基于光谱/空间信息的肉骨粉近红外显微成像分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展饲料中不同肉骨粉快速分析方法的研究,可为保障饲料安全提供必要的技术支撑,具有重要的现实意义。近红外显微成像是一种联用技术,结合了近红外光谱学与显微成像方法,具有快速、无损、无污染、高分辨、微区化等优势。挖掘与融合近红外显微图像中光谱信息和空间信息,有助于实现饲料中肉骨粉的准确识别。因此,本文开展了基于光谱/空间信息的饲料中不同肉骨粉近红外显微成像分析方法的研究。研究结果为进一步提高饲料中不同肉骨粉的检测精度奠定了方法学基础。论文取得的主要创新成果有:
     1.以精料补充料、鱼粉、肉骨粉为研究对象,通过四氯乙烯富集获取沉淀颗粒,采用近红外显微成像系统扫描样本沉淀颗粒,结合主成分分析和K均值聚类方法分析成像光谱,实现了精料补充料与肉骨粉,鱼粉与肉骨粉的快速区分,并利用聚类方法进一步细化了精料补充料中样本类别。
     2.以不同种属肉骨粉(猪源、禽源、反刍源)为研究对象,采用近红外显微成像技术,快速获取并优选具有代表性的沉淀颗粒光谱,构建不同种属肉骨粉近红外标准光谱库。设计开发了基于Matlab的近红外显微图像颗粒光谱自动提取软件,从显微成像数据阵中获取单条颗粒光谱,以自动化批处理方式提高了光谱的提取效率,颗粒光谱准确提取率为96.4%。基于标准光谱库,结合偏最小乘判别分析与支持向量机判别分析方法,构建不同种属肉骨粉定性判别模型,模型的实际应用结果良好,对猪源、禽源和反刍源的灵敏度分别为0.896,0.949和0.918,特异度分别为0.963,0.969和0.950。
     3.基于近红外显微图像中空间信息与光谱信息的同步提取和融合,提出并采用了Markov随机场模型方法构建饲料中肉骨粉定性判别模型与鱼粉中肉骨粉定性判别模型。该方法通过支持向量机判别分析获得初始类别属性,通过主成分分析获得特征向量,采用条件迭代模型算法结合初始类别属性和特征向量建立Markov随机场模型。以饲料与肉骨粉、鱼粉与肉骨粉颗粒相互叠加的样本为对象,采用Markov随机场模型处理近红外显微图像,获取标记肉骨粉与饲料、肉骨粉与鱼粉类别的分类图像,实现对饲料中肉骨粉、鱼粉中肉骨粉的识别。结果表明识别饲料覆盖的肉骨粉的分类准确度可达86.59%,Kappa系数可达0.68,鱼粉覆盖的肉骨粉的分类准确度可达86.22%,Kappa系数可达0.66。与传统近红外图像处理方法比较,新方法有助于对叠加样本的识别,有效提高了饲料中肉骨粉的近红外显微成像识别精度。
     4.以掺杂不同肉骨粉质量分数的饲料样本为研究对象,采用Markov随机场模型方法建立了饲料中肉骨粉近红外显微定量分析模型,并与采用PLSR方法和SVMDA方法构建的模型相比较。结果显示:基于PLSR方法、SVMDA方法和MRF方法构建的定量分析模型,对肉骨粉质量分数低于0.10样本的决定系数(R2)分别为0.52、0.56、0.62,平均绝对误差(AAE)分别为0.89%、0.97%、0.60%;对全部样本的R2分别为0.99、0.96、0.98,AAE分别为0.46%、0.59%、0.42%。与传统近红外显微图像处理方法比较,MRF模型方法能够实现成像数据中的空间信息与光谱信息同步提取和融合,有助于饲料中肉骨粉的近红外成像定量分析。
Meat and bone meal (MBM) is one of the main prion-contaminated animal feed ingredients responsible for BSE, generally called "mad cow disease". As many countries have legislated the banning of MBM as a feedstuff or feed ingredient to prevent the transmission of this disease among cattle and other livestock, techniques to detect MBM are required. By combining near-infrared (NIR) spectroscopy and microscopy, NIR microscopic imaging records a spectrum per site (pixel) of sample surface and finally forms an image of the sample. This new advanced analytical technique is a rapid, non-destructive, non-polluted, high-accuracy and micro-visualization method in characterizing complex mixtures. This method will be enhanced for the identification of MBM by extracting spectral information combined with spatial information from NIR spectroscopic images. This study investigated the appropriate approaches for integrating spatial with spectral information from NIR microscopic image. The research work has important scientific and practical value in enriching rapid detection method of MBM and preventing the occurrence of BSE disease.
     1. Samples of MBM, dairy concentrate supplement and fish meal (FM) were collected, sedimented and arranged on polytetrarruoroethene (PTFE) background plate for NIR microscopic imaging. Both principal component analysis (PCA) and K-means clustering analysis were used to extract and present relevant information from NIR microscopic images. The results showed that MBM could be distinguished from dairy concentrate supplement/FM by the scores from principal component analysis, and samples were subdivided by using K-means clustering based on the PCA analysis. It is demonstrated that NIR microscopic imaging approach is one of most promising methods for the detection of MBM.
     2. To test the performance of NIR microscopic imaging to species identify MBM, a rapid method to construct NIR microscopic standard spectra database is demonstrated. For the study, bone fragments of three different species MBM (porcine origin, avian origin and ruminant origin) were analyzed on NIR microscopic imaging system, and both VIS and NIR images were acquired at the same size. To extract and mark the position of every single bone fragment in visible image, a graphical user-friendly interface, based on marker-controlled watershed segmentation method, written in Matlab for extracting and marking bone fragments has been developed in this paper. By the position information in VIS image, NIR microscopic image was decompounded to spectrum of each bone fragment. The determination model is then constructed by two methods (PLSDA and SVMDA) with different spectral preprocessing. The sensitivity of the best discrimination model is0.896,0.949and0.918, respective for three species. The specificity is0.963,0.969and0.950.
     3. This study introduces an innovative approach to analyzing NIR microscopic images: an Markov random field-based approach has been developed using the ICM (Iterative conditional mode) algorithm, integrating initial labeling derived results from SVMDA and observation data derived from the results of PCA. The results showed that MBM covered by feed can be successfully recognized with an overall accuracy of86.59%and a Kappa coefficient of0.68. MBM covered by FM can be successfully recognized with an overall accuracy of86.22%and a Kappa coefficient of0.66.Compared with conventional methods, the MRF-based approach is capable of extracting spectral information combined with spatial information from NIR microscopic images. This new approach enhances the identification of MBM using NIR microscopic imaging.
     4. Feed containing between0%-100%(w/w) MBM are prepared to test the quantification ability of NIR microscopic imaging. Three different strategies are demonstrated to construct a quantification model, including PLSR, SVMDA and MRF-based approach. The results showed that the determination coefficients (R2) of three quantification models for the low level content samples (0%MBM-10%MBM) is0.52,0.56and0.62with an average absolute error (AAE)0.89%,0.97%and0.60%, respectively. The determination coefficients (R2) of three quantification models for all samples is0.99,0.96and0.98with an AAE0.46%,0.59%and0.42%, respectively.
引文
Abbas O, Fernandez Pierna JA, Boix A, et al. Key Parameters for the Development of a Nir Microscopic Method for the Quantification of Processed by-Products of Animal Origin in Compound Feedingstuffs. Analytical And Bioanalytical Chemistry.2010,397 (5):1965-1973
    Alo F, Bruni P, Cavalleri A, et al. Infrared Microscopy Characterisation of Carotid Plaques and Thyroid Tissue Biopsies. Journal of Molecular Structure.2003,651-653 (0):419-426
    Amigo JM, Cruz J, Bautista M, et al. Study of Pharmaceutical Samples by Nir Chemical-Image. and Multivariate Analysis. TrAC Trends in Analytical Chemistry.2008,27 (8):696-713
    Awa K, Okumura T, Shinzawa H, et al. Self-Modeling Curve Resolution (Smcr) Analysis of near-Infrared (Nir) Imaging Data of Pharmaceutical Tablets. Analytica Chimica Acta.2008,619 (1):81-86
    Baeten V, von Holst C, Garrido A, et al. Detection of Banned Meat and Bone Meal in Feedstuffs by near-Infrared Microscopic Analysis of the Dense Sediment Fraction. Analytical And Bioanalytical Chemistry.2005,382 (1):149-157
    Baptistao M, Rocha WFdC, Poppi RJ. Quality Control of the Paracetamol Drug by Chemometrics and Imaging Spectroscopy in the near Infrared Region. Journal of Molecular Structure.2011,1002 (1-3):167-171
    Besag J. On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society Series B-Methodological.1986,48 (3):259-302
    Bhargava R. Infrared Spectroscopic Imaging:The Next Generation. Applied Spectroscopy.2012,66 (10): 1091-1120
    Blake A, Kohli P, Rother C. Markov Random Fields for Vision and Image Processing. London:The MIT Press,2011
    Burns DA, Ciurczak EW. Handbook of near-Infrared Analysis.3rd edn. Boca Raton:CRC Press,2008
    Chen L, Yang Z, Han L. A Review on the Use of near-Infrared Spectroscopy for Analyzing Feed Protein Materials. Applied Spectroscopy Reviews.2013,48 (7):509-522
    Choudhary R, Mahesh S, Paliwal J, et al. Identification of Wheat Classes Using Wavelet Features from near Infrared Hyperspectral Images of Bulk Samples. Biosystems Engineering.2009,102 (2):115-127
    Clarke F. Extracting Process-Related Information from Pharmaceutical Dosage Forms Using near Infrared Microscopy. Vibrational Spectroscopy.2004,34 (1):25-35
    Cozzolino D, Chree A, Scaife JR, et al. Usefulness of near-Infrared Reflectance (Nir) Spectroscopy and Chemometrics to Discriminate Fishmeal Batches Made with Different Fish Species. J Agric Food Chem.2005,53 (11):4459-4463
    Cruz J, Bautista M, Amigo JM, et al. Nir-Chemical Imaging Study of Acetylsalicylic Acid in Commercial Tablets. Talanta.2009,80 (2):473-478
    Dale LM, Fernandez Pierna JA, Vermeulen P, et al. Research on Crude Protein and Digestibility of Arnica Montana L. Using Conventional Nir Spectrometry and Hyperspectral Imaging Nir. Journal of Food, Agriculture and Environment.2012,10 (1):391-396
    Dale LM, Thewis A, Boudry C, et al. Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control:A Review. Applied Spectroscopy Reviews.2013,48 (2):142-159
    Dardenne P. Strategies and Methods to Detect and Quantify Mammalian Tissues in Feedingstuffs(Stratfeed). Belgium:European Communities,2005
    de Juan A, Tauler R. Chemometrics Applied to Unravel Multicomponent Processes and Mixtures. Analytica Chimica Acta.2003,500 (1-2):195-210
    De la Haba M, Fernandez Pierna J, Fumiere O, et al. Discrimination of Fish Bones from Other Animal Bones in the Sedimented Fraction of Compound Feeds by near Infrared Microscopy. Journal of Near Infrared Spectroscopy.2007,15 (2):81
    De la Haba M, Garrido-Varo A, Perez-Marin D, et al. Near Infrared Spectroscopy Calibrations for Quantifying the Animal Species in Processed Animal Proteins. Journal of Near Infrared Spectroscopy.2009,17 (1):109
    De la Roza-Delgado B, Soldado A. Martinezfernandez A, et al. Application of near-Infrared Microscopy (Nirm) for the Detection of Meat and Bone Meals in Animal Feeds:A Tool for Food and Feed Safety. Food Chemistry.2007,105 (3):1164-1170
    Duponchel L, Elmi-Rayaleh W, Ruckebusch C, et al. Multivariate Curve Resolution Methods in Imaging Spectroscopy:Influence of Extraction Methods and Instrumental Perturbations. J Chem Inf Comput Sci.2003,43 (6):2057-2067
    Esquerre C, Gowen AA, Burger J, et al. Suppressing Sample Morphology Effects in near Infrared Spectral Imaging Using Chemometric Data Pre-Treatments. Chemometrics and Intelligent Laboratory Systems. 2012,117(2012):129-137
    European Commission. Commission Regulation (Ec) No 152/2009 of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed. Off J Eur Union.2009, L54 (1): 1-130
    European Commission. Commission Regulation (Eu) No 51/2013 of 16 January 2013 Amending Regulation (Ec) No 152/2009 as Regards the Methods of Analysis for the Determination of Constituents of Animal Origin for the Official Control of Feed. In:Official Journal of the European Union,2013:33-43
    Feng Y, Sun D. Near-Infrared Hyperspectral Imaging in Tandem with Partial Least Squares Regression and Genetic Algorithm for Non-Destructive Determination and Visualization of Pseudomonas Loads in Chicken Fillets. Talanta.2013,109 (2013):74-83
    Fengxi S, Zhongwei G, Dayong M. Feature Selection Using Principal Component Analysis. In:System Science, Engineering Design and Manufacturing Informatization (ICSEM),2010 International Conference on, 2010:27-30
    Fernandez-Ibanez V, Fearn T, Soldado A, et al. Development and Validation of near Infrared Microscopy Spectral Libraries of Ingredients in Animal Feed as a First Step to Adopting Traceability and Authenticity as Guarantors of Food Safety. Food Chemistry.2010,121 (3):871-877
    Fernandez-Ibanez V, Fearn T, Soldado A, et al. Spectral Library Validation to Identify Ingredients of Compound Feedingstuffs by near Infrared Reflectance Microscopy. Talanta.2009,80 (1):54-60
    Fernandez-Ibanez V, Fearn T, Montanes E, et al. Improving the Discriminatory Power of a near-Infrared Microscopy Spectral Library with a Support Vector Machine Classifier. Applied Spectroscopy.2010, 64 (1):66-72
    Fernandez Pierna JA, Baeten V, Renier AM, et al. Combination of Support Vector Machines (Svm) and near-Infrared (Nir) Imaging Spectroscopy for the Detection of Meat and Bone Meal (Mbm) in Compound Feeds. Journal of Chemometrics.2004,18 (7-8):341-349
    Fernandez Pierna JA, Dardenne P, Baeten V. In-House Validation of a near Infrared Hyperspectral Imaging Method for Detecting Processed Animal Proteins in Compound Feed. Journal of Near Infrared Spectroscopy.2010,18 (2):121-133
    Garcia-Allende PB, Conde OM, Mirapeix J, et al. Data Processing Method Applying Principal Component Analysis and Spectral Angle Mapper for Imaging Spectroscopic Sensors. Sensors Journal, IEEE.2008, 8 (7):1310-1316
    Hill AF, Desbruslais M, Joiner S, et al. The Same Prion Strain Causes Vcjd and Bse. Nature.1997,389 (6650): 448-450
    Hirschmugl CJ, Gough KM. Fourier Transform Infrared Spectrochemical Imaging:Review of Design and Applications with a Focal Plane Array and Multiple Beam Synchrotron Radiation Source. Applied Spectroscopy.2012,66 (5):475-491
    Hughes G. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Transactions on Information Theory. 1968,14 (1):55-63
    Juan Ad, Tauler R, Dyson R, et al. Spectroscopic Imaging and Chemometrics:A Powerful Combination for Global and Local Sample Analysis. TrAC Trends in Analytical Chemistry.2004,23 (1):70-79
    Kobayashi M, Hara K, Akiyama Y. Infrared Analysis of Bones in Magnesium-Deficient Rats Treated with Vitamin K2. Journal Of Bone And Mineral Metabolism.2007,25 (1):12-18
    Koehler Iv FW, Lee E, Kidder LH, et al. Near Infrared Spectroscopy:The Practical Chemical Imaging Solution. Spectroscopy Europe.2002,14.(3):12+14+1.6+18-19
    Larkin P. Infrared and Raman Spectroscopy Principles and Spectral Interpretation Amsterdam; Boston: Elsevier,,2011:1 online resource (x,228 p.)
    Lewis EN, Gorbach AM, Marcott C, et al. High-Fidelity Fourier Transform Infrared Spectroscopic Imaging of Primate Brain Tissue. Applied Spectroscopy.1996,50 (2):263-269
    Li J, Rao X, Ying Y. Detection of Common Defects on Oranges Using Hyperspectral Reflectance Imaging. Computers and Electronics in Agriculture.2011,78 (1):38-48
    Li SZ. Markov Random Field Modeling in Image Analysis.3rd edn. London:Springer,2009
    Liu X, Han L, Veys P, et al. An Overview of the Legislation and Light Microscopy for Detection of Processed Animal Proteins in Feeds. Microscopy Research And Technique.2011,74 (8):735-743
    Lorente D, Aleixos N, Gomez-Sanchis J, et al. Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food and Bioprocess Technology.2011,5 (4):1121-1142
    Lyon RC, Lester DS, Lewis EN, et al. Near-Infrared Spectral Imaging for Quality Assurance of Pharmaceutical Products:Analysis of Tablets to Assess Powder Blend Homogeneity. AAPS PharmSciTech.2002,3 (3):E17
    MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations. In:Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:Statistics Berkeley, Calif:University of California Press,1967:281-297
    Malaga-Trillo E, Salta E, Figueras A, et al. Fish Models in Prion Biology:Underwater Issues. Biochim Biophys Acta.2011,1812 (3):402-414
    Manley M, Williams P, Nilsson D, et al. Near Infrared Hyperspectral Imaging for the Evaluation of Endosperm Texture in Whole Yellow Maize (Zea Maize L.) Kernels. Journal Of Agricultural And Food Chemistry. 2009,57 (19):8761-8769
    Mansfield JR, Sowa MG, Majzels C, et al. Near Infrared Spectroscopic Reflectance Imaging:Supervised Vs. Unsupervised Analysis Using an Art Conservation Application. Vibrational Spectroscopy.1999,19 (1):33-45
    Metternicht GI, Zinck JA. Remote Sensing of Soil Salinity:Potentials and Constraints. Remote Sensing of Environment.2003,85 (1):1-20
    Meyn SP, Tweedie RL. Markov Chains and Stochastic Stability.2nd edn. Cambridge; New York:Cambridge University Press,2009
    Murray I, Aucott LS, Pike IH. Use of Discriminant Analysis on Visible and near Infrared Reflectance Spectra to Detect Adulteration of Fishmeal with Meat and Bone Meal. Journal of Near Infrared Spectroscopy. 2001,9 (4):297-311
    NathansonN, Wilesmith J, Griot C. Bovine Spongiform Encephalopathy (Bse):Causes and Consequences of a Common Source Epidemic. American Journal of Epidemiology.1997,145 (11):959-969
    Nicolai BM, Beullens K, Bobelyn E, et al. Nondestructive Measurement of Fruit and Vegetable Quality by Means of Nir Spectroscopy:A Review. Postharvest Biology and Technology.2007,46 (2):99-118
    Omran MGH, Engelbrecht AP, Salman A. An Overview of Clustering Methods. Intelligent Data Analysis. 2007,11 (6):583-605
    Perez-Marin DC, Garrido-Varo A, Guerrero-Ginel JE, et al. Near-Infrared Reflectance Spectroscopy (Nirs) for the Mandatory Labelling of Compound Feedingstuffs:Chemical Composition and Open-Declaration. Animal Feed Science and Technology.2004,116 (3-4):333-349
    Pavino D, Squadrone S, Cocchi M, et al. Towards a Routine Application of Vibrational Spectroscopy to the Detection of Bone Fragments in Feedingstuffs:Use and Validation of a Nir Scanning Microscopy Method. Food Chemistry.2010,121 (3):826-831
    Payne G, Wallace C, Reedy B, et al. Visible and near-Infrared Chemical Imaging Methods for the Analysis of Selected Forensic Samples. Talanta.2005,67 (2):334-344
    Perez-Marin D, Fearn T, Guerrero JE, et al. A Methodology Based on Nir-Microscopy for the Detection of Animal Protein by-Products. Talanta.2009,80 (1):48-53
    PERez MarIN DC, Garrido-Varo A, Guerrero JE, et al. External Validation and Transferability of Nirs Models Developed for Detecting and Quantifying Mbm in Intact Compound Feeding Stuffs. Journal of Food Quality.2008,31(1):96-107
    Pogue BW, Davis SC, Leblond F, et al. Implicit and Explicit Prior Information in near-Infrared Spectral Imaging:Accuracy, Quantification and Diagnostic Value. Philos Transact A Math Phys Eng Sci.2011, 369 (1955):4531-4557
    Prusiner SB. Prion Diseases and the Bse Crisis. Science.1997,278 (5336):245-251
    Puchert T, Lochmann D, Menezes JC, et al. Near-Infrared Chemical Imaging (Nir-Ci) for Counterfeit Drug Identification--a Four-Stage Concept with a Novel Approach of Data Processing (Linear Image Signature). J Pharm Biomed Anal.2010,51 (1):138-145
    Riccioli C, Perez-Marin D, Guerrero-Ginel JE, et al. Pixel Selection for near-Infrared Chemical Imaging (Nir-Ci) Discrimination between Fish and Terrestrial Animal Species in Animal Protein by-Product Meals. Applied Spectroscopy.2011,65 (7):771-781
    Rinnan A, Berg Fvd, Engelsen SB. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC Trends in Analytical Chemistry.2009,28 (10):1201-1222
    Rodriguez-Pulido FJ, Barbin DF, Sun D-W, et al. Grape Seed Characterization by Nir Hyperspectral Imaging. Postharvest Biology and Technology.2013,76:74-82
    Savitzky A, Golay MJE. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry.1964,36 (8):1627-1639
    Steinier J, Termonia Y, Deltour J. Comments on Smoothing and Differentiation of Data by Simplified Least Square Procedure [2]. Analytical Chemistry.1972,44 (11):1906-1909
    Taghizadeh M, Gowen AA, O'Donnell CP. The Potential of Visible-near Infrared Hyperspectral Imaging to Discriminate between Casing Soil, Enzymatic Browning and Undamaged Tissue on Mushroom (Agaricus Bisporus) Surfaces. Computers and Electronics in Agriculture.2011,77 (1):74-80
    Van der Meer F. Remote-Sensing Image Analysis and Geostatistics. International Journal of Remote Sensing. 2012,33 (18):5644-5676
    van Raamsdonk LD, von Holst C, Baeten V, et al. New Developments in the Detection and Identification of Processed Animal Proteins in Feeds. Animal Feed Science and Technology.2007,133 (1-2):63-83
    Vermeulen P, Pierna J, Egmond H, et al. Online Detection and Quantification of Ergot Bodies in Cereals Using near Infrared Hyperspectral Imaging. Food additives & contaminants Part A.2012,29 (2):232-240
    Vermeulen P, Fernandez Pierna J, van Egmond H, et al. Validation and Transferability Study of a Method Based on near-Infrared Hyperspectral Imaging for the Detection and Quantification of Ergot Bodies in Cereals. Analytical And Bioanalytical Chemistry.2013,405 (24):7765-7772
    Vincent L, Soille P. Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1991,13 (6):583-598
    Vogt F. Trends in Remote Spectroscopic Sensing and Imaging - Experimental Techniques and Chemometric Concepts. Current Analytical Chemistry.2006,2 (2):107-127
    von Hoist C, Baeten V, Boix A, et al. Transferability Study of a near-Infrared Microscopic Method for the Detection of Banned Meat and Bone Meal in Feedingstuffs. Analytical And Bioanalytical Chemistry. 2008,392 (1-2):313-317
    Wang W, Paliwal J. Potential of near-Infrared Hyperspectral Reflectance Imaging for Screening of Farm Feed Contamination. Presented at the Proceedings of SPIE, Toronto, Canada,2005:59692T-59692T-59610
    Wang Y, Yao X, Parthasarathy R. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using Ftir Chemical Imaging with Univariate and Multivariate Data Processing. J Biomed Mater Res A. 2009,91(1):251-262
    Williams P, Geladi P, Fox G, et al. Maize Kernel Hardness Classification by near Infrared (Nir) Hyperspectral Imaging and Multivariate Data Analysis. Analytica Chimica Acta.2009,653 (2):121-130
    Wu D, Sun D-W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment:A Review - Part Ii:Applications. Innovative Food Science & Emerging Technologies.2013a,19:15-28
    Wu D, Sun D-W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment:A Review - Part I:Fundamentals. Innovative Food Science & Emerging Technologies.2013b,19:1-14
    Yang Z, Han L, Li Q, et al. Use of Discriminant Analysis on Nirs to Detect Meat-and-Bone Meal Content in Ruminant Concentrates. Journal of Animal and Feed Sciences.2007,16:442-447
    Yang Z, Han L, Fernandez Pierna J, et al. The Potential of near Infrared Microscopy to Detect, Identify and Quantify Processed Animal by-Products. Journal of Near Infrared Spectroscopy.2011,19 (4):211
    Zhu R, Han L, Yang Z, et al. Rapid Detection of Meat and Bone Meal Content in Compound Fertilizer by near Infrared Reflectance Spectroscopy. Journal of Infrared and Millimeter Waves.2006,25 (4):267-270
    安金龙.支持向量机若干问题的研究[博士]:天津大学.2004
    蔡子文,费向东.基于标记的数学形态学滤波分水岭算法.计算机技术与发展.2013(03):38-40+44
    褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展.2004(04):528-542
    褚小立,陆婉珍.近红外化学成像的原理、仪器及应用.分析仪器.2008(04):1-5
    褚小立.化学计量学方法与分子光谱分析技术.化学工业出版社,2011
    范听炜.支持向量机算法的研究及其应用[博士]:浙江大学.2003
    吉海彦,严衍禄.红外光谱图像技术及其在生物学研究中的应用.物理.2000(03):174-177+161
    李琼飞,杨增玲,韩鲁佳.肉骨粉中牛羊源成分含量的近红外漫反射光谱分析.红外与毫米波学报.2007(06):414-418
    李旭超,朱善安.图像分割中的马尔可夫随机场方法综述.中国图象图形学报.2007(05):789-798
    刘峰,杨志高,龚健雅.基于标记控制分水岭算法的树冠高程模型分割.中国农学通报.2011(19):49-54
    刘国英.基于markov随机场的小波域图像建模及分割.北京:科学出版社,2010
    牛智有,韩鲁佳,苏晓鸥,et al.鱼粉品质的近红外反射光谱快速检测方法.农业机械学报.2005(05):68-71
    牛智有,韩鲁佳,苏晓鸥,等.鱼粉中肉骨粉含量的近红外反射光谱分析.农业机械学报.2006(08):126-129+106
    牛智有,韩鲁佳.基于近红外光谱的反刍动物饲料营养指标的检测方法研究.华中农业大学学报.2007a(05):657-660
    牛智有,韩鲁佳.近红外光谱分析技术在饲料检测中的应用.饲料研究.2007b(08):11-13
    蒲乾坤.基于脂质特性的不同种属动物源性饲料红外光谱鉴别分析.北京:中国农业大学.2013
    石光涛,韩鲁佳,杨增玲,等.基于nirs技术的鱼粉中掺杂植物饼粕的研究.In:2007年中国农业工程学会学术年会中国黑龙江大庆,2007:1
    石光涛,韩鲁佳,杨增玲,等.鱼粉中掺杂豆粕的可见和近红外反射光谱分析研究.光谱学与光谱分析.2009(02):362-366
    孙大文,吴迪,何鸿举,等.现代光学成像技术在食品品质快速检测中的应用.华南理工大学学报(自然科学版).2012(10):59-68
    孙颖,何国金.基于标记分水岭算法的高分辨率遥感图像分割方法.科学技术与工程.2008(11):2776-2781
    王国权,周小红,蔚立磊.基于分水岭算法的图像分割方法研究.计算机仿真.2009(05):255-258
    王国胜.支持向量机的理论与算法研究[博士]:北京邮电大学.2008
    熊本海,庞之洪,罗清尧.中国饲料成分及营养价值表(2012年第23版)制订说明.中国饲料.2012(21):33
    徐迪.马尔科夫随机场在图像分割方法中的应用研究:哈尔滨工业大学%9硕士.2013
    徐胜军,毛建东,赵亮.基于局部区域能量最小化模型的图像分割.计算机工程.2010(17):232-233+236
    杨卫莉,郭雷.基于分水岭算法和图论的图像分割.计算机工程与应用.2007(07):28-30+44
    湛小梅,韩鲁佳,刘贤,等.遗传算法在鱼粉中肉骨粉近红外光谱检测中的应用.光学学报.2009(10):2800-2803
    张太翔,赵德明.传染性海绵状脑病传播途径的研究进展.中国畜牧兽医.2007(01):123-125
    张子丹上.基于mrf高斯混合模型的海浪纹理背景目标区域分割.上海海事大学学报.2010(01):7-11%@1672.9498%L 1631-1968/U%W CNKI
    中华人民共和国国家质量监督检验检疫总局.饲料用骨粉及肉骨粉,2006
    朱荣光,韩鲁佳,杨增玲,等.近红外反射光谱分析技术快速检测复合化学肥料中肉骨粉含量的研究.红外与毫米波学报.2006(04):267-270