靶序列富集多重PCR在儿童肺炎细菌性病原诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨靶序列富集多重PCR在儿童肺炎多种细菌性病原联合检测中的临床应用价值,了解本地区儿童肺炎的细菌性病原分布,期望建立针对儿童肺炎常见细菌性病原快速、敏感、特异的诊断方法,指导临床进行肺炎的病因学诊断并合理使用抗生素。
     方法
     确诊为社区获得性肺炎的患儿188例,在入院当天采集深部呼吸道吸引物,用普通培养基和肺炎链球菌、流感嗜血杆菌选择性培养基进行细菌培养,然后提取深部呼吸道吸引物中病原体的DNA,采用荧光定量单PCR的方法检测肺炎支原体,并对同一标本采用靶序列富集多重PCR(Tem-PCR)技术同时扩增肺炎链球菌、流感嗜血杆菌、金黄色葡萄球菌、肺炎克雷伯菌、大肠杆菌、嗜肺军团菌、铜绿假单胞菌、鲍曼氏不动杆菌、脑膜炎奈瑟氏菌、阴沟肠杆菌、奇异变形杆菌、化脓链球菌、粪肠球菌及屎肠球菌14种呼吸道病原菌和肺炎支原体的靶基因,扩增产物用Luminex100多功能悬浮点阵仪检测。以培养和单PCR为参考,比较Tem-PCR对细菌和肺炎支原体检测的敏感性和特异性;分析细菌培养和病原特异性DNA联合检测对肺炎细菌学病原的影响以及肺炎支原体与细菌混合感染的情况。
     结果
     (1)在188例呼吸道标本中,细菌培养共分离出114株病原菌,其中3例同时培养出2种病原菌,这些病原菌分别是流感嗜血杆菌24株,大肠杆菌16株,粘质沙雷菌14株,肺炎克雷伯菌12株,副流感嗜血杆菌11株,金黄色葡萄球菌9株,肺炎链球菌7株,铜绿假单胞菌3株,鲍曼氏不动杆菌2株,阴沟肠杆菌2株,其他少见细菌9种共14株,培养的阳性率为59.1%(111/188)。
     (2)经Tem-PCR技术扩增后,188例标本在Luminex100多功能悬浮点阵仪中有75例呈阳性,共检测出93株病原菌的靶基因,分别是流感嗜血杆菌40株,肺炎链球菌36株,鲍曼氏不动杆菌10株,铜绿假单胞菌4株,金黄色葡萄球菌3株,另外9种Tem-PCR已设计的细菌包括肺炎克雷伯菌、大肠杆菌、阴沟肠杆菌等均未检出,Tem-PCR的阳性率是39.9%(75/188)。
     (3)以细菌培养作为参考标准,Tem-PCR对14种病原菌总的敏感性为51.0%,特异性为68.0%,符合率为58.3%,对肺炎链球菌、流感嗜血杆菌、金黄色葡萄球菌、鲍曼氏不动杆菌、铜绿假单胞菌的敏感性分别为100%、41.7%、11.1%、50.0%、66.7%,特异性分别为84.0%、81.7%、98.9%、95.2%、98.9%。Tem-PCR对肺炎链球菌的检出率36/188(19.1%)明显高于培养7/188(3.7%),P<0.01;对流感嗜血杆菌的检出率40/188(21.3%)与培养24/188(12.8%)之间无明显差异,P>0.05。
     (4)以细菌培养或Tem-PCR任一阳性为标准,联合检测对细菌性病原的总检出率为78.2%(147/188),依次是流感嗜血杆菌36.7%(54/147)、肺炎链球菌24.5%(36/147)、大肠杆菌10.9%(16/147)、肺炎克雷伯菌8.2%(12/147)、金黄色葡萄球菌7.5%(11/147)、鲍曼氏不动杆菌7.5%(11/147)、绿脓杆菌3.4%(5/147)和阴沟肠杆菌1.4%(2/147)。联合检测能提高流感嗜血杆菌、肺炎链球菌、金黄色葡萄球菌、绿脓杆菌和鲍曼氏不动杆菌的检出例数。
     (5)在这188例呼吸道标本中,荧光定量单PCR共检出80例肺炎支原体阳性标本,阳性率为42.6%(80/188);Tem-PCR检出51例肺炎支原体阳性标本,阳性率为27.1%(51/188),两者之间无显著差异,P>0.05;以荧光定量单PCR为参考标准,Tem-PCR对肺炎支原体的敏感性、特异性、符合率分别为30.0%、75.0%、55.9%。
     (6)以Tem-PCR检测结果为准,肺炎支原体与细菌的混合感染共16例,混合感染率为8.5%(16/188),其中最常见的是肺炎支原体与流感嗜血杆菌的混合感染,共有8例,占混合感染的50.0%(8/16)。
     结论
     靶序列富集多重PCR技术对肺炎链球菌有很高的敏感性,但对其他细菌和肺炎支原体还有待改进。细菌培养和病原特异性DNA联合检测应用能显著提高儿童肺炎细菌性病原的检出率,可能更真实地反映肺炎的细菌病原学情况。应用靶序列富集多重PCR技术可以及时明确CAP病原中肺炎支原体与细菌的混合感染。
Objective
     To approach the clinic value of Target enriched multiplex PCR for the pneumonic bacterial etiologic diagnosis in children, estabalish the rapid、sensitive、specific diagnostic method for common bacterial pathogen, direct etiologic diagnosis and antibiotic rational use, and understand the distribution of bacterial etiology.
     Methods
     From Feb 2006 to Jun 2006,188 hospitalized children in Shenzhen children' s hospital, were collected deep tracheal aspirate at the time of hospitalization. The respiratory tract secretions were immediately sent for bacterial culture with 3 kinds of medium:ordinary medium, Hemophilus influenzae selective medium, Streptococcus penumoniae selective medium. Then we extracted the total nucleic acids from secretions, and detected Mycoplasma pneumoniae by single fluorescent quantitation PCR. Simultaneously, 14 respiratory tract pathogenic bacterium and Mycoplasma pneumoniae were detected by Target Enriched multiplex PCR(Tem-PCR). Amplification products were identified by the Luminex100 suspension array. Take the culture and single FQ-PCR as the referenced standard, the sensitivity and specificity of Tem-PCR for the bacteria and Mycoplasma pneumoniae were evaluated. The affect for pneumonic bacterial etiologic distribution was analysised by the combined detection with bacterial culture and Tem-PCR assay.
     Results
     (1) Of the 188 respiratory tract specimens, 111 were positive by bacteria culture, including 3 were simultaneously detected 2 kinds of bacterium, the positive strain were : Hemophilus influenzae 24, Escherichia coli 16, Serratia marcescens 14, Klebsiella pneumoniae 12, Hemophilus parainfluenzae 11, Staphylococcus aureus 9, Streptococcus penumoniae 7, Pseudomonas aeruginosa 3, Acinetobacter baumannii 2, Enterobactor cloacae 2, the other bacterium was 9 kinds, 14 strains. The positive rate of culture was 59.1% (111/188) .
     (2) 93 target gene were detected by Tem-PCR from 75 specimen, they were: Hemophilus influenzae 40, Streptococcus penumoniae 36, Acinetobacter baumannii 10, Pseudomonas aeruginosa 4, Staphylococcus aureus 3, the other 9 kinds of bacterium including Escherichia coli、Klebsiella pneumoniae and Enterobactor cloacae were not detected by Tem-PCR, the positive rate of Tem-PCR was 39.9% (75/188) .
     (3) For the 14 kinds of bacterium designed by Tem-PCR, compared with the culture, the sensitivity、specificity and coincidence of Tem-PCR is 51.0%, 68.0%, 58.3% respectively. For Streptococcus penumoniae、Hemophilus in0fluenzae、Staphylococcus aureus、Acinetobacter baumannii、Pseudomonas aeruginosa,the sensitivety of Tem-PCR was 100%、41.7 %、11.1%、50.0 %、66.7 % respectively; the specificity was 84.0%、81.7%、98.9%、95.2%、98.9% respectively. Tem-PCR was more sensitive than culture in the detection of Streptococcus penumoniae (36/19.1% vs. 7/3.7%, p<0.01), and there is no significant difference between Tem-PCR and culture for the detection of Hemophilus influenzae (40/21.3% vs. 24/12.8%, p>0.05 ).
     (4) The total positive rate by combined detection of culture and Tem-PCR assay was 78.2%(147/188), of which 36.7% (54/147) were Hemophilus influenzae , 24.5% (36/147) were Streptococcus pneumoniae, 10.9% (16/147) were Escherichia coli, 8.2% (12/147) were Pseudomonas aeruginosa, 7.5% (11/147) were Staphylococcus aureus, 7.5% (11/147) were Acinetobacter baumannii, 3.4% (5/147) were Pseudomonas aeruginosa, and 1.4% (2/147) were Enterobacter cloacae. The combined detection may increase the positive case of Staphylococcus aureus, Hemophilus influenzae, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii.
     (5) Of the 188 respiratory tract specimens, 42.6% (80/188) were positive by single fluorescent quantitation PCR for Mycoplasma pneumoniae, 27.1% (51/188) was positive by Tem-PCR. There is no significant difference between Tem-PCR and FQ-PCR(P>0.05 ). Take the single FQ-PCR as the reference standard, the sensitivity、specificity and coincidence of Tem-PCR was 30.0%,74.3%,55.9%, respectively.
     (6) The mixed infection with Mycoplasma pneumoniae and bacterium was 16 by Tem-PCR. Of which, the most common mixed infection was Mycoplasma pneumoniae and Hemophilis influenzae, it was 50.0%(8/16).
     Conclusions
     Tem-PCR is highly sensitive for detection of Streptococcus penumoniae causing pneumonia in children. While sensitivities for the other bacterium and Mycoplasma pneumonia need improvement. The combined detection of bacterial culture and Tem-PCR assay may increase the positive rate of bacterial pathogens in hospitalized children with CAP and can really demonstrate the distribution of bacterial etiology. Tem-PCR can timely indicate the mixed infection with Mycoplasma pneumoniae and bacterium in etiologic agent causing CAP.
引文
1 Bryce J,Boschi-Pinto C,Shibuya K,et al.WHO estimates of the causes of death in children.Lancet.2005;365:1147-1152.
    2 陆权,陈慧中,杨永弘.关注小儿社区获得性肺炎.中华儿科杂志,2007;45:81-82.
    3 Michelow IC,Olsen K,Lozano J,et al.Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children.Pediatrics.2004;113:701-707.
    4 Ewig S,Torres A,Marcos MA,et al.Factors associated with unknown aetiology in patients with community-acquired pneumonia.Eur.Respir.2002;20:1254-1262.
    5 Landry ML,and Ferguson D.SimulFluor respiratory screen for rapid detection of multiple respiratory viruses in clinical specimens by immunofluorescence staining.J.Clin.Microbiol.2000;38:708-711.
    6 Borg I,Rohde G,Loseke S,et al.Evalustion of a quantitative real-time PCR for the dectection of respiratory syncytial virus in pulmonary diseases.Eur Respir.2003;21:944-951.
    7 Kuypers J,Wright N,Morrow R.Evalustion of a quantitative and type-specific real-time RT-PCR assays for the dectection of respiratory syncytial virus in respiratory specimens from children.Clin Virol.2004;31:123-129.
    8 Grondahl B,Puppe W,Hoppe A,et al.Rapid Identification of Nine Microorganisms Causing Acute Respiratory Tract Infections by Single-Tube Multiplex Reverse Transcription-PCR:Feasibility Study.J Clin Microbiol.1999;37:1-7.
    9 方怡,樊慧珍,黄文杰,等.反相斑点杂交技术在下呼吸道感染常见致病菌诊断中的应用比较.广东医学,2004;25:1367-1369.
    10 樊慧珍,黄文杰.下呼吸道常见致病菌的基因诊断.实用医学杂志,2003;19:810-811.
    11 陈志敏,汪天林,尚世强.聚合酶链反应在流感嗜血杆菌肺炎诊断中的应用研究.浙江大学学报(医学版),2002;1:47-49.
    12 Rubin LG,Rizvi A.PCR-based assays for detection of Streptococcus pneumoniae serotypes 3,14,19F and 23F in respiratory specimens.J Med Microbiol.2004;53:595-602.
    13 Marty A,Greiner O,Day PJR,et al.Detection of Haemophilus influenzae Type b by Real-Time PCR.J.Clin.Microbiol.2004;42:3813-3815.
    14 Greiner O,Day PJR,Altwegg M,et al.Quantitative Detection of Moraxella catarrhalis in Nasopharyngeal Secretions by Real-Time PCR.J.Clin.Microbiol.2003;41:1386-1390.
    15 Dunbar SA,VanderZee CA,Oliver KG,et al.Quantitative,multiplexed detection of bacterial pathogens:DNA and protein applications of the Luminex LabMAP system.J Microbiol Methods.2003;53:245-252.
    16 Dunbar SA.Applications of Luminex xMAP technology for rapid,high-throughput multiplexed nucleic acid detection.Clin Chim Acta.2006;363:71-82.
    17 鞠少卿,王旭东,王跃国,等.悬浮阵列技术在研究与临床中的应用.中华检验医学杂志,2006,29:393-396.
    18 Zou S,Han J,Wen L,et al.Human Influenza A(H5N1)Detection by a Novel Mutiplex PCR Typing Method.J.Clin.Microbiol.2007;45:1889-1892.
    19 Tang YW,Kilic A,Yang QY,et al.StaphPlex System for Rapid and Simultaneous Identification,Antibiotic Resistance Determinants and Panton-Valentine Leukocidin Detection of Staphylococci from Positive Blood Cultures.J.Clin.Microbiol.2007;45:1867-1873.
    20 孙大光,韩健,金孝华,等.悬浮阵列技术用于分析β地中海贫血基因突变类型.中华血液学杂志,2004;25:239-241.
    21 邹淑梅,韩健,温乐英,等.常见呼吸道病毒分子鉴别诊断技术的应用.中华实验和临床病毒学杂志,2006;20:17-20.
    22 Li HJ,Melinda A,McCormac R,et al.Simultaneous Detection and High-Throughput Identification of a Panel of RNA Viruses Causing Respiratory Tract Infections.Journal of Clinical Microbiology.2007;45:2105-2109.
    23 郑跃杰,邓继岿,高璐,等.悬浮阵列技术在儿童下呼吸道病毒感染诊断中的应用.中华检验医学杂志,2007;30:458-459.
    24 British Thoracic Society Standards of Care Committee.British Thoracic Society guidelines for the management of community acquired pneumonia in childhood.Thorax.2002;57:1-24.
    25 McCracken GH.Etiology and treatment of pneumonia.Pediatr Infect Dis J 2000;19:373-377.
    26 Juven T,Mertsola J,Waris M,et al.Etiology of community-acquired pneumonia in 254hospitalized children.Pediatr Infect Dis J.2000;19:293-8.
    27 Ostapchuk M , Roberts DM , Haddy R. Community-acquired pneumonia in infants and children. Am Fam Physician. 2004; 70: 899-908.
    28 Han J, DC Swan, SJ Smith, et al. Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J. Clin. Microbiol. 2006; 44:4157-4162.
    29 John Brunstein, Eva Thomas. Direct Screening of Clinical Specimens for Multiple Respiratory Pathogens Using the Genaco Respiratory Panels 1 and 2. Diagn Mol Pathol. 2006; 15:169-173.
    30 Niederman MS , Mandell LA, Anzueto A, et al. Guidelines for the management of adults with community-acquired pneumonia: diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med. 2001; 163:1730-1754.
    31 Pandey A , Chaudhry R , Nisar N , et al. Acute respiratory tract infections in Indian children with special reference to Mycoplasma pneumoniae. J Trop Pediatr. 2000; 46: 371 - 374.
    32 Naoyuki Miyashita , Hiroshi Fukano , Keiji Mouri, et al. Community-acquired pneumonia in Japan: a prospective ambulatory and hospitalized patient study. J. Med. Microbiol. 2005; 4: 395-400.
    1 Poddar SK,Espina R,Schnurr DP,et al.Evaluation of a single-step multiplex RT-PCR for influenza virus type and subtype defection in respiratory sample.J Clin Lab Anal.2002;V16N3:163-166.
    2 Rika Miura-Ochiai,Yasushi Shimada,Tsunetada Konno,et al.Quantitative Detection and Rapid Identification of Human Adenoviruses.Clin Microbiol.2007;45(3):958-967.
    3 Geoffrey A,Dean D,Kathryn M,et al.Superiority of Reverse-Transcription Polymerase Chain Reaction to Conventional Viral Culture in the Diagnosis of Acute Respiratory Tract Infections in Children.Journal of Infectious Diseases.2004;189(2):706-710.
    4 Falsey AR,Formica MA,Walsh EE.Diagnosis of respiratory syncytial virus infection:comparison of reverse transcription-PCR to viral culture and serology in adults with respiratory illness.Clin Microbiol.2002;40(3):817-820.
    5 赵林清,钱渊,王之梁,等.呼吸道合胞病毒检测方法比较.临床儿科杂志,2003,21:20-22.
    6 Borg I,Rohde G,Loseke S,et al.Evalustion of a quantitative real-time PCR for the dectection of respiratory syncytial virus in pulmonary diseases.Eur Respir.2003;21(6):944-951.
    7 Kuypers J,Wright N,Morrow R.Evalustion of a quantitative and type-specific real-time RT-PCR assays for the dectection of respiratory syncytial virus in respiratory specimens from children.Clin Virol.2004;31(2):123-129.
    8 Boxus M,Letellier C,Kerkhofs P.Real-time RT-PCR for the dectection and quantitation of bovine respiratory syncytial virus.Virol Methods.2005;125(2):125-130.
    9 Grondahl B,Puppe W,Hoppe A,et al.Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR:feasibility study.J Clin Microbiol.1999;37:1-7.
    10 Liolios L,Jenney A,Spelman D,et al.Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens.J Clin Microbiol.2001;39:2779-2783.
    11 Syrmis MW,Whiley DM,Thomas M,et al.A sensitive,specific,and costeffective multiplex reverse transcription-PCR assay for the for the detection of seven common respiratory viruses in respiratory samples.Mol Diagn.2004;6(2):125-131.
    12 Boivin G,Cote S,Dery P,et al.Multiplex real-time pcr assay for detection of influenza and human respiratory syncytial viruses.J Clin Microbiol.2004;42:45-51.
    13 Templeton KE,Scheltinga SA,Beersma MFC,et al.Rapid and sensitive method using multiplex real-time pcr for diagnosis of infections by influenza A and influenza B viruses,respiratory syncytial virus,and para influenza viruses 1,2,3,and 4.J Clin Microbiol.2004;42:1564-1569.
    14 黄岩山,陈峰,周林福.基因芯片技术在呼吸道病毒检测中的应用.中国感染控制杂志,2005;4:298-304.
    15 邹淑梅,韩健,温乐英,等.常见呼吸道病毒分子鉴别诊断技术的应用.中华实验和临床病毒学杂志,2006;20(2):17-20
    16 Yury S.Boriskin,Philip S.Rice,Richard A.Stabler,et al.DNA Microarrays for Virus Detection in Cases of Central Nervous System Infection.J Clin Microbiol.2004;42:5811-5818.
    17 鞠少卿,王旭东,王跃国,等.悬浮阵列技术在研究与临床中的应用.中华检验医学杂志,2006;29:393-396.
    18 Dunbar S A,Vander Zee,C.A,Oliver K.G.,et al.Quantitative,multiplexed detection of bacterial pathogens:DNA and protein applications of the Luminex LabMAP system.J Microbiol Methods.2003;53:245-252.
    19 Dunbar SA.Applications of Luminex xMAP technology for rapid,high-throughput multiplexed nucleic acid detection.Clin Chim Acta.2006;363:71-82.
    20 M.Feilmeier,E.Alfonso,J.Fell,et al.Luminex xMAP Detection System:A New Approach to Rapid Diagnosis of Infectious Keratitis.Invest Ophthalmol Vis Sci.2007;48:E-Abstract 746.
    21 郑跃杰,邓继岿,高璐,等.悬浮阵列技术在儿童下呼吸道病毒感染诊断中的应用.中华检验医学杂志,2007;30(4):458-459.
    22 Marty,A.,Greiner,O.,Day,R J.R.,Gunziger,S.,Muhlemann,K.,Nadal,D.Detection of Haemophilus influenzae Type b by Real-Time PCR.J.Clin.Microbiol.2004;42:3813-3815.
    23 Greiner, O., Day, P. J. R., Altwegg, M., Nadal, D. Quantitative Detection of Moraxella catarrhalis in Nasopharyngeal Secretions by Real-Time PCR. J. Clin. Microbiol. 2003; 41: 1386-1390.
    24 Rubin, L. G, Rizvi, A. PCR-based assays for detection of Streptococcus pneumoniae serotypes 3,14, 19F and 23F in respiratory specimens. J Med Microbiol. 2004; 53: 595-602.
    25 Reinhard B. Raggam , Eva Leitner , Jorg Berg , et al. Single-Run, Parallel Detection of DNA from Three Pneumonia-Producing Bacteria by Real-Time Polymerase Chain Reaction. J Molecular Diagnosis. 2005; 7:133-138.
    26 Justin Hardick, Nancy Maldeis, Mellisa Theodore, et al. Real-Time PCR for Chlamydia pneumoniae Utilizing the Roche Lightcycler and a 16S rRNA Gene Target. Mol Diagn. 2004; Vol. 6, No. 2: 132-136.
    27 Diederen, B. M. W., de Jong, et al. Evaluation of real-time PCR for the early detection of Legionella pneumophila DNA in serum samples. J Med Microbiol. 2007; 56: 94-101.
    28 Miyuki Morozumi , Eiichi Nakayama , Satoshi Iwata , et al. Simultaneous Detection of Pathogens in Clinical Samples from Patients with Community-Acquired Pneumonia by Real-Time PCR with Pathogen-Specific Molecular Beacon Probes. J Clin Microbiol. 2006; 44: 1440-1446.
    29 Girija Natarajan, Yvette R. Johnson, Fan Zhang, et al. Real-Time Polymerase Chain Reaction for the Rapid Detection of Group B Streptococcal Colonization in Neonates. Pediatrics. 2006; 118(1): 14-22.
    30 Riitta Raty , Esa Ronkko , Marjaana Kleemola. Sample type is crucial to the diagnosis of Mycoplasma pneumoniae pneumonia by PCR. J Med Microbiol. 2005; 54: 287-291.
    31 David R. Murdoch , Trevor P. Anderson , Kirsten A. Beynon , et al. Evaluation of a PCR Assay for Detection of Streptococcus pneumoniae in Respiratory and Nonrespiratory Samples from Adults with Community-Acquired Pneumonia. J Clin Microbiol. 2003; 41: 63-66.
    32 Menezes Martins LF , Menezes Martins JJ , Michaelsen VS , et al. Diagnosis of parapneumonic pleural effusion by polymerase chain reaction in children. J Pediatr Surg. 2005; 40: 1106-1110.
    33 Barsotti O , Decoret D , Renaud FN. Identification of streptococcus mitis group species by RFLP of the PCR-amplified 16S-23S rDNA intergenic spcer. Res Microbiol. 2002; 153: 687-691
    34 Anthony RM , Brown TJ , French GL. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridiation to ologonucleotide array. J Clin Microbiol. 2000; 38: 781-788.
    35 Carl F , Edman. Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification. J Invest Med. 2000; 2: 93-101.
    36 Jorg Peplies , Frank Oliver Glockner , Rudolf Amann. Optimization Strategies for DNA Microarray-Based Detection of Bacteria with 16S rRNA-Targeting Oligonucleotide Probes. Applied and Environmental Microbiology. 2003; 69:1397-1407.
    37 Georg Mitterer , Martin Huber , Ernst Leidinger , et al. Microarray-Based Identification of Bacteria in Clinical Samples by Solid-Phase PCR Amplification of 23 S Ribosomal DNA Sequences. J Clin Microbiol. 2004; 42:1048-1057.
    38 Berit E. E. Cleven , Maria Palka-Santini , Jorg Gielen , et al. Identification and Characterization of Bacterial Pathogens Causing Bloodstream Infections by DNA Microarray. J Clin Microbiol. 2006; 44: 2389-2397.
    39 Yi-Wei Tang , Abdullah Kilic , Qunying Yang , et al. StaphPlex System for Rapid and Simultaneous Identification, Antibiotic Resistance Determinants and Panton-Valentine Leukocidin Detection of Staphylococci from Positive Blood Cultures. Journal of Clinical Microbiology. 2007; 45(6): 1867-1873.