油菜种子油脂基因的定位及温度对种子油分积累影响的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜属于十字花科芸薹属,是产油效率最高的油料作物之一,它不仅是食用油的主要来源,也是解决全球能源短缺的重要原料作物。油菜种子发育过程中的油脂积累和脂肪酸代谢很大程度上存在变异,变异的原因除了控制油脂合成的关键基因以外,也包括应对环境和内源性刺激的大量基因。研究人员和育种家们花费了大量的精力鉴定参与油菜油脂形成的关键基因,但是基因与环境存在互作使鉴定过程非常复杂,至今尚无通过改变单个基因大幅提高含油量的报导。本论文的研究目的在于:利用拟南芥与油菜的比较基因组学,开发一系列油菜油脂功能基因分子标记;在DH系的分子标记连锁遗传图谱上进行含油量的基因定位并鉴定关键候选基因;以响应高温的含油量近等基因系为材料,探讨环境因子与QTL互作的分子机制。主要研究结果如下:
     1.油菜油脂功能基因分子标记的开发:根据拟南芥油脂基因数据库(http://lipids.plantbiology.msu.edu/)中通过对拟南芥全基因组序列上与油脂相关基因的序列预测,并结合每个基因在各个器官中的表达序列标签(EST)及其分布的统计分析,从中选出75个在种子中高表达的基因通过与油菜数据库的搜索比对,利用油菜中的同源EST来设计引物,分析有关基因在油菜品种Tapidor和Ningyou 7之间的等位多态性,共在75个基因上设计了150对引物,平均每个基因包含两对引物。筛选标记发现,共51对引物具有多态性,多态性比率超过30%。
     2.含油量QTL的定位分析:在甘蓝型油菜DH系中,将开发的分子标记连锁到华中农业大学已有的TN-DH图谱上并进行QTL扫描,结果连锁到遗传图谱上的标记共15个;共检测到5个标记在含油量QTL区间峰内,分别位于第1、3、10、11以及12连锁群上,因此我们推测这5个候选基因可能在油菜种中油脂合成过程中扮演着非常重要的角色。生物信息学分析表明,这5个候选基因的功能均与油脂代谢相关。
     3.含油量QTL区间内关键候选基因的鉴定:为了进一步验证QTL置信区间内的候选基因的功能,我们利用其拟南芥同源基因的相关位点的T-DNA插入突变体,测定突变体成熟种子的含油量及脂肪酸组分,并与野生型进行比较分析,结果5个关键基因位置上的等位突变体中,有3个基因位点上的等位变化导致总含油量发生了显著变化,T-DNA插入导致突变体含油量变低;2个基因位点上的等位变化没有导致总含油量的显著变化,但却导致了亚麻酸和油酸的含量发生了显著变化,因此这些标记可以用于分子标记辅助育种选择。
     4.温度对油菜近等基因系含油量和脂肪酸组分的影响:油菜近等基因系总含油量随着成熟期温度的升高而降低,亚油酸(C18:2)、亚麻酸(C18:3)以及芥酸(C22:1)含量也随着温度的升高而降低。在T1、T2、T3三种温度下,NIL-9的总含油量均高于NIL-1,但是差异度并不一致,最大的差异是在高温T3条件下,低温T1次之,差异最小的在中温T2条件下。
     5.利用基因芯片研究了温度对近等基因系种子发育过程中基因表达的影响,结果表明:基因型、温度以及基因型与温度的互作在基因组水平分别引起4982个、19111个839个转录本的差异表达。两个近等基因系在T2条件下差异表达基因数目最少,基因组水平有251个,位于qOC.C2.2 QTL区间的有39个;2个近等基因系在T1条件下的差异表达基因数目,全基因组水平有2933个,位于qOC.C2.2 QTL区间的有460个;2个近等基因系在T3条件下差异表达基因数目最多,全基因组水平有3499个,qOC.C2.2 QTL区间有558个。这一研究结果与含油量的表型差异是一致的。
     6.目标QTL qOC.C2.2区间内的差异表达基因功能分类:定位于QTL区间内的基因型差异表达基因可以被分成很多的大类,包括:调控胚发育、DNA的转录调控、生物非生物逆境响应(例如:氧化还原反应;植物盐胁迫生理;热激反应;植物受伤反应;镉胁迫反应)、光合作用相关(例如:光呼吸;光合系统化学调节;糖酵解作用;苹果酸代谢)等生理过程的基因家族。除此之外,还有一些差异表达基因的功能与蛋白质代谢相关,例如蛋白质的合成、蛋白质折叠以及蛋白质的胞间运输、转录起始、茉莉酸刺激响应等。
     7.温度影响QTL区间内的差异表达基因功能分类:种子成熟期温度降至T1或者增至T3均可引起一系列基因的上调,这些基因涉及:DNA的转录调控、胚发育、生物非生物逆境响应(例如:抑菌反应;镉胁迫反应)、蛋白质的合成、氨基酸磷酸化、蛋白质折叠等。与T2条件相比,T3上调了一系列基因的表达,这些基因的功能涉及:热激反应以及泛素依赖的蛋白质降解过程,但是下调了控制脂肪酸的合成、响应红光信号、光合作用,赤霉素刺激响应以及转录延伸的有关基因。与T2条件相比,T1上调了一系列基因的表达,这些基因的功能包括:糖酵解、苹果酸代谢、脱落酸刺激响应、三羧酸循环以及脱水应激反应。
     8.不同温度条件下油脂合成关键基因的表达模式:NIL-1和NIL-9之间的遗传差异对含油量合成相关基因BnLACS1, BnOLEO1, BnCLO1, BnFatA以及BnLHY有显著影响。与NIL-1相比,NIL-9的BnLACS1, BnCLO1以及BnLHY基因表达量高,但BnOLEO1以及BnFatA的表达水平低于NIL-1。温度升高上调了BnAB13, BnFUS3, BnTAG1, BnOLEO1,BnCLO}以及BnFaTA的表达量,但是下调了BnLEC1, BnWRI1, BnFAD2, BnFAD3,以及BnLPAT2的表达量。G×T互作显著影响了BnFAB2基因的表达,只有在T1条件下,NIL-9的表达量高于NIL-1。
Oilseed rape(Brassica napus L.) is one of the most efficient oil crops throughout the world, it is not only a major source of edible oil but also can be used as biodiesel to solve the shortage of petrolic oil. Oil accumulation and fatty acid metabolism during seed development exist in large variations, including a large number of genes response to environmental and endogenous stimuli. Researchers and breeders have spent a lot of efforts to identify key genes related to oil formation, but so far not suffcient knowledge reflecting the genetic control of seed oil has been acuqired. This study is aim to:(1) develop a series of molecular markers of functional genes involved in oil accumulation based on the comparation of the Arabidopsis and Brassica genomes; (2) map molecular markers involved in oil accumulation on the genetic linkage map using DH lines and to identify key candidate genes contributing to certain QTL effct; (3) investigate the molecular mechanisms of the interaction between QTL and environmental factors using NILs whose oil content was in response to growth temperature during seed development. The main results are as follows:
     1. The genome of Arabidopsis has been searched for sequences of genes involved in acyl lipid metablism(http://lipids.plantbiology.msu.edu/). According to the sequence information of Arabidopsis lipid gene database and the analysis of the distribution of ESTs in organs,sequences of 75 seed-specific lipid genes were selected to do BLAST for homologous Brassica ESTs, a search for intron polymorphisms within the EST database was conducted. A set of 150 PCR primer pairs was designed according to Brassica ESTs. For each gene we designed 2 primer pairs, of which 51 showed polymorphisms between Tapidor and Ningyou 7. The polymorphsim rate was over 30%.
     2. A total of 15 markers on the seed expressing function genes were linked to the TN-DH map, which was made up by a total of 19 linkage groups and 700 markers that span over a 2060 cM distance with an average interval of 3.3 cM. Of these,5 unique markers were detected in the QTLs region contributing to oil seed oil cntent. The genes located on the 1,3,10,11,12 linkage group. Bioinformatic analysis suggested that these candidate genes involved in oil formation.
     3. In order to confirm the function of the candidate genes putatively contributing to the QTLs, we analysized the allelic variation of the respective loci among Arabidopsis T-DNA insertional mutant. The results indicated that the T-DNA insertion on three of the five loci resulted in signifcant change of seed oil content, whereas, the T-DNA insertion on the rest loci did not give rise to the change of total seed oil content, but instead to the change of specific fatty acid ratio.
     4. Temperature had a clear effect on seed oil content as well as fatty acid composition. Overall, the NIL plants responded to increasing temperature with decreasing levels of total seed oil, linoleic acid (C18:2), linolenic acid (C18:3), and erucic acid (C22:1). NIL-9 had higher seed oil content than did NIL-1 in all three growth chambers. However, the degree of surplus varied. The highest surplus was found in Chamber T3 and the lowest in Chamber T2.
     5. Statistical calculations indicated that the effect of genotype, temperature, and the interaction between genotype and temperature on the expression of the genes in 25 DAF seeds were all significant at a 0.01% false discovery rate, generated 19 111,4 982 and 839 DEGs (Diffenentially expressed genes, DEGs) respectively. The smallest expression differences were found under T2, under which NIL-1 differed from NIL-9 with the expression of 251 genes globally and 39 genes at the qOC.C2.2 region. More genetic divergences were observed under T1, under which the NILs differed from each other with 2 933 DEGs globally and 460 DEGs at the qOC.C2.2 region. The greatest difference was caused by T3, under which the NILs differed from each other with 3 499 DEGs globally and 558 DEGs at the qOC.C2.2 region. This results were consistant with the oil content phenotype.
     6. The 246 DEGs resulting from genotype can be grouped into various GO categories. Of these, a high proportion of GO slims were specifically related to embryo development, DNA-dependant transcription regulations, stress responses (such as oxidation reduction; salt stress response; heat response; wound response; cadmium stress response), and photosynthesis (photorespiration; photosystem stoichiometry adjustment; glycolysis; malate metabolism). These were over represented on the list of DEGs arising from genotype. A number of DEGs also belonging to the GO categories are involved in more general biological processes. Of these, some are associated with protein biosynthesis, protein folding and protein intercellular transport, translational initials, jasmonic acid response.
     7. Either increasing the temperature to T3 or decreasing the temperature to T1 resulted in the up-regulation of the genes related to DNA-dependent transcription regulations, embryo development, stress response (bacterium defending response; cadmium stress response), protein biosynthesis, amino acid phosphorylation, and protein folding. Increasing the temperature to T3 caused the up-regulation of the genes involved in heat response and ubiquitin-dependent protein catabolism, but the down-regulation of several genes associated with fatty acid biosynthesis, red light response, photosynthesis, gibberellic acid stimulus response, and translational elongations. Decreasing the temperature to T1 led to the down-regulation of some genes regulating glycolysis, malate metabolism, abscisic acid stimulus response, the tricarboxylic acid cycle, and water deprivation response. Either increasing temperature to T3 or decreasing temperature to T1 resulted in the down-regulation of the genes of the cold response category and the up- and down-regulation of the genes of the oxidation reduction category.
     8. The genetic difference between NIL-9 and NIL-1 had a significant effect on the expression of the genes BnLACS1, BnOLEO1, BnCLO1, BnFatA, and BnLHY. Relative to NIL-1, NIL-9 had a higher expression level of BnLACS1, BnCLO1, and BnLHY, but a lower expression level of BnOLEO1 and BnFatA. Increasing temperature led to a higher expression of BnAB13, BnFUS3, BnTAG1, BnOLEO1, BnCLO1, and BnFaTA, but a lower expression of BnLEC1, BnWRI1, BnFAD2, BnFAD3, and BnLPAT2. The G×T interaction significantly affected the expression of BnFAB2. Treated only under T1, NIL-9 had a higher expression of BnLPAT2 than NIL-1.
引文
傅廷栋.油菜的品种改良.作物研究,2007,3:159-164
    海燕,何宁,康明辉,郭景战,马瑞.新型分子标记SRAP及其应用.河南农业科学,2006,(9):9-12
    韩继祥.甘蓝型油菜含油量的遗传研究.中国油料,1990,2:1-6
    黄毅.应用cDNA芯片研究水稻杂种与亲本基因表达谱及杂种优势分子生物学基础.华中农业大学博士学位论文.2006,28-30
    金梦阳,刘列钊,付福友,张正圣,张学昆,李加纳.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱的构建.分子植物育种,2006,4(4):520-526
    刘后利.油菜的遗传和育种.上海科学技术出版社,1985
    龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.华中农业大学博士学位论文.2007
    邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.华中农业大学博士学位论文.2006
    石从广.油菜EMS诱变群体的构建以及油脂代谢相关基因等位多态性与油脂品质关系的研究.浙江大学博士学位论文.2009
    田芳.甘蓝型油菜A8连锁群含油量QTLs及其遗传累赘分析.华中农业大学硕士学位论文.2009
    王汉中.发展油菜生物柴油的潜力、问题与对策.油料作物学报,2005,27(2):74-77
    王汉中.我国油菜产需形势分析及产业发展对策.油料作物学报,2007,29(1):101-105
    王汉中.我国油菜产业发展的历史回顾与展望.油料作物学报,2010,32(2):300-302
    忻雅,崔海瑞.植物表达序列标签(EST)标记及其应用研究进展.生物学报,2004,39(8):4-6
    刑婉丽,陈京.生物芯片技术.北京:清华大学出版社,2003
    赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30(2):225-230
    张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜含油量的遗传与QTL定位.作物学报,2007,33(9):1495-1501
    张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜主要脂肪酸组成的QTL定位.作物学报,2008,34(1):54-60
    张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜芥酸含量的遗传与QTL定位.江苏农业学报,2008,24(1):22-28
    张书芬,马朝芝,朱家成,王建平,温彦成,傅廷栋.甘蓝型油菜含油量的主基因+多基因遗传效应分析.遗传学报,2006,33(2):171-180
    钟兆飞,朱亚娜,蒋立希.2008,分子标记在油菜遗传作图中的应用.浙江农业科学,3:313-318
    钟兆飞.作图亲本Tapidor和宁油7号油脂代谢功能基因分子标记的开发.浙江大学硕士学位论文.2008
    周元昌,陈启锋,吴为人,李维明.作物QTL定位研究进展.福建农业大学学报,2000,29(2):138-144
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,25,3389-3402.
    Andersson, C.R., Helliwell, C.A., Bagnall, D.J., Hughes, T.P., Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (2008) The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression. Plant Cell Physiol,49,191-200.
    Ascencio-Ibanez, J.T., Sozzani, R., Lee, T.J., Chu, T.M., Wolfinger, R.D., Cella, R. and Hanley-Bowdoin, L. (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol,148,436-454.
    Bartel, D.P. (2004) MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,116,281-297.
    Beisson, F., Koo, A.J., Ruuska, S., Schwender, J., Pollard, M., Thelen, J.J., Paddock, T., Salas, J.J., Savage, L., Milcamps, A., Mhaske, V.B., Cho, Y. and Ohlrogge, J.B. (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol,132. 681-697.
    Blanc, G. and Wolfe, K.H. (2004a) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell,16,1679-1691.
    Blanc, G. and Wolfe, K.H. (2004b) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell,16,1667-1678.
    Boem, F.H.G., Lavado, R.S. and Porcelli, C.A. (1996) Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop Res,47, 175-179.
    Buchanan, W., Gruissem, R., Jones, Eds. (2000) Biochemistry & Molecular Biology of Plants. Chapter 10
    Canvin, D.T. (1965) Effect of Temperature on Oil Content and Fatty Acid Composition of Oils from Several Oil Seed Crops. Can J Botany,43,63-&.
    Cao, Y., Yang, J., Xian, M., Xu, X. and Liu, W. (2010) Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes. Appl Microbiol Biotechnol,87, 271-280.
    Cavell, A.C., Lydiate, D.J., Parkin, I.A., Dean, C. and Trick, M. (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,41,62-69.
    Cernac, A. and Benning, C. (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J,40,575-585.
    Che, P., Gingerich, D.J., Lall, S. and Howell, S.H. (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell,14,2771-2785.
    Cheadle, C., Cho-Chung, Y.S., Becker, K.G. and Vawter, M.P. (2003) Application of z-score transformation to Affymetrix data. Appl Bioinformatics,2,209-217.
    Cheesbrough, T.M. (1990) Decreased growth temperature increases soybean stearoyl-acyl carrier protein desaturase activity. Plant Physiol,93,555-559.
    Creff, A., Sormani, R. and Desnos, T. (2010) The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. Plant Mol Biol,73,533-546.
    de Vienne, D., Leonardi, A., Damerval, C. and Zivy, M. (1999) Genetics of proteome variation for QTL characterization:application to drought-stress responses in maize. Journal of Experimental Botany,50,303-309.
    Delourme, R., Falentin, C., Huteau, V., Clouet, V., Horvais, R., Gandon, B., Specel, S., Hanneton, L., Dheu, J.E., Deschamps, M., Margale, E., Vincourt, P. and Renard, M. (2006) Genetic control of oil content in oilseed rape(Brassica napus L.). Theor Appl Genet,113,1331-1345.
    Deng, X. and Scarth, R. (1998) Temperature effects on fatty acid composition development of low-linolenic oilseed rape (Brassica napus L.). J Am Oil Chem Soc,75,759-766.
    Diaz, M., de Haro, V., Munoz, R. and Quiles, M.J. (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ,30,1578-1585.
    Dong, J., Keller, W.A., Yan, W. and Georges, F. (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta, 218,483-491.
    Ecke, W., Uzunova, M. and Weissleder, K. (1995) Mapping the Genome of Rapeseed (Brassica-Napus L).2. Localization of Genes-Controlling Erucic-Acid Synthesis and Seed Oil Content. Theor Appl Genet,91,972-977.
    Edwards, C.E. and Weinig, C. (2010) The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings. Heredity.
    Esteban, A.B., Sicardo, M.D., Mancha, M. and Martinez-Rivas, J.M. (2004) Growth temperature control of the linoleic acid content in safflower (Carthamus tinctorius) seed oil. J Agric Food Chem,52,332-336.
    Falcone, D.L., Ogas, J.P. and Somerville, C.R. (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol,4,17.
    Fernandez-Moya, V., Martinez-Force, E. and Garces, R. (2002) Temperature effect on a high stearic acid sunflower mutant. Phytochemistry,59,33-37.
    Fernandez-Moya, V., Martinez-Force, E. and Garces, R. (2003) Temperature-related non-homogeneous fatty acid desaturation in sunflower(Helianthus annuus L.) seeds. Planta,216, 834-840.
    Focks, N. and Benning, C. (1998) wrinkled1:A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol,118, 91-101.
    Francia, E., Rizza, F., Cattivelli, L., Stanca, A.M., Galiba, G., Toth, B., Hayes, P.M., Skinner, J.S. and Pecchioni, N. (2004) Two loci on chromosome 5H determine low-temperature tolerance in a 'Nure' (winter) x 'Tremois'(spring) barley map. Theorl Appl Genet,108,670-680.
    Frentzen, M. (1998) Acyltransferases from basic science to modified seed oils. Fett-Lipid,100,161-166.
    Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol,124,1570-1581.
    Guillaumie, S., Charmet, G., Linossier, L., Torney, V., Robert, N. and Ravel, C. (2004) Colocation between a gene encoding the bZip factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome,47,705-713.
    Gupta, V., Mukhopadhyay, A., Arumugam, N., Sodhi, Y.S., Pental, D. and Pradhan, A.K. (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet,108,743-749.
    Gutierrez, L., Van Wuytswinkel, O., Castelain, M. and Bellini, C. (2007) Combined networks regulating seed maturation. Trends in Plant Science,12,294-300.
    Hanano, A., Burcklen, M., Flenet, M., Ivancich, A., Louwagie, M., Garin, J. and Blee, E. (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem,281,33140-33151.
    Howell, P.M., Sharpe, A.G. and Lydiate, D.J. (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome,46,454-460.
    Hu, X., Sullivan-Gilbert, M., Gupta, M. and Thompson, S.A. (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor appl genet,113,497-507.
    Huang, Y., Chen, L., Wang, L., Vijayan, K., Phan, S., Liu, Z., Wan, L., Ross, A., Xiang, D., Datla, R., Pan, Y. and Zou, J. (2009) Probing the endosperm gene expression landscape in Brassica napus. BMC Genomics,10,256.
    Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S. and Taylor, D.C. (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol,126,861-874.
    Jaworski, J.G., Post-Beittenmiller, M.A. and Ohlrogge, J.B. (1989) Site-directed mutagenesis of the spinach acyl carrier protein-I prosthetic group attachment site. Eur J Biochem,184,603-609.
    Jensen, C.R., Mogensen, V.O., Mortensen, G., Fieldsend, J.K., Milford, G.F.J., Andersen, M.N. and Thage, J.H. (1996) Seed glucosinolate, oil and protein contents of field-grown rape(Brassica napus L) affected by soil drying and evaporative demand. Field Crop Res,47,93-105.
    Kabsch, W. and Sander, C. (1984) On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci U S A, 81,1075-1078.
    Kachroo, A., Shanklin, J., Whittle, E., Lapchyk, L., Hildebrand, D. and Kachroo, P. (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol,63,257-271.
    Katavic, V., Reed, D.W., Taylor, D.C., Giblin, E.M., Barton, D.L., Zou, J., Mackenzie, S.L., Covello, P.S. and Kunst, L. (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol,108,399-409.
    Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D. and Bohnert, H.J. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13,889-905.
    Kim, H.U., Hsieh, K., Ratnayake, C. and Huang, A.H. (2002) A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem,277,22677-22684.
    Kim, S., Choi, K., Park, C., Hwang, H.J. and Lee, I. (2006) SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell, 18,2985-2998.
    Kim, S.Y. and Michaels, S.D. (2006) SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development,133,4699-4707.
    Kipreos, E.T. and Pagano, M. (2000) The F-box protein family. Genome Biol,1, REVIEWS3002.
    Lassner, M.W., Lardizabal, K. and Metz, J.G. (1996) A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell,8, 281-292.
    Li, G., Gao, M., Yang, B. and Quiros, C.F. (2003a) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet,107,168-180.
    Li, Z.K., Yu, S.B., Lafitte, H.R., Huang, N., Courtois, B., Hittalmani, S., Vijayakumar, C.H., Liu, G.F., Wang, G.C., Shashidhar, H.E., Zhuang, J.Y., Zheng, K.L., Singh, V.P., Sidhu, J.S., Srivantaneeyakul, S. and Khush, G.S. (2003b) QTL x environment interactions in rice.Ⅰ. heading date and plant height. Theor Appl Genet,108,141-153.
    Lian, X., Wang, S., Zhang, J., Feng, Q., Zhang, L., Fan, D., Li, X., Yuan, D., Han, B. and Zhang, Q. (2006) Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol,60,617-631.
    Libault, M., Wan, J., Czechowski, T., Udvardi, M. and Stacey, G. (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact,20,900-911.
    Lionneton, E., Ravera, S., Sanchez, L., Aubert, G., Delourme, R. and Ochatt, S. (2002) Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome,45,1203-1215.
    Liu, L.Z., Meng, J.L., Lin, N., Chen, L., Tang, Z.L., Zhang, X.K. and Li, J.N. (2006) QTL mapping of seed coat color for yellow seeded Brassica napus. Journal of genetics and genomics,33, 181-187.
    Liu X P, Tu J X, Liu Z W, Chen B Y and Fu T D. Construction of a Molecular Marker Linkage Map and Its Use for QTL Analysis of Erucic Acid Content in Brassica napus L.(J). Acta Agronomica Sinica,2005.31(3):275-282
    Long, Y., Shi, J., Qiu, D., Li, R., Zhang, C., Wang, J., Hou, J., Zhao, J., Shi, L., Park, B.S., Choi, S.R., Lim, Y.P. and Meng, J. (2007) Flowering time quantitative trait Loci analysis of oilseed brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics,177, 2433-2444.
    Lu, S., Song, T., Kosma, D.K., Parsons, E.P., Rowland, O. and Jenks, M.A. (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J,59,553-564.
    Mahfouz, M.M., Kim, S., Delauney, A.J. and Verma, D.P. (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell,18,477-490.
    Mahmood, T., Rahman, M.H., Stringam, G.R., Yeh, F. and Good, A.G. (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet,113,1211-1220.
    Mallory, A.C. and Vaucheret, H. (2004) MicroRNAs:something important between the genes. Curr Opin Plant Biol,7,120-125.
    Masaki, T., Mitsui, N., Tsukagoshi, H., Nishii, T., Morikami, A. and Nakamura, K. (2005) ACTIVATOR of Spomin::LUC1/WRINKLED1 of Arabidopsis thaliana transactivates sugar-inducible promoters. Plant Cell Physiol,46,547-556.
    Matsuda, O., Sakamoto, H., Hashimoto, T. and Iba, K. (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. JBiol Chem,280,3597-3604.
    Mitsuda, N., Hisabori, T., Takeyasu, K. and Sato, M.H. (2004) VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana. Plant Cell Physiol,45,845-854.
    Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., Yang, X., Wang, T., Chong, K., Wang, X.J. and Zuo, J. (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol,148,1042-1054.
    Ner-Gaon, H., Halachmi, R., Savaldi-Goldstein, S., Rubin, E., Ophir, R. and Fluhr, R. (2004) Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J,39,877-885.
    Ohlrogge, J. and Browse, J. (1995) Lipid biosynthesis. Plant Cell,7,957-970.
    Oliveros, J.C., Blaschke, C., Herrero, J., Dopazo, J. and Valencia, A. (2000) Expression profiles and biological function. Genome Inform Ser Workshop Genome Inform,11,106-117.
    Parkin, I.A., Gulden, S.M., Sharpe, A.G., Lukens, L., Trick, M., Osborn, T.C. and Lydiate, D.J. (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,171,765-781.
    Penfield, S. and Hall, A. (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell,21,1722-1732.
    Pilet, M.L., Duplan, G., Archipiano, H., Barret, P., Baron, C., Horvais, R., Tanguy, X., Lucas, M.O., Renard, M. and Delourme, R. (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci,41,197-205.
    Piper, E.L. and Boote, K.J. (1999) Temperature and cultivar effects on soybean seed oil and protein concentrations. J Am Oil Chem Soc,76,1233-1241.
    Poirier, Y., Ventre, G. and Caldelari, D. (1999) Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol,121,1359-1366.
    Porter, J.R. and Semenov, M.A. (2005) Crop responses to climatic variation. Philos Trans R Soc Lond B Biol Sci,360,2021-2035.
    Poxleitner, M., Rogers, S.W., Lacey Samuels, A., Browse, J. and Rogers, J.C. (2006) A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J,47,917-933.
    Qi, Q., Rajala, R.V., Anderson, W., Jiang, C., Rozwadowski, K., Selvaraj, G., Sharma, R. and Datla, R. (2000) Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana. J Biol Chem,275, 9673-9683.
    Qiu, D., Morgan, C., Shi, J., Long, Y., Liu, J., Li, R., Zhuang, X., Wang, Y., Tan, X., Dietrich, E., Weihmann, T., Everett, C., Vanstraelen, S., Beckett, P., Fraser, F., Trick, M., Barnes, S., Wilmer, J., Schmidt, R., Li, J., Li, D., Meng, J. and Bancroft, I. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet,114,67-80.
    Rajcan, I., Kasha, K.J., Kott, L.S. and Beversdorf, W.D. (1999) Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica,105,173-181.
    Roesler, K., Shintani, D., Savage, L., Boddupalli, S. and Ohlrogge, J. (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol, 113,75-81.
    Rost, B. (1999) Twilight zone of protein sequence alignments. Protein Eng,12,85-94.
    Ruuska, S.A., Girke, T., Benning, C. and Ohlrogge, J.B. (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell,14,1191-1206.
    Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,270,467-470.
    Shi, C.G., Zhu, Y.N., Li, Y.L., Guo, W.L., Chen, K.M., Shamsi, I.H., Hua, S.J., Zhong, Z.F., Zhou, W.J. and Jiang, L.X. (2010) DNA allelic variations at the loci putatively implicated in seed oil formation among Brassica oilseed cultivars. Mol Breeding,26,51-64.
    Shi, J., Li, R., Qiu, D., Jiang, C., Long, Y., Morgan, C., Bancroft, I., Zhao, J. and Meng, J. (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics,182,851-861.
    Shimada, T.L. and Hara-Nishimura, I. (2010) Oil-body-membrane proteins and their physiological functions in plants. Biol Pharm Bull,33,360-363.
    Shintani, D., Roesler, K., Shorrosh, B., Savage, L. and Ohlrogge, J. (1997) Antisense expression and overexpression of biotin carboxylase in tobacco leaves. Plant Physiol,114,881-886.
    Si, P., Mailer, R.J., Galwey, N. and Turner, D.W. (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust JAgr Res,54,397-407.
    Siloto, R.M., Findlay, K., Lopez-Villalobos, A., Yeung, E.C., Nykiforuk, C.L. and Moloney, M.M. (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 18,1961-1974.
    Stam, P. (1993) Construction of Integrated Genetic-Linkage Maps by Means of a New Computer Package-Joinmap. Plant Journal,3,739-744.
    Stewart, C.N., Jr. and Via, L.E. (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques,14,748-750.
    Sung, D.Y., Kaplan, F., Lee, K.J. and Guy, C.L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci,8,179-187.
    Szymanski, M. and Barciszewski, J. (2002) Beyond the proteome:non-coding regulatory RNAs. Genome Biol,3, reviews0005.
    Tang, G.Q., Novitzky, W.P., Carol Griffin, H., Huber, S.C. and Dewey, R.E. (2005) Oleate desaturase enzymes of soybean:evidence of regulation through differential stability and phosphorylation. Plant J,44,433-446.
    Tchagang, A.B., Bui, K.V., McGinnis, T. and Benos, P.V. (2009) Extracting biologically significant patterns from short time series gene expression data. BMC Bioinformatics,10,255.
    Toledo-Ortiz, G., Huq, E. and Quail, P.H. (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell,15,1749-1770.
    Udvardi, M.K., Czechowski, T. and Scheible, W.R. (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell,20,1736-1737.
    Verwoert, II, Verhagen, E.F., van der Linden, K.H., Verbree, E.C., Nijkamp, H.J. and Stuitje, A.R. (1994) Molecular characterization of an Escherichia coli mutant with a temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. FEBS Lett,348,311-316.
    Wang, J., Tian, L., Lee, H.S. and Chen, Z.J. (2006) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics,173,965-974.
    Wang, X.S., Zhao, X.Q., Zhu, J. and Wu, W.R. (2005) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza saliva L.). DNA Res,12, 417-427.
    Wayne, M.L. and McIntyre, L.M. (2002) Combining mapping and arraying:An approach to candidate gene identification. Proc Natl Acad Sci USA,99,14903-14906.
    Wu, C.F., Valdes, J.J., Bentley, W.E. and Sekowski, J.W. (2003) DNA microarray for discrimination between pathogenic 0157:H7 EDL933 and non-pathogenic Escherichia coli strains. Biosens Bioelectron,19,1-8.
    Wu, J.G., Shi, C.H. and Zhang, H.Z. (2006) Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L.). Genet Mol Biol,29,533-538.
    Yadav, N.S., Wierzbicki, A., Aegerter, M., Caster, C.S., Perez-Grau, L., Kinney, A.J., Hitz, W.D., Booth, J.R., Jr., Schweiger, B., Stecca, K.L. and et al. (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol,103,467-476.
    Yang, G. and Komatsu, S. (2004) Microarray and proteomic analysis of brassinosteroid- and gibberellin-regulated gene and protein expression in rice. Genomics Proteomics Bioinformatics, 2,77-83.
    Yang, J., Zou, Y. and Zhu, J. (2009) Identifying differentially expressed genes in human acute leukemia and mouse brain microarray datasets utilizing QTModel. Funct Integr Genomics,9, 59-66.
    Yang, X., Kalluri, U.C., Jawdy, S., Gunter, L.E., Yin, T., Tschaplinski, T.J., Weston, D.J., Ranjan, P. and Tuskan, G.A. (2008) The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol,148,1189-1200.
    Young, L.W., Wilen, R.W. and Bonham-Smith, P.C. (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany,55,485-495.
    Zhao, J.Y., Becker, H.C., Ding, H.D., Zhang, Y.F., Zhang, D.Q. and Ecke, W. (2005a) QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population. Journal of genetics and genomics,32,969-978.
    Zhao, J.Y., Becker, H.C., Zhang, D.Q., Zhang, Y.F. and Ecke, W. (2005b) Oil content in a European x Chinese rapeseed population:QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci,45,51-59.
    Zhao, J.Y., Becker, H.C., Zhang, D.Q., Zhang, Y.F. and Ecke, W. (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theorl Appl Genet,113,33-38.
    Zhu, T., Budworth, P., Han, B., Brown, D., Chang, H.S., Zou, G.Z. and Wang, X. (2001) Toward elucidating the global gene expression patterns of developing Arabidopsis:Parallel analysis of 8 300 genes by a high-density oligonucleotide probe array. Plant Physiol Bioch,39,221-242.
    Zou, J., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A., Hu, X. and Taylor, D.C. (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell,9,909-923.
    Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. and Taylor, D.C. (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J,19,645-653.