 1996; 16(2): 81-6.
    [41] Lemon JC, Chambers MS. Conventional methods of retention of facial prostheses In: Zlotolow IM, Esposito S, Beumer J, eds. Proceedings of 1st International Congress on Maxillofacial Prosthetics. New York: Memorial Sloan-Kettering Cancer Center.1995; 116-9.
    [42] Tam V, Faulkner MG, Wolfaardt JF. Apparatus for the mechanical testing of maxillofacial prosthetic adhesives [J]. J Prosthet Dent. 1992; 67(2): 230-5.
    [43] Dahl JE, Polyzois GL. Irritation test of tissue adhesives for facial prostheses[J]. J Prosthet Dent. 2000; 84(4): 453-7.
    [44] Kiat-Amnuay S, Gettleman L, Goldsmith LJ. Effect of multi-adhesive layering on retention of extraoral maxillofacial silicone prostheses in vivo [J]. J Prosthet Dent. 2004; 92(3): 294-8.
    [45] 陈冶清, 管利民. 口腔粘接学[M]. 北京: 北京医科大学中国协和医科大联合出版社. 1993; 7-36.
    [46] Lanir Y. Skin mechanics. Handbook of bioengineering [M]. Skalak R and Chien S, eds. McGraw-Hill, New York. 1987; 11.1-11.25.
    [47] Diridollou S. Berson B, Vabre V, et al. An in vivo method for measuring the mechanical properties of the skin using ultrasound [J]. Ultrasound Med Bio. 1998; 24(2): 215-24.
    [48] Gniadecka M, Serup J. Suction chamber method for measurement of skin mechanical properties: the dermaflex. Handbook of non-invasive methods and the skin [M]. Serup J and Jemec GBE, eds. CRC Press, Boca Raton, Florida. 1995; 329-34.
    [49] Edwards C, Marks R. Evaluation of biomechanical properties of human skin [J]. Clinics Dermatol. 1995; 13(4): 375-80.
    [50] Oikarinen A, Knuutinen A. Mechanical Properties of Human Skin: Biochemical Aspects. Bioengineering of the skin: skin biomechanics. Elsner P, Berardesca E, Wilhelm KP, et al, eds. CRC Press, Boca Raton, Florida. 2002; 3-16.
    [51] Berndt U, Elsner P. Hardware and measuring principle: The cutometer. Bioengineering of the skin: skin biomechanics. Elsner P, Berardesca E, Wilhelm KP, et al, eds. CRC Press, Boca Raton, Florida. 2002; 91-7.
    [52] Lanir Y. Constitutive equations for fibrous connective tissues [J]. Journal Biomech. 1983; 16(1): 1-12.
    [53] Thacker JG, Iachetta FA, Allaire PE, et al. In vivo extensometer for measurement of the biomechanical properties of human skin [J]. Rev Sci Instrum. 1977; 48(2):181-5.
    [54] Pocius AV.著, 潘顺龙, 赵飞, 许关利译. 粘接与胶粘剂技术导论[M].原著第二版, 北京: 化学工业出版社, 2005; 213-5.
    [55] Horstmann M, Müller W, Asmussen B. Principles of skin adhesion and methods for measuring adhesion of transdermal systems. Bioadhesive drug delivery systems: fundamentals, novel approaches, and development. Mathiowitz E, Chickering III DE, et al, eds. Marcel Dekker, New York. 1999; 175-95.
    [56] Chivers RA. Easy removal of pressure sensitive adhesive for skin applications [J]. Int J Adhesion and Adhesives. 2001; 21(5): 381-8.
    [57] Ginn ME, Noyes CM, Jungermann E. The contact angle of water on viable human skin [J]. J Coll Interf Sci. 1968; 26(2): 146-51.
    [58] Kenney JF, Haddock TH, Sun RL, et al. Medical-grade acrylic adhesives for skin contact [J]. J Appl Polym Sci. 1992; 45(2): 355-61.
    [59] Khyat AE, Mavon A, Leduc M, et al. Skin critical surface tension: A way to assess the skin wettability quantitatively [J]. Skin Res Technol. 1996; 2(2):91-6.
    [60] Biegajski J. Personal communication, also reported in Venkatraman S, Cogan-Farinas K. Polym Mater Sci Eng. 1993; 70(2): 128.
    [61] Polyzois GL, Oilo G, Dahl JE. Tensile bond strength of maxillofacial adhesives [J]. J Prosthet Dent. 1993; 69(4):374-7.
    [62] Polyzois GL. Bond strength of double-sided adhesive tapes used for facial prostheses [J]. Spec Care Dentist. 1994; 14(1):26-9.
    [63] Kiat-amnuay S, Gettleman L, Khan Z, et al. Effect of adhesive retention onmaxillofacial prostheses. Part I: skin dressings and solvent removers [J]. J Prosthet Dent. 2000; 84(3): 335-40.
    [64] Kiat-Amnuay S, Gettleman L, Khan Z, et al. Effect of adhesive retention of maxillofacial prostheses. Part 2: Time and reapplication effects [J]. J Prosthet Dent. 2001; 85(5): 438-41.
    [65] Andrews EH, Khan TA, Majid H. Adhesion to skin. Part I. Peel tests with hard and soft machines [J]. J Mater Sci. 1985; 20(10): 3621-30.
    [66] 王群, 府寿宽, 于同隐. 乳液聚合的最新进展(下)[J]. 高分子通报. 1996; (3):141-51.
    [67] 曹同玉, 刘庆普, 胡金生. 聚合物乳液合成原理性能及应用[M]. 北京: 化学工业出版社. 2004; 4.
    [68] Matsumoto T, Ochi A. Polymerization of styrene in aqueous solution [J]. Kobunshi Kagaku. 1965; 22(244): 481-7.
    [69] Fitch RM. The homogeneous nucleation of polymer colloids [J]. Br Polym J. 1973; (5):467-78.
    [70] Okubo M, Yamada A, Shibao S, et al. Studies on suspension and emulsion: XLVI, Emulsifier-free emulsion polymerization of styrene in acetone- water [J]. J Appl Polym Sci. 1981; 26(5): 1675-9.
    [71] Zhang Jinzhi. Study on soap-free cationic emulsion copolymerization [J]. Polym Mat Sci and Eng. 1999; 15(6):76-8.
    [72] 张洪涛, 黄锦霞. 乳液聚合新技术及应用[M]. 北京: 化学工业出版社. 2007; 1.
    [73] Delgado J, El-Aasser MS, Silebi CA, et al. Miniemulsion copolymeriza- tion of vinyl acetate and butyl acrylate IV. Kinetics of the copolymeriza- tion [J]. J Polym Sci, Part A: Polym Chem. 1990; 28 (4): 777-94.
    [74] Williams DJ. Morphology of the monomer-polymer particle in styreneemulsion polymerization [J]. J Polym Sci, Part A: Polym Chem. 1970; 8(10): 2657.
    [75] Okubo M, Yamada A, Matsumoto T. Estimation of morphology of composite polymer emulsion [J]. J Polym Sci, PartA: Polym Chem. 1980; 16(2): 3219-228.
    [76] 曹同玉, 刘庆普, 胡金生.聚合物乳液合成原理性能及应用[M]. 北京: 化学工业出版社. 2004; 360.
    [77] Ugelstad J, Mfutakamba HR, M?rk PC, et al. Preparation and application of monodisperse polymer particles [J]. J Polym Sci, Polym Symp. 1985; 72(4): 225-40.
    [78] 张洪涛, 李建宗, 谭必恩等. BA-St-MAA 复合乳液共聚合动力学和成核机理的研究[J]. 高分子材料科学与工程. 1998; 14(2): 47-50.
    [79] 孟勇, 翁志学, 单国荣. 核壳结构聚硅氧烷/丙烯酸酯复合乳液(I)—乳化剂对乳液聚合过程及粒径分布和粒子形态的影响[J]. 化工学报. 2005; 56(9): 1794-9.
    [80] 张静, 涂伟萍. 胡剑青. 核壳型丙烯酸酯类反应性微凝胶胶粒的粒径及分布[J]. 华南理工大学学报: 自然科学版. 2006; 34(3): 72-6.
    [81] Minnesota Mining and Manufacturing Company. Removable pressure sensitive adhesive tape: US, 4645711 [P]. 1987-02-24.
    [82] 周雄, 房江华, 蔡丽红, 等. 丙烯酸酯乳液压敏胶的改性研究[J]. 胶体与聚合物. 2000; 18(4): 20-2.
    [83] 李明, 徐秀雯, 李琴, 等. 增黏树脂对聚丙烯酸酯压敏胶粘合性能的影响[J]. 中国粘接剂, 1999; 8(5): 27-9.
    [84] Kondo T, Takagi Y. A new waterborn tackifer for acrylic PSAs [M] Proceeding of the international PSA technoform (PIPSAT 97), 1997; 109-12.
    [85] 刘文芳, 李树林. 增黏树脂对丙烯酸酯乳液粘接剂性能的影响[J]. 热固性树脂, 2000; 15(4): 56-8.
    [86] 张爱清. 压敏粘接剂[M]. 北京: 化学工业出版社. 2002.
    [87] 伊朝辉, 潘慧铭, 吴伟卿, 等. 新型硅改性丙烯酸酯压敏胶的研究[J]. 中国粘接剂. 2003; 12(6): 16-9.
    [88] 赵永红, 黄得兵. 有机硅氧烷改性丙烯酸乳液的研究[J]. 南方冶金学院学报. 2002; 23(2): 54-8.
    [89] 张心亚, 涂伟萍, 陈焕钦. 有机硅改性丙烯酸酯核-壳结构压敏胶聚合物乳液的研究[J]. 中国粘接剂. 2002; 12(2): 1-4.
    [90] 王国建, 陈峰. 高硅含量有机硅-丙烯酸酯乳液的研制[J]. 上海涂料. 2005; 43(1/ 2): 19-21.
    [91] Peiffer DG, Lundberg RD. Synthesis and viscometric properties of low charge density ampholytic ionomers [J]. Polymer, 1985, 26(7):1085-68.
    [92] Glenn R. Pressure sensitive adhesive compositions: EP, 0386325A2 [P]. 1989-11-27.
    [93] 朱再盛, 吕广镛. 丙烯酸酯无皂乳液的研究[J]. 涂料工业. 2004; 34(6): 21-3.
    [94] 肖雪平. 改性苯丙乳液的研制与应用[J]. 涂料工业. 2001; 31(1): 10-2.
    [95] 王锋, 杨玉昆. 用 AMPS 合成高耐水性丙烯酸乳液压敏胶的研究[J]. 粘接. 2001; 22(6): 1-3.
    [96] Ashland Chemical Inc. Water whitening resistant latex emulsion pressure sensitive adhesive and its production: US, 6359092B1 [P]. 2002-03-19.
    [97] 唐敏锋, 范晓东, 唐中华. 交联型聚丙烯酸酯压敏胶乳液的合成及其粘接性能的研究[J]. 中国粘接剂. 2005; 14(9): 1-6.
    [98] 范圣强, 曹瑞军. 高耐水性自交联丙烯酸酯弹性乳液的研究[J]. 上海涂料. 2002; 40(6): 24-6.
    [99] 杨琴, 廷卫. 环氧改性丙烯酸酯乳液的合成工艺研究[J]. 中国粘接剂.2003; 12(5): 12-5.
    [100] Avery Dennison Corporation. Water resistant removable acrylic emulsion pressure sensitive adhesive: US, 5563205 [P]. 1996-10-08.
    [101] UCB SA. Pressure-sensitive adhesive and self-adhesive films using said adhesives: US, 6214931B1 [P]. 2001-04-10.
    [102] Keyes JW, Buda AJ, Guo Y, et al. Removable PSA systems [J]. Adhesives Age. 2000; 43(7): 34-9.
    [103] Griffin WC. Calculation of HLB values of nonionic surfactants [J]. J Soc Cosmet Chem. 1954; 5(3): 249-56.
    [104] 曹同玉, 刘庆普, 胡金生. 聚合物乳液合成原理性能及应用[M]. 北京: 化学工业出版社. 2004; 5.
    [105] 周宁琳. 有机硅聚合物导论 .北京: 科学出版社, 2000: 173-84.
    [106] Ugelstad J, Hansen FK. Kinetics and mechanism of emulsion polymerization [J]. Rubber Chem Tech. 1976; 49(3): 536-609.
    [107] 陆昌伟, 奚同庚. 热分析质谱法. 上海: 科学技术文献出版社. 2002. 1: 109.
    [108] Andrews EH, Khan TA, Rieke JK, et al. Adhesion to skin III. Glass transition temperatures of surgical adhesives with added sebum [J]. Clin Mater. 1986; 1(3):205-13.
    [109] 翁诗甫. 傅里叶变换红外光谱仪. 北京: 化学工业出版社, 2005. 320-6.
    [110] 郝和平. 医疗器械生物学评价标准实施指南[M]. 北京: 中国标准出版社, 2000. 100-1.
    [111] 孔晓星, 黄建德, 周鈜. 芯-壳结构乳液聚合的研究[J]. 化学世界,1986; (8):344-8.
    [112] ISO 10993-11: Biological evaluation of medical devices-Part 11: Tests for systemic toxicity [S]. 2006.
    [113] ISO 10993-12: Biological evaluation of medical devices-Part 12: Sample preparation and reference materials [S]. 2003.
    [114] ISO 10993-4: Biological evaluation of medical devices-Part 4: Selection of tests for interactions with blood [S]. 2002.
    [115] ISO 10993-5: Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity [S]. 2003.
    [116] USPC. Biological Tests/ Biological Reactivity Tests, in vitro [S]. USP 27, 2004.
    [117] ISO 10993-10: Biological evaluation of medical devices-Part 10: Tests for irritation and delayed-type hypersensitivity [S]. 2002.
    [118] Lapp CA, Schuster GS. Effects of DMAEMA and 4-methoxyphenol on gingival fibroblast growth, metabolism, and response to interleukin-1 [J]. J Biomed Mater Res. 2002; 60 (1): 30-5.
    [119] ASTM Standard D 1876-01, Standard Test Method for Peel Resistance of Adhesives (T-Peel Test) [S]. In: ASTM Book of Standards. 003. Consho- hocken, PA: ASTM International; 15.06.
    [120] Haug SP, Richard GE, Margiotti E, et al. An in vivo evaluation of adhesives used in extraoral maxillofacial prostheses [J]. J Prosthodont. 1995, 4(1): 11-5.
    [121] 姜秀杰, 朱金华, 文庆珍. 有机硅改性丙烯酸酯耐水性影响因素的探讨[J]. 上海涂料. 2005; 43(12):3-5.