杨树嫩茎生根机理及调控激素的组织细胞原位分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不定根发生既是植物器官分化的重要理论问题,又关系到无性繁殖和完整植株再生等重大实践问题。成功诱导不定根对木本植物最大遗传增益的获得具有重要的实践意义。本研究以741杨(Populus alba(P.davidiana×P.simonii)×P.tomentosa)试管嫩茎为试材,对其不定根发生过程中的组织细胞学、相关酶活性变化、IAA(吲哚乙酸)和ABA(脱落酸)的免疫化学定位进行了分析,着重研究了741杨嫩茎不定根发生过程中内源IAA的产生、运输和积累,特别是亚细胞的分布特点。主要结果如下:
     1.采用石蜡切片技术结合番红-固绿染色,从组织学角度观察了741杨嫩茎不定根发生的过程,结果表明:741杨嫩茎的不定根原基起源于维管形成层细胞,其发生过程为:形成层细胞分裂分化形成根原基,根原基内细胞继续分裂分化形成不定根。
     2.在石蜡切片的基础上,通过PAS并结合萘酚黄S染色研究了741杨嫩茎不定根发生过程中淀粉粒和蛋白质的动态变化,结果发现:在生根诱导前,嫩茎基部的皮层、韧皮部和髓含有大量淀粉粒,诱导6d后,仅在嫩茎基部皮层中有少量淀粉粒分布,淀粉粒的转化可能为不定根的发生提供了能量和物质基础。在不定根诱导前,嫩茎基部蛋白质的量很少,随着不定根的诱导,蛋白质含量明显增多,且主要分布在维管形成层、韧皮部、根原基和根顶端分生组织这些分裂旺盛的部位,蛋白质合成增加与不定根发生密切相关。
     3.741杨嫩茎不定根发生过程中IAAO(吲哚乙酸氧化酶)、PPO(多酚氧化酶)和POD(过氧化物酶)的活性变化结果显示,IAAO活性在不定根的诱导期(0-6d),逐渐升高,在第6天,达到最大值,随后,IAAO活性逐渐下降。PPO活性在0-4d逐渐升高,4-6d,PPO活性基本保持恒定,在6-10d,PPO活性逐渐降低。POD活性在诱导的前两天逐渐升高,随后,POD活性逐渐下降。此结果说明,不定根的诱导与IAAO和PPO的活性呈正相关,而POD活性在741杨嫩茎不定根发生过程中的变化没有规律可循。
     4.运用免疫胶体金组织化学定位技术,结合IAA含量的HPLC-MS测定,研究了741杨嫩茎不定根发生过程中IAA在组织水平的变化规律,结果表明,在不定根发生的整个过程茎尖和叶片始终都有IAA分布,茎尖中的IAA主要分布在幼叶、叶原基和分生组织,叶片中的IAA主要分布在叶肉细胞,而叶柄、茎的中部和茎的基部中的IAA分布呈规律性变化,在不定根诱导前,叶柄、茎的中部和茎的基部几乎没有IAA分布,诱导6d后,在叶柄、茎的中部和茎的基部的维管组织也有明显的IAA积累,尤以嫩茎基部的IAA信号强烈,诱导8d后,根原基出现,叶柄、茎的中部的IAA信号开始减弱,而根原基中出现了强烈的IAA信号,诱导10d后,嫩茎基部出现不定根,此时叶柄和茎的中部的IAA消失了,而根中的IAA主要分布在维管组织和根尖。对嫩茎施加生长素极性运输抑制剂TIBA后,抑制了不定根的发生,也抑制了IAA在嫩茎基部维管组织的积累,但是并没有影响叶片中IAA的分布。IAA含量的HPLC-MS测定结果与IAA的免疫组织化学定位结果是一致的。以上结果表明,IAA在嫩茎基部维管组织的积累启动了不定根的发生,嫩茎基部维管组织积累的IAA可能主要由叶片经维管组织运输到嫩茎基部的,而非嫩茎基部自身合成的,当不定根形成后,由叶片到根的生长素极性运输减弱了,根中的IAA可能是由其自身合成的。茎尖的分生组织、叶原基和幼叶中的IAA可能由叶片提供。
     5.运用免疫胶体金电镜技术研究了不定根发生过程中IAA的亚细胞定位,结果表明,在叶片中,IAA主要分布在叶肉细胞的叶绿体中,随着不定根的诱导,有更多的IAA积累在了叶肉细胞的叶绿体中,说明叶绿体可能是IAA合成位点或者是储藏位点;在韧皮部的伴胞中,IAA主要分布在内质网和细胞膜,在细胞壁附近的细胞质中也有少量的IAA分布,在韧皮部的筛管中,细胞膜上有明显的IAA信号。在木质部的次生壁中,没有发现IAA,说明维管束中木质部可能不参与IAA的极性运输;在维管形成层细胞,IAA主要分布在细胞质、细胞膜、内质网和细胞核中,当形成层细胞分化为根原基后,IAA只出现在了根原基的细胞核,这个结果为IAA在不定根发生过程中的亚细胞作用位点提供了重要的线索,同时也暗示IAA对不定根起始和根原基发育这两个过程的调控机制是不同的。
     6.运用免疫胶体金组织化学定位技术,结合ABA含量的HPLC-MS测定,分析了741杨嫩茎不定根发生过程中ABA的组织学定位,发现不定根诱导前,ABA在嫩茎基部主要分布在皮层、维管束以及髓中,在根原基起始期(6d),ABA主要集中在维管束的韧皮部,在根原基形成期(8d),强烈的ABA信号分布在根原基。诱导10d后,不定根出现,此时ABA主要分布在根冠中。ABA含量的HPLC-MS测定结果与IAA的免疫组织化学定位结果一致。以上结果说明ABA在不定根发生过程中起正调控作用,同时也暗示在不定根发生过程中ABA可能参与调控同化物的运输与分配。
Poplar 741(Populus alba×(P. davidiana+P. simonii) XP. tomentosa) shoots were rooted in vitro when cultured on 1/2 MS medium. The histocytology, changes of related enzym activity, histochemical localization of IAA and ABA were investigated, and the generation, transportation, accumulation and subcellular action sites were studied deeply.The main results were as follows:
     1 The process of adventitious root formation from poplar 741 shoots was anatomically examined, using paraffin section technology cobmining safranin-fast green staining. The reslts showed that no root primordial was fonund in the poplar 741 shoot before root induction and the induced root primodial was originated from vascular cambium. The process of the adventitious root formation from poplar 741 shoot was tha cambium cells divided and differentiated to root primordial and the root primordium grew and developed to adventitioud root.
     2 Changes of starch grains and proteins during adventitious root formation from poplar 741 shoots was investigated, using PAS and naphthol yellow staining methods. Results showed lots of starch grains were distributed in cortex, phloem and pith before root induction. After six days of induction, the satrch grains disappeared, suggesting than the starch grains provided energy and substances. Little proteins was found before root induction and proteins appeared as root induction progressed. The proteins were mainly located in the regions where cells divided vigorously, such as vascular cambium, root primordial and root apical meristem, suggesting expression of genes is active during adventitious root formation.
     3 Changes in IAAO, PPO and POD activity during adventitious root formation from poplar 741 shoot were analysed. During the induction phase (0-6 days) the IAAO activity increased, reached maximum on day 6 and then declined subsquently. PPO activity increased during 0-4 days, and was stable during 4-6 days, then decreased the following day. POD activity enhanced during the first two days and declined subsquently. The results suggest IAAO and PPO activitis were closely associated with adventitious root induction. Adventitious root formation was not correlated with POD activity.
     4 The spatial distribution of endogenous indole-3-acetic acid (IAA) and its dynamic changes during the adventitious root formation from poplar 741 shoots, using an immunohistochemical approach and HPLC-MS technology. The results showed the IAA signal in the shoot apex and lamina was always strong during adventitious root formation. And in shoot apex, the IAA was mainly located in the shoot apical meristem, leaf primordial and young leaf, in leaf, IAA was mainly located in mesophyll. However, the IAA in the petiole, middle and basal regions of the shoot presented regular changes. Before root induction, little IAA signal was found in the petiole, middle and basal regions of the shoot. After six days of root induction, obvious IAA signal was accumulated in the vascular bundles of the petiole, middle and basal regions of the shoots, especially in the vascular bundle of the shoots. After eight days of root induction, the cells of the vascular cambium developed into visible root primordia, which bore a strong IAA signal, and IAA signal in petiole and middle region of the shoot decreased. After ten days of root induction, the root primordia developed into adventitious roots, the markedly IAA signal was detected in root tip and root vascular cylinder, and little IAA signal was found in the petiole and middle region of the shoot.. Application of TIBA on poplar 741 shoot inhibited the adventitious root formation and the accumulation of IAA in the vascular bundle of the basal region of the shoot, but not affect the distribution of IAA in lamina. The content of IAA detected by HPLC-MS was consistent with the immunohistochemical results. The above results suggest accumulation of IAA in the vascular bundle of basal region of the shoot initiate the adventitious root occurrence, and differentiation and development of root primordial need IAA. IAA accumulated in the vascular bundle of the badal region of the shoot results from its polar transportation from mesophyll of the laminas, rather than by in site IAA generation. After adventitious root formed, the IAA transportation from lamina to the basal region of the shoot decreased, suggesting the IAA in the adventious root was sythesized by itself. Application of TIBA also affected the IAA distribution in shoot apical, namely the IAA signal in apical meristem, leaf primordial and young leaf was reduced, suggesting the IAA in this tissues was supplied by leaf.
     5 Subcellular localization of IAA during adventitious root formation from poplar 741 shoot studied by immuno-gold electro microscopic technology revealed organelle-specific distribution. In mesophyll, Particles representing immunostaining of IAA were clearly present in chloroplast starch grains on day 0 of induction. As the root induction progressed, stronger immunostaining of IAA was observed, still restricted to the chloroplast starch grains, suggesting the chloroplast starch grains was the site of IAA synthesis or store. In companion cells of the phloem, IAA gold particles were maily distributed in endoplasmic reticulum and plasma membrane. In sieve elements of the phloem, the most intens IAA signal was observed in the plasma membrane. In the secondary cell walls of the xylem, no gold particles was labelled. Thses results suggested that IAA polar transport from lamina to the basal region of the shoot during rooting was mediated by phloem. In cmbium cells, IAA gold particles were distributed most abundantly in the plasma membrane, endoplasmic reticulum, nucleus and partly in the cytoplasm. In root primordium cells, IAA gold particles were mainly distributed in nucleus. Thesw results provide important clues for the actiong sites of IAA during adventitious root formation and also suggest different IAA regulation mechanism exist in different cell duing adventitious root induction.
     6 The immunohistolocalization of ABA were investigated during adventitious root formation from poplar 741 shoot, using using an immunohistochemical approach and HPLC-MS technology. The results showed ABA was mainly distributed in the cortex, vascular bundle and pith before root inducation. After six days of induction, ABA was mainly concentrated in the phloem. After eight days of root induction, the cells of the vascular cambium developed into visible root primordia, which bore a strong ABA signal. After ten days of root induction, the root primordia developed into adventitious roots, the markedly IAA signal was detected in root cap. The content of ABA detected by HPLC-MS was consistent with the immunohistochemical results. These results suggest ABA positively regulates the adventitious root formation. And the localization of ABA in phloem suggests ABA may involved in the assimilates distribution during adventitious root formation.
引文
陈以峰,梁世平,杨弘远,周燮(1999).受精前后烟草卵细胞内玉米素和三类酸性植物激素分布的免疫电镜观察.植物学报,41(11):1145-1149.
    孟祥红,王建波,利荣千(2002).光敏胞质不育小麦花药发育过程中GA1+4分布的免疫电镜研究.中国农业科学,35:596-599.
    王清民,彭伟秀,张俊佩,裴东(2006).核桃试管嫩茎生根的形态结构及激素调控研究.园艺学报,33:255-259.
    王幼群,韩静,林金星(2001).紫丁香叶柄离区IAA的免疫组织化学定位.植物学报,43:213-216.
    周云龙(1999).植物生物学.北京:高等教育出版社.
    Ahkami, A.H., Lischewski, S., Haensch, K.T., Porfirova, S., Hofmann, J., Rolletschek, H., Melzer, M., Franken, P., Hause, B., Druege, U., and Hajirezaei, M.R. (2009). Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181, 613-625.
    Ahmad, N., Siddique, I., and Anis, M. (2006). Improved plant regeneration in Capsicum annuum L. from nodal segments. Bio Plant 50,701-704.
    Atreya, C.D., Rao, J.P., and Subrahmanyam, N.C. (1984). In vitro regeneration of peanut (Arachis hypogaea L.) plantlets from embryo axes and cotyledon segments. Plant Science Letters 34,379-383.
    Avery, G.S. (1935). Differential distribution of phyto-hormone in the developing leaf of Nicotiana, and its relation to polarized growth. Bull Toray Club 62,313-330.
    Avsian-Kretchmer, O., Cheng, J.C., Chen, L., Moctezuma, E., and Sung, Z.R. (2002). Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130,199-209.
    Bagatharia, S.B., and Chanda, S.V. (1998). Changes in peroxidase and IAA oxidase activities during cell elongation in Phaseolus hypocotyls. Acta Physiol Plant 20, 19-13.
    Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W., and Feyereisen, R. (2001). CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13,101-111.
    Balakrishnamurthy, G., and Madhava Rao, V.N. (1988). Changes in phenols during rhizogenesis in rose (rosa bourboniana Desp). Current Sci 57,960-962.
    Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G., and Bellini, C. (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA97,14819-14824.
    Bartel, B. (1997). Auxin Biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48,51-66.
    Bassuk, N.L., Hunter, L.D., and Howard, B.H. (1981). The apparent of polyphenol oxidase and phloridzin in the production of apple rooting cofactors. Hort Sci 56,313-322.
    Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12,1103-1115.
    Beffa, R., Martin, H.V., and Pilet, P.E. (1990). In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol 94, 485-491.
    Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115,591-602.
    Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., and Feldmann, K.A. (1996). Arabidopsis AUX1 gene:a permease-like regulator of root gravitropism. Science 273,948-950.
    Bhalerao, R.P., Eklof, J., Ljung, K., Marchant, A., Bennett, M., and Sandberg, G. (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29,325-332.
    Bhattacharya, N.C. (1989). Enzyme activities during adventitious rooting. In Adventitious root formation in cutting, T.D. Davis, B.E. Haissig, and N. Sankhla, eds (Portland: Dioscorides Press), pp.88-101.
    Blake, T.J., and Atkinson, S.M. (1986). The physiological role of abscisic acid in the rooting of poplar and aspen stump sprouts. Physiologia Plantarum 67,638-643.
    Blakesley, D. (1994). Auxin metabolism and adventitious root initiation. In Biology of Adventitious Root Formation, T.D. Davis and B.E. Haissig, eds (New York: Plenum Press), pp.143-154.
    Blakesley, D., Weston, G.D., and Hall, J.F. (1991). The role of endogenous auxin in root initiation. Part 1:Evidence from studies on auxin application, and analysis of endogenous levels. Plant Growth Regul 10,341-353.
    Blilou, I., Xu, J., Wildwater, M., Willemsen, V, Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433,39-44.
    Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M., and Inze, D. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405-1419.
    Bollmark, M., and Eliasson, L. (1986). Effects of exogenous cytokinins on root formation in pea cuttings. Physiologia Plantarum 68,662-666.
    Bollmark, M., and Eliasson, L. (1990). Ethylene accelerates the breakdown of cytokines and thereby stimulated rooting in Norway spruce hypocotyls cuttings. Physiol Plant 80,534-540.
    Bonner, J., and Bandurski, R.S. (1952). Studies of the physiology, pharmacology, and biochemistry of the auxins. Annu Rev Plant Physiol 3,59-86.
    Braun, N., Wyrzykowska, J., Muller, P., David, K., Couch, D., Perrot-Rechenmann, C, and Fleming, A.J. (2008). Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco. Plant Cell 20, 2746-2762.
    Carland, F.M., and McHale, N.A. (1996). LOP1:a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122,1811-1819.
    Chen, D., and Zhao, J. (2008). Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134,202-215.
    Chen, D., Ren, Y., Deng, Y., and Zhao, J. (2010). Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J Exp Bot 61,1853-1867.
    Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T., and Masson, P.H. (1998). The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A 95,15112-15117.
    Chin, T.Y., Meyer, M.M., and Beevers, L. (1969). Abscisic-acid-stimulated rooting of stem cuttings. Planta 88,192-196.
    Coban, H. (2007). Determination of polyphenol oxidase activity during rooting in cuttings of some grape varieties (Vitis vinifera L). Asian J Chem 19,4020-4024.
    Cooke, T.J., Racusen, R.H., and Cohen, J.D. (1993). The Role of Auxin in Plant Embryogenesis. Plant Cell 5,1494-1495.
    Cooper, W.C. (1935). Hormones in Relation to Root Formation on Stem Cuttings. Plant Physiol 10,789-794.
    Davies, P.J., and Rubery, P.H. (1978). Components of auxin transport in stem segments of Pisum sativum L. Planta 142,211-219.
    Davis, T.D., and Haissig, B.E. (1994). Biology of Adventitious Root Formation. (New York:Plenum Press).
    De Klerk, G.J., Van der Krieken, W., and De Jong, J.C. (1999). Review the formation of adventitious roots:New concepts, new possibilities. In Vitro Cell Dev-Pl 35, 189-199.
    De Klerk, G.J., Keppel, M., Brugge, J.T., and Meekes, H. (1995). Timing of the phases in adventitous root formation in apple microcuttings. J Exp Bot 46,965-972.
    De Smet, I., Signora, L., Beeckman, T., Inze, D., Foyer, C.H., and Zhang, H. (2003). An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33,543-555.
    Delbarre, A., Muller, P., Imhoff, V, and Guern, J. (1996). Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198,532-541.
    Devi, S.R., and Prasad, M.N.V. (1996). Ferulic acid mediated changes in oxidative enzymes of maize seedlings:implications in growth. Biol Plant 38,387-395.
    Dewitte, W., and Van Onckelen, H. (2001). Probing the distribution of plant hormones by immunocytochemistry. Plant Growth Regulation 33,67-74.
    Dewitte, W., Chiappetta, A., Azmi, A., Witters, E., Strmad, M., Rembur, J., Noin, M., Chriqui, D., and Van Onckelen, H. (1999). Dynamics of cytokinins in apical shoot meristems of a day-neutral tobacco during floral transition and flower formation. Plant Physiol 119,111-122.
    Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435,441-445.
    Dong, N.G., Wang, Q.M., Zhang, J.P., and Pei, D. (2011). Immunohistochemical Localization of Indole-3-Acetic Acid During Induction of Adventitious Root Formation from Cotyledon Explants of Walnut. J Amer Soc Hort Sci 136,315-319.
    Druege, U., Zerche, S., and Kadner, R. (2004). Nitrogen-and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann Bot 94,831-842.
    Ermel, F.F., Vizoso, S., Charpentier, J.P., Jay-Allemand, C, Catesson, A.M., and Couee, I. (2000). Mechanisms of primordium formation during adventitious root development from walnut cotyledon explants. Planta 211,563-574.
    Falasca, G, Zaghi, D., Possenti, M., and Altamura, M.M. (2004). Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep 23,17-25.
    Ferrer, A.S., Bru, R., Cabanes, J., and Carmona, F.G. (1988). Characterization of catecholase and cresolase activities of monastrell grape polyphenol oxidase. Phytochemistry 27,319-321.
    Fischer, C, and Neuhaus, G. (1996). Influence of auxin on the establishment of bilateral symmetry in monocots. The Plant Journal 9,659-669.
    Ford, Y.-Y., Bonham, E.C., Cameron, R.W.F., Blake, P.S., Judd, H.L., and Harrison-Murray, R.S. (2001). Adventitious rooting:examining the role of auxin in an easy-and a difficult-to-root plant. Plant Growth Regulation 36,149-159.
    Friml, J., and Palme, K. (2002). Polar auxin transport--old questions and new concepts? Plant Mol Biol 49,273-284.
    Friml, J., and Jones, A.R. (2010). Endoplasmic reticulum:the rising compartment in auxin biology. Plant Physiol 154,458-462.
    Friml, J., Wisniewska, J., Benkova, E., Mendgen, K., and Palme, K. (2002a). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415,806-809.
    Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426,147-153.
    Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G, Scheres, B., Jurgens, G, and Palme, K. (2002b). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108,661-673.
    Galau, G.A., Bijaisoradat, N., and Hughes, D.W. (1987). Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs:coordinate regulation during embryogenesis and the role of abscisic acid. Developmental Biology 123,198-212.
    Galweiler, L., Guan, C, Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPINl in Arabidopsis vascular tissue. Science 282,2226-2230.
    Gangopadhyay, M., Chakraborty, D., Dewanjee, S., and Bhattacharya, S. (2010). Clonal propagation of Zephyranthes grandiflora using bulbs as explants. Biol Plant 54, 793-797.
    Gaspar, T., Penel, C, and Greppin, H. (1997). Do rooting induction and flowering evocation involve a similar interplay between indoleacetic acid, putrescine and peroxidases? In Traveling Shot on Plant Development, H. Greppin, Penel, C. Simon, P., ed (Geneva:University of Geneva), pp.105-130.
    Gaspar, T., Penel, C, Thorpe, T., and Greppin, H. (1982). Peroxidases. In A Survey of their Biochemical and Physiological Roles in Higher Plants, editors, ed (Switzerland: University of Geneva Press), pp.1970-1980.
    Gatineau, F., Fouche, J.G., Kevers, C, Hausman, J.F., and Gaspar, T. (1997). Quantitative variations of indolyl compounds including IAA, IAA-aspartate and serotonin in walnut microcuttings during root induction Biologia Plantarum 39,131-137.
    Ge, L., Chen, H., Jiang, J.F., Zhao, Y., Xu, M.L., Xu, Y.Y., Tan, K.H., Xu, Z.H., and Chong, K. (2004). Overexpression of OsRAAl causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135,1502-1513.
    Geldner, N., Friml, J., Stierhof, YD., Jurgens, G, and Palme, K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413,425-428.
    Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., and Jurgens, G. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112,219-230.
    Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and McCourt, P. (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12,1117-1126.
    Goldfarb, B., Lanz-Garcia, C., Lian, Z., and Whetten, R. (2003). Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). Tree Physiol 23, 1181-1192.
    Goldsmith, M.H.M. (1977). The polar transport of auxin. Annu Rev Plant Physiol 28, 439-478.
    Goto, N., Starke, M., and Kranz, A.R. (1987). Effect of gibberellins on flower development of the pin-formed mutant of Arabidopsis thaliana. Arabidopsis Information Service 23,66-71.
    Gou, J., Strauss, S.H., Tsai, C.J., Fang, K., Chen, Y., Jiang, X., and Busov, V.B. (2010). Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22,623-639.
    Gubler, F., Millar, A.A., and Jacobsen, J.V. (2005). Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8,183-187.
    Haissig, B.E. (1974). Origin of adventitious roots. New Zealand J For Sci 4,299-310.
    Heloir, M.C., Kevers, C., Hausman, J.F., and Gaspar, T. (1996). Changes in the concentrations of auxins and polyamines during rooting of in-vitro-propagated walnut shoots. Tree Physiol 16,515-519.
    Holgate, C.S., Jackson, P., Cowen, P.N., and Bird, C.C. (1983). Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31,938-944.
    Hou, Z.X., and Huang, W.D. (2005). Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222,678-687.
    Hudson Thomas Hartmann, D.E.K. (2002). Plant propagation:principles and practices. (London:Prentice Hall PTR).
    Humphries, E.C. (1960). Inhibition of root development on petioles and hypocotyls of dwarf bean (Phaseolus vulgaris) by kinetin. Physiol Plant 13,659.
    Ikeda, A., Sonoda, Y., Vernieri, P., Perata, P., Hirochika, H., and Yamaguchi, J. (2002). The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant Cell Physiol 43,974-979.
    Jacobs, M., and Gilbert, S.F. (1983). Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220,1297-1300.
    Jacqmard, A., Detry, N., Dewitte, W., Van Onckelen, H., and Bernier, G. (2002). In situ localisation of cytokinins in the shoot apical meristem of Sinapis alba at floral transition. Planta 214,970-973.
    Jensen, P.J., Hangarter, R.P., and Estelle, M. (1998). Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116,455-462.
    Jones, A.M. (1998). Auxin transport:down and out and up again. Science 282,2201-2203.
    Jones, A.M., Im, K.H., Savka, M.A., Wu, M.J., DeWitt, N.G., Shillito, R., and Binns, A.N. (1998). Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282,1114-1117.
    Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435,446-451.
    Kerk, N.M., and Feldman, L.J. (1995). A biochemical model for the initiation and maintenance of the quiescent center:implications for organization of root meristems. Development 121,2825-2833.
    Kevers, C., Hausman, J.F., Faivre-Rampant, O., Evers, D., and Gaspar, T. (1997). Hormonal control of adventitious rooting:progress and questions. Angew Bot 71, 71-79.
    Kim, Y.S., Min, J.K., Kim, D., and Jung, J. (2001). A soluble auxin-binding protein, ABP57. Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane H+-ATPase. J Biol Chem 276,10730-10736.
    Koyuncu, F., and Balta, F. (2004). Adventitious root formation in leaf-bud cuttings of tea (Camellia sinensis L.). Pak J Bot 36,763-768.
    Krehule, J., and Seidlova, F. (1989). Signals in plant development. (Hague:SPB Academic).
    Krisantini, S., Johnston, M., Williams, R.R., and Beveridge, C. (2006). Adventitious root formation in Grevillea (Proteaceae), an Australian native species. Scientia Horticulturae 107,171-175.
    Li, J., Yang, H., Peer, W.A., Richter, G., Blakeslee, J., Bandyopadhyay, A., Titapiwantakun, B., Undurraga, S., Khodakovskaya, M., Richards, E.L., Krizek, B., Murphy, A.S., Gilroy, S., and Gaxiola, R. (2005). Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310,121-125.
    Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., Gu, H., Zhao, Y., and Qu, L.J. (2008a). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Rep 27,575-584.
    Li, M., and Leung, D.W.M. (2000). Starch accumulation is associated withadventitious root formation in hypocotyl cuttings of Pinus radiata. Journal of Plant Growth Regulation 19,423-428.
    Li, S.W., Xue, L.G., Xu, S.J., Feng, H.Y., and An, L.Z. (2009). Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environmental and Experimental Botany 65,63-71.
    Li, Y.H., Chen, Q.Z., Xiao, N.J., Chen, Y.F., Li, X.J., Staehelin, C., and Huang, X.L. (2008b). Characteristics of adventitious root formation in cotyledon segments of mango (Mangifera indica L. cv. Zihua):two induction patterns, histological origins and the relationship with polar auxin transport. Plant Growth Regul 54,165-177.
    Liao, W.B., Xiao, H.L., and Zhang, M.L. (2010). Effect of Nitric Oxide and Hydrogen Peroxide on Adventitious Root Development from Cuttings of Ground-Cover Chrysanthemum and Associated Biochemical Changes. J Plant Growth Regul 29, 338-348.
    Liu, C, Xu, Z., and Chua, N.H. (1993). Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell 5,621-630.
    Liu, Z.H., Hsiao, I.C., and Pan, Y.W. (1996). Effect of naphthalene acetic acid on endogenous indole-3-acetic acid, peroxidases and auxin oxidase in hypocotyl cuttings of soybean during root formation. Bot Bull Acad Sin 37,247-253.
    Ljung, K., Bhalerao, R.P., and Sandberg, G. (2001a). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28,465-474.
    Ljung, K., Ostin, A., Lioussanne, L., and Sandberg, G. (2001b). Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol 125, 464-475.
    Ljung, K., Hull, A.K., Celenza, J., Yamada, M, Estelle, M., Normanly, J., and Sandberg, G. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17,1090-1104.
    Lomax, T.L., Muday, G.K., and Rubery, P.H. (1995). Auxin transport. In Plant Hormones: Physiology, Biochemistry, and Molecular Biology, P.J. Davies, ed (Dordrecht: Kluwer Academic Press.
    Ludwig-Muller, J., Vertocnik, A., and Town, CD. (2005). Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56,2095-2105.
    Luschnig, C, Gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12,2175-2187.
    Magnus, V, Bandurski, R.S., and Schulze, A. (1980). Synthesis of 4,5,6,7 and 2,4,5,6,7 Deuterium-labeled Indole-3-Acetic Acid for Use in Mass Spectrometric Assays. Plant Physiol 66,775-781.
    Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17,1360-1375.
    Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C, and Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18,2066-2073.
    Mathur, J., and Koncz, C. (1998). Establishment and maintenance of cell suspension cultures of Arabidopsis thaliana. In Arabidopsis Protocols, J.M. Martinez-Zapater and J. Salinas, eds (Totowa:Human Press), pp.31-34.
    Mauch-Mani, B., and Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8,409-414.
    McDonald, M.P., and Visser, E.J.W. (2003). A study of the interaction between auxin and ethylene in wild type and transgenic ethyl eneinsensitive tobacco during adventitious root formation induced by stagnant root zone conditions. Plant Biol 50, 550-556.
    Mockaitis, K., and Estelle, M. (2008). Auxin receptors and plant development:a new signaling paradigm. Annu Rev Cell Dev Biol 24,55-80.
    Moctezuma, E. (1999). Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L.). Ann Bot 83,235-242.
    Moctezuma, E., and Feldman, L.J. (1999). Auxin redistributes upwards in graviresponding gynophores of the peanut plant. Planta 209,180-186.
    Moncalean, P., Lopez-Iglesias, C., Fernandez, B., and Rodriguez, A. (2001). Immunocytochemical Location of Endogenous Cytokinins in Buds of Kiwifruit (Actinidia deliciosa) during the First Hours of in vitro Culture. The Histochemical Journal 33,403-411.
    Moore, T.C. (1989). Biochemistry and physiology of plant hormones. (New York: Springer-Verlag).
    Mravec, J., Skupa, P., Bailly, A., Hoyerova, K., Krecek, P., Bielach, A., Petrasek, J., Zhang, J., Gaykova, V., Stierhof, Y.D., Dobrev, P.I., Schwarzerova, K., Rolcik, J., Seifertova, D., Luschnig, C, Benkova, E., Zazimalova, E., Geisler, M., and Friml, J. (2009). Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459,1136-1140.
    Muday, G.K., and Haworth, P. (1994). Tomato root growth, gravitropism, and lateral development:correlation with auxin transport. Plant Physiol Biochem 32,193-203.
    Muller, A., Guan, C., Galweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., and Palme, K. (1998). AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17,6903-6911.
    Mwange, K.N., Hou, H.W., and Cui, K.M. (2003). Relationship between endogenous indole-3-acetic acid and abscisic acid changes and bark recovery in Eucommia ulmoides Oliv. after girdling. J Exp Bot 54,1899-1907.
    Nag, S., Saha, K., and Choudhuri, M.A. (2001). Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J Plant Growth Regul 20,182-194.
    Napier, R. (2004). Plant hormones binding sites. Ann Bot 93,227-233.
    Napier, R.M., David, K.M., and Perrot-Rechenmann, C. (2002). A short history of auxin-binding proteins. Plant Mol Biol 49,339-348.
    Negi, S., Sukumar, P., Liu, X., Cohen, J.D., and Muday, G.K. (2010). Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61,3-15.
    Neves, C., Sa, M.C., and Amancio, S. (1998). Histochemical detection of H2O2 by tissue printing as a precocious marker of rhizogenesis in grapevine. Plant Physiology and Biochemistry 36,817-824.
    Ni, D.A., Wang, L.J., Xu, Z.H., and Xia, Z.A. (1999). Foliar modifications induced by inhibition of polar transport of auxin. Cell Res 9,27-35.
    Nordstrom, A.C., and Eliasson, L. (1991). Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings. Physiol Plant 82,599-605.
    Normanly, J. (2010). Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2, a001594.
    Nourissier, S., and Monteuuis, O. (2008). In vitro rooting of two Eucalyptus urophylla X Eucalyptus grandis mature clones. In Vitro Cell Dev-PI 44,263-272.
    Ohmiya, A., and Hayashi, T. (1992). Immuno-gold localization of IAA in leaf cells of Prunus persica at different stages of development. Physiologia Plantarum 85, 439-445.
    Ohmiya, A., Hayashi, T., and Kakiuchi, N. (1990). Immuno-gold localization of Indole-3-acetic acid in peach seedlings. Plant Cell Physiol 31,711-715.
    Oka, M., Miyamoto, K., Okada, K., and Ueda, J. (1999). Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene. Plant Cell Physiol 40,231-237.
    Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell 3,677-684.
    Okoro, O.O., and Grace, J. (1978). The physiology of rooting Populus cuttings II. Cytokinin activity in leafless hardwood cuttings. Physiol Plant 44,167-170.
    Ottenschlager, I., Wolff, P., Wolverton, C, Bhalerao, R.P., Sandberg, G., Ishikawa, H., Evans, M., and Palme, K. (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A 100,2987-2991.
    Pacheco, P., Calderon, X., and Vegaand, A. (1995). Flavonoids as regulators and markers of root formation by shoots of Eucalyptus globulus raises in vitro. Plant Perox Newslett5,9-12.
    Park, J.B., Lee, K.B., and Lee, S. (2002). Histological study of callus formation and root regeneration from mung bean (Vigna radiata W.). Journal of plant biology 45, 170-176.
    Pastor, A., Lopez-Carbonell, M., and Alegre, L. (1999). Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender (Lavandula stoechas L.) plants. Physiologia Plantarum 105,272-279.
    Peeters, A.J., Cox, M.C., Benschop, J.J., Vreeburg, R.A., Bou, J., and Voesenek, L.A. (2002). Submergence research using Rumex palustris as a model; looking back and going forward. J Exp Bot 53,391-398.
    Peng, Y.B., Lu, Y.F., and Zhang, D.P. (2003). Abscisic acid activates ATPase in developing apple fruit especially in fruit phloem cells. Plant, Cell & Environment 26, 1329-1342.
    Peng, Y.B., Zou, C., Wang, D.H., Gong, H.Q., Xu, Z.H., and Bai, S.N. (2006). Preferential localization of abscisic acid in primordial and nursing cells of reproductive organs of Arabidopsis and cucumber. New Phytol 170,459-466.
    Perbal, G., Leroux, Y., and Driss-Ecole, D. (1982). Mise en evidence de TAIA-5-3H par autoradiographie dans le coleoptile de Bie. Physiol. Plant 54,167-173.
    Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G., and Ljung, K. (2009). An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21,1659-1668.
    Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertova, D., Wisniewska, J., Tadele, Z., Kubes, M., Covanova, M., Dhonukshe, P., Skupa, P., Benkova, E., Perry, L., Krecek, P., Lee, O.R., Fink, G.R., Geisler, M., Murphy, A.S., Luschnig, C, Zazimalova, E., and Friml, J. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312,914-918.
    Phatak, S.C., Jaworski, C.A., and Liptay, A. (1981). Flowering and adventitious root growth of tomato cultivars as influenced by ethephon. Hort Science 16,181-182.
    Quint, M., and Gray, W.M. (2006). Auxin signaling. Curr Opin Plant Biol 9,448-453.
    Ramirez-Carvajal, G.A., Morse, A.M., Dervinis, C., and Davis, J.M. (2009). The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol 150,759-771.
    Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J., and Muday, G.K. (2000). Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122,481-490.
    Raven, J.A. (1975). Transport of indole acetic acid in plant cell in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74,163-172.
    Reed, R.C., Brady, S.R., and Muday, G.K. (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118,1369-1378.
    Ribnicky, D.M., Cohen, J.D., Hu, W.S., and Cooke, T.J. (2002). An auxin surge following fertilization in carrots:a mechanism for regulating plant totipotency. Planta 214, 505-509.
    Robbins, J.A., Reid, M.S.,., Paul, J.L., and Rost, T.L. (1985). The effect of ethylene on adventitious root formation in mung bean (Vigna radiate) cuttings. J Plant Growth Regu14,147-157.
    Rocha Correa, L.R., Paim, D.C., Schwambach, J., and Fett-Neto, A.G. (2005). Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regulation 45,63-73.
    Rodriguez, A., Albuerne, M., and Sanchez Tames, R. (1988). Rooting ability of Corylus avellana L.:Macromorphological and histological study. Scientia Horticulturae 35, 131-142.
    Rout, G.R. (2006). Effect of Auxins on Adventitious Root Development from Single Node Cuttings of Camellia sinensis (L.) Kuntze and Associated Biochemical Changes. Plant Growth Regulation 48,111-117.
    Rubery, P.H., and Sheldrake, A.R. (1974). Carrier-mediated auxin tranport. Planta 118, 101-121.
    Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bemasconi, P., Turner, J., Muday, G., and Estelle, M. (1997). Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9,745-757.
    Rugini, E., and Marrotti, D. (1992). Agrobacterium rhizogenes T-DNA genes and rooting in wood species. Acta Hort 300,301-308.
    Rugini, E., Pellegrineschi, A., Mencuccini, M., and Mariotti, D. (1991). Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes Plant Cell Reports 10,291-295.
    Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99,463-472.
    Sharp, R.E. (2002). Interaction with ethylene:changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25,211-222.
    Shi, L., Miller, I., and Moore, R. (1993). Immunocytochemical localization of indole-3-acetic acid in primary roots of Zea mays. Plant Cell Environ 16,967-973.
    Shimomura, S., Watanabe, S., and Ichikawa, H. (1999). Characterization of auxin-binding protein 1 from tobacco:content, localization and auxin-binding activity. Planta 209, 118-125.
    Shin, H., Shin, H.S., Guo, Z., Blancaflor, E.B., Masson, P.H., and Chen, R. (2005). Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases. Plant J 42,188-200.
    Shinkle, J.R., Kadakia, R., and Jones, A.M. (1998). Dim-red-light-induced increase in polar auxin transport in cucumber seedlings. Ⅰ. Development Of altered capacity, velocity, and response to inhibitors. Plant Physiol 116,1505-1513.
    Shishova, M., and Lindberg, S. (2010). A new perspective on auxin perception. J Plant Physiol 167,417-422.
    Sieburth, L.E. (1999). Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121,1179-1190.
    Smart, D.R., Kocsis, L., Andrew Walker, M., and Stockert, C. (2003). Dormant Buds and Adventitious Root Formation by Vitis and Other Woody Plants. J Plant Growth Regul 21,296-314.
    Sorin, C., Bussell, J.D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G., McKhann, H., Garcion, C., Vaucheret, H., Sandberg, G., and Bellini, C. (2005). Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17,1343-1359.
    Sossountzov, L., Maldiney, R., and Sotta, B. (1986). Immunoelectronmicroscopy localization of ABA with colloidal gold on lowicryl-embedded tissues of Chnopodium polyspermum L. Planta 168,471-481.
    Sossountzov, L., Maddiney, R., Sotta, B., Sabbagh, I., Habricot, Y., Bonnet, M., and Miginiac, E. (1988). Immunocytochemical localization of cytokinins in Craigella tomato and a sideshootless mutant. Planta 175,291-304.
    Steffens, B., and Sauter, M. (2005). Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139,713-721.
    Steffens, B., Wang, J., and Sauter, M. (2006). Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223,604-612.
    Suge, H. (1985). Ethylene and gibberellin:regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol 26,607-614.
    Sun, W.Q., and Bassuk, N. (1993). Auxin-induced ethylene synthesis during rooting and inhibition of budbreak of'Royalty'rose cuttings. J Amer Soc Hort Sci 118, 638-643.
    Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K., and Bennett, M. (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15,2648-2653.
    Takahashi, F., Sato-Nara, K., Kobayashi, K., Suzuki, M., and Suzuki, H. (2003). Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116,83-91.
    Tallman, G. (2004). Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 55,1963-1976.
    Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446,640-645.
    Taylor, J.L.S., and Staden, J.V. (1997). Variation in the level and type of cytokinin with the stage of root develogment in impatiens wallerana HOOK.f. stem cuttings. Plant Growth Regulation 22,175-180.
    Thomas, C, Bronner, R., Molinier, J., Prinsen, E., van Onckelen, H., and Hahne, G. (2002). Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215,577-583.
    Tsiantis, M., Brown, M.I., Skibinski, G, and Langdale, J.A. (1999). Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol 121, 1163-1168.
    Upadhya, A., DAVIS, T., and SANKHLA, N. (1986). Some Biochemical Changes Associated with Paclobutrazol-Induced Adventitious Root Formation on Bean Hypocotyl Cuttings. Ann Bot 57,309-315.
    Vanneste, S., and Friml, J. (2009). Auxin:a trigger for change in plant development. Cell 136,1005-1016.
    Verslues, P.E., and Zhu, J.K. (2005). Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions 33,375-379.
    Vieitez, A.M., Ballester, A., Garcia, M.T., and Vieitez, E. (1980). Starch depletion and anatomical changes during the rooting of Castanea sativa Mill, cuttings. Scientia Horticulturae 13,261-266.
    Vieten, A., Sauer, M., Brewer, P.B., and Friml, J. (2007). Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12,160-168.
    Vysotskaya, L.B., Veselov, S.Y., and Veselov, D.S. (2007). Immunohistological localization and quantification of IAA in studies of root growth regulation. Russ J Plant Physiol 54,827-832.
    Wang, S.Y., Jiao, H.J., and Faust, M. (1991). Changes in the activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron. J Plant Growth Regul 10,33-39.
    Welbaum, G.E., Bian, D., Hill, D.R., Grayson, R.L., and Gunatilaka, M.K. (1997). Freezing tolerance protein composition and abscisic acid localization and content of pea epicotyl shoot and root tissue in response to temperature and water stress. Journal of Experimental Botany 48,643-654.
    Wiesman, Z., Riovl, J., and Epstein, E. (1988). Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings. Physiol Plant 74,556-560.
    Wisniewska, J., Xu, J., Seifertova, D., Brewer, P.B., Ruzicka, K., Blilou, I., Rouquie, D., Benkova, E., Scheres, B., and Friml, J. (2006). Polar PIN localization directs auxin flow in plants. Science 312,883.
    Woodward, A.W., and Bartel, B. (2005). Auxin:regulation, action, and interaction. Ann Bot 95,707-735.
    Xu, M., Zhu, L., Shou, H., and Wu, P. (2005). A PINl family gene, OsPINl, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physio146,1674-1681.
    Xu, Z.H., and Ni, D.A. (1999). Modifications of leaf morphogenesis induced by inhibition of auxin polar transport. In Plant Biotechnology and In Vitro Biology in the 21th. Century, A. Altman and M. Ziv, eds (Dordrecht:Kluwer Academic Publishers), pp. 97-99.
    Xuan, W., Zhu, F.Y., Xu, S., Huang, B.K., Ling, T.F., Qi, J.Y., Ye, M.B., and Shen, W.B. (2008). The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148,881-893.
    Yamaguchi, I., and Weiler, E.W. (1991). A minireview on the immunoassay for gibberellins. In Gibberellins, N. Takahashi, B.O. Phinney, and J. MacMillan, eds (New York: Springer-Verlag), pp.146-165.
    Yang, Y, Xu, R., Ma, C.J., Vlot, A.C., Klessig, D.F., and Pichersky, E. (2008). Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol 147, 1034-1045.
    Zacarias, L. (1992). Inhibition of ethylene action prevents root penetration through compressed media in tomato(Lycopersicon esculentum) seedling. Physiol Plant 86,301-303.
    Zavala, M.E., and Brandon, D.L. (1983). Localization of a phytohormone using immunocytochemistry. J Cell Biol 97,1235-1239.
    Zhang, D.P., Huang, C.L., and Jia, W.S. (1999). Immunogold electron-microscopy localization of abscisic acid in flesh cells of grape berry (Vitis vinifera L. x Vitis labrusca L. cv Kyoho). Scientia Horticulturae 81,189-198.
    Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61,49-64.
    Zhao, Y, Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J., and Celenza, J.L. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16, 3100-3112.
    Zhong, R., Thompson, J., Ottesen, E., and Lamppa, G.K. (2010). A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover. Plant J 63,44-59.
    Zhou, D.X., Yin, K., Xu, Z.H., and Xue, H.W. (2003). Effect of polar auxin transport on rice root development. Acta Bot Sin 45,1421-1427.
    Zimmerman, P.W., and Hitchcock, A.E. (1933). Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases. Contri Boyce Thompson Inst 5, 351-369.