我国部分地区呼吸系统病毒性病原体监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性呼吸道感染(Acute respiratory tract infection, ARTI)是世界范围内人类最常见疾病原因之一,可以引起以发热为主的流感样症状疾病(Influenza like illness,ILI),是导致儿童死亡的第二大病因。儿童中高达90%的肺炎是由病毒引起。由于传播途径的特殊性,呼吸系统病毒感染易在人群中传播。自2001年以来,一系列新发现病原体或者重组病原体与急性呼吸系统感染相关。因此,开展以ILI为主的症状监测研究将为明确我国呼吸系统病毒性病原谱构成、病原体变异规律乃至为新病原体发现提供依据。
     本研究在我国北京、天津、重庆、山东、陕西、河南等地区开展了呼吸系统病毒性病原体监测,包括甲型、乙型、丙型(Influenza A、B、C,Flu-A、-B、-C)流感病毒、副流感病毒I-IV型(Parainfluenza I~IV,PIV-I~PIV-IV)、腺病毒(Adenovirus,ADV)、冠状病毒229E和OC43(Coronavirus-229E,CoV-229E;Coronavirus-OC43,CoV-OC43)、呼吸道合胞病毒(Respiratory syncytial viruses -A、-B,RSV-A、-B)、偏肺病毒(Metapneumovirus,MPV)以及博卡病毒(Bocavirus,BoV)等,分析了呼吸道病毒性病原体感染的流行病学特征,探索了流感病毒和冠状病毒变异规律。
     主要研究结果:
     1.我国部分地区常见呼吸系统病毒性病原体监测研究
     我国北京、天津、重庆、陕西、河南等地区采用哨点医院监测和实验研究相结合的方法进行常见呼吸系统病毒性病原体监测研究,研究纳入ILI病例3865人次,月平均为160人次,ILI病例从每年9月份开始上升,持续到次年的2-3月份。2009年4月-2011年3月间共检出至少有一种呼吸道系统病毒阳性病例1463人次,阳性检出率为37.85%(1463/3865)。呼吸系统病毒性病原体最为常见的是Flu(检出率为21.57%,834/3865),其余依次为PIV(6.65%,257/3865)、ADV(6.57%,245/3865)、RSV(5.46%,211/3865)、BoV(5.02%,194/3865)、MPV(2.25%,87/3865)和CoV(1.81%,70/3865)。呼吸系统病毒病原体复合感染为8.82%(341/3865),占所有感染病例的比例为23.30%(341/1463)。复合感染病例中,75.07%(256/341)为两种病毒复合感染,19.94%(68/341)为三种病毒感染、4.99%(17/341)为四种及以上病毒复合感染。最常见复合感染是Flu和ADV、ADV和PIV、BoV和RSV。最易发生复合感染的病原体是MPV和BoV,复合感染比例分别占MPV和BoV阳性检出标本80.46%(70/87)和65.46%(127/194)。
     呼吸系统病毒性感染有明显年龄分布特征,无性别分布差异。儿童ILI病例呼吸系统病毒检出率(62.08%,650/1047)显著高于成人(29.05%,700/2410)(P<0.01)。儿童感染中以0-5岁儿童检出率最高(69.62%,550/790),且有随年龄增加而降低趋势(P<0.01)。儿童复合感染率(26.36%,276/1047)显著高于成人(2.45%,59/2410)(P<0.01)。呼吸系统病毒性感染四季均有发生,不同病原体具有不同季节流行趋势。一年中各病原体发病高峰分别是:PIV、ADV和MPV在9月份,RSV在10月份,BoV在11月中旬,Flu在12月份,CoV在1月底。
     ILI病例最为常见症状为咳嗽(72%),其余症状依次为咳痰(39%)、咽喉痛(35%)、流涕(30%)、头痛(22%)、乏力(18%)、肌肉酸痛(14%)、腹泻(10%)、呼吸困难(6%)、胸痛(5%)及腹痛(3%)等。呼吸系统病毒感染较常见的症状为咳嗽、咳痰、流涕等;而阴性者更加常见的症状为流涕、咽喉痛、咳嗽等。
     单因素分析结果显示年龄、疾病既往史、就诊前的初步治疗或服药情况以及从发病到就诊的时间间隔等因素与病毒检出相关。其中,年龄增加可降低呼吸系统病毒性感染检出(OR=0.97,95%CI 0.97-0.98)。具有以往疾病史、就诊前进行了初步治疗或服药以及发病后就诊的时间间隔长等因素可能降低呼吸道病毒检出(P<0.01)。调整其它因素后,仅年龄和发病后的就诊时间间隔与呼吸系统病毒检出相关。与呼吸系统病毒检出的因素在不同感染数量(单纯感染和复合感染)、不同人群(成人和儿童)以及不同病原体中的分布有所不同。2.我国猪流感的血清流行病学和遗传特征分析研究
     通过文献汇总对我国猪流感的血清流行病学状况进行分析,利用流感基因数据库对我国猪群流感进行遗传特征研究。结果显示我国猪群流感血清型有H1、H3、H5、H7和H9亚型,以H1亚型和H3亚型为主。H1亚型血清抗体水平(32.55%,3402/10451)高于H3亚型(28.60%,2900/10139)(P<0.01)。H1血清型阳性率在不同的地区有显著差别(P<0.01),其中华南地区最高、华中地区最低。H3型不同地区阳性率总体无显著差别。不同猪群养殖密度猪群流感抗体水平不同。高密度猪群养殖区H1血清抗体水平明显高于中、低密度养殖区(P=0.02和P=0.04)。
     基因序列分析显示我国报道猪流感基因序列与2009年暴发的甲型H1N1流感(pH1N1)片段之间为中度相似,尤其与我国华东和华南地区的猪流感基因片段相似度更高。
     3.我国部分地区2009年4月-2011年3月间流感病原学监测
     在常见病毒性病原体监测时,恰逢pH1N1流感爆发,为此本研究在北京、天津、重庆、山东、陕西、河南专门进行了流感监测。纳入流感监测ILI病例数为6143人次,月平均为255人次。2009-2010流感流行期间ILI病例从每年8月份开始上升,持续到次年的3月份,2010-2011流感流行期间ILI病例进入11月份开始明显增加,持续到次年1月左右。
     流感阳性检出率为26.78%(1645/6143),其中pH1N1占31.98%(526/1645)、季节性H3N2(sH3N2)占41.76%(687/1645)、季节性H1N1(sH1N1)占1.88%(31/1645)、A型未分型占3.22%(53/1645)、B型占21.15%(348/1645)。2009-2010流感流行趋势与2010-2011流感流行不同。首先从发病幅度来看,2009-2010年的流感幅度总体高于2010-2011年度,前者最高检出率为52.84%,而后者最高检出率为24.12%。从病原构成来看,2009-2010年流感病流行株有sH3N2、pH1N1、B型及sH1N1亚型;2010-2011年流感流行主要流行株有sH3N2、pH1N1、B型,sH1N1流行株非常少见。流感内部不同亚型的出现的时间顺序来看,2009-2010年首先出现流感A型sH1N1亚型,随后为sH3N2亚型,再后来为pH1N1流感,最后为流感B型;2010-2011年度首先出现sH3N2亚型,随后为pH1N1亚型,最后为B型。与2009-2010年流感季节相比,2010-2011年度sH1N1检出极低,pH1N1流行幅度也有较大降低,sH3N2亚型流行幅度无显著改变,B型流感的流行幅度却有升高的趋势。未见达菲(H274Y)耐药性株出现,但均为金刚烷胺耐药(S31N)。
     不同(亚)型流感的性别分布不同,成人A型流感的男性构成高于B型流感(P<0.01)。不同(亚)型流感年龄分布不同,pH1N1检出率最高为10-14岁人群(16.04%,47/293)、sH3N2最高为30-39岁人群(14.93%,63/422)、sH1N1最高为70岁以上人群(2.63%,2/76)、B型最高为5-9岁人群(12.30%,61/496)。
     流感感染后呼吸道症状依次为咳嗽(76%)、咽喉痛(47%)、咳痰(38%)、流涕(35%)、头痛(26%)、乏力(18%)、肌肉酸痛(12%)、腹泻(8%)、胸痛(5%)、呼吸困难(4%)及腹痛(2%)。成人和儿童中症状分布稍有不同。成人以咳嗽、咽喉痛、流涕、头痛等症状较常见,儿童以咳嗽、咳痰、腹泻、流涕等症状较常见。
     因素分析结果显示年龄、治疗史与流感检出相关。不同流感(亚)型,这两个因素所起作用不同。发病后不进行前期治疗或处理,pH1N1检出率增加2.5倍,sH3N2增加1.7倍。B型流感不进行就诊前的治疗或处理却可减少该型病毒检出。同时,成人随年龄增加而增加sH3N2和sH1N1检出,儿童却会增加pH1N1检出。
     4.季节性流感H3N2亚型在甲型H1N1流行期间的进化分析
     季节性H3N2亚型流感在2009年4月-2010年7月之间的变异进化分析结果显示,sH3N2各个片段非同义替代碱基与同义替代碱基(dN/dS)比值<1,提示流感病毒没有正向选择压力存在。其中,PB1-F2基因片段、HA基因、NA基因、M2基因、NS基因变异度较高。
     研究期间内sH3N2流感基因组不同基因片段的进化率不一致,NA基因变异率最高(4.30×10-3/碱基/年),最稳定的基因片段为NP和PB1。时间进化显示sH3N2流感株来源于2007年,但不同片段来源时间稍有区别。其中,PB1片段的来源时间最长,其起始时间约为2007年3月;NA基因能来源时间约为2007年11月。
     重组分析结果显示,sH3N2流感8片段中仅PB1基因存在较高重组突变比(P=0.02),可能存在重组。重组发生在该基因40-821bp位置区域。未见其他基因片段重组现象。
     5.我国部分地区冠状病毒的分子流行病学研究冠状病毒感染分子流行病学研究结果显示,冠状病毒感染以CoV-229E和CoV-OC43为主。Spike蛋白基因序列分析结果显示CoV-229E与我国2009年的分离株在同一个进化大枝上,但与2009年澳大利亚、美国、德国等报道的冠状病毒株更接近;CoV-OC43与2003年比利时和2006年法国报道株在一个大进化分支上。CoV-229E和CoV-OC43的dN/dS比值均小于0.5,但CoV-OC43的该指标更高。研究结果提示两种冠状病毒变异是在无选择压力下突变所致。同时,CoV-229E在1681位点(A561S)、2692位点(Y898H)出现两个有意义多态性位点;CoV-OC43在3073位点(D1024H)、3085位点(E1028Q)及3202位点(S1064A)出现三个有意义多态性位点。
     CoV-229E的Spike蛋白信号肽区长度为16aa残基,CoV-OC43的Spike蛋白信号肽区长度为17aa残基。CoV-229E和CoV-OC43的Spike蛋白受体结合域(Receptor binding domain, RBD)均能够成功进行蛋白同源模建,CoV-229E模建蛋白能够与人血管紧张素转换酶-2(Angiotensin-convertion enzyme-2,ACE-2)结合,而CoV-OC43模建蛋白不能ACE-2与结合,这种差别可能是两种不同冠状病毒感染频率不同的原因之一。研究结论:
     通过2009年4月-2011年3月间在我国部分地区开展的呼吸道病原体监测,获得以下研究结论:
     1.我国部分地区的常见呼吸系统病毒性病原体依次为流感病毒、副流感病毒、腺病毒、呼吸道合胞病毒、博卡病毒、偏肺病毒和冠状病毒。呼吸系统病毒病原体感染常存在复合感染,以两种病原体复合感染为主,最常见复合感染是流感病毒和腺病毒、腺病毒和副流感病毒、博卡病毒和呼吸道合胞病毒。复合感染率最高的病原体是偏肺和博卡病毒。呼吸系统病毒性感染有明显的年龄分布特征,而无性别分布差异。不同呼吸系统病毒性感染季节分布不一致,各病原体发病高峰分别是:副流感病毒、腺病毒和偏肺病毒在9月份、呼吸道合胞病毒在10月份、博卡病毒在11月中旬、流感病毒在12月份、冠状病毒在1月底。呼吸系统病毒感染最常见症状为咳嗽、咳痰、流涕。影响呼吸道病毒检出的因素是年龄和发病后的就诊时间间隔。
     2.1999-2007年间我国猪流感的血清型主要为H1和H3型,其中H1型血清分布有地区差别,并与猪群养殖密度有关。基因序列分析显示我国报道猪流感基因序列与2009年爆发的甲型H1N1流感(pH1N1)片段之间为中度相似,尤其与我国华东和华南地区的猪流感基因片段相似度更高。
     3.2009年4月-2011年3月间我国部分地区流感病毒主要有季节性H3N2、甲型H1N1和B型流感。2009年的甲型H1N1暴发流行对流感流行趋势产生明显影响。2009-2010年与2010-2011年的流感流行趋势具有不同特征,流感流行强度、流感流行持续时间及不同亚型出现时间顺序均发生改变。流感不同亚型导致不同年龄人群临床症状不同。年龄和就诊前治疗史与不同流感亚型检出相关。
     4.甲型H1N1流感流行期间,季节性流感H3N2亚型变异是随机、无选择压力存在下发生,但NA片段进化速度最快。该期间的流感病毒可能来源于2007年的相应流行株,来源时间为2007年3月-2007年11月间。季节性流感H3N2亚型PB1基因片段可能存在重组。
     5.我国部分地区冠状病毒的主要流行株为CoV-229E和CoV-OC43,该两种冠状病毒变异是在无选择压力下突变所致。基因序列分析结果显示CoV-229E在1681位点(A561S)、2692位点(Y898H)出现两个有意义多态性位点。CoV-OC43在3073位点(D1024H)、3085位点(E1028Q)及3202位点(S1064A)出现三个有意义多态性位点。CoV-229E模建蛋白能够与人ACE-2结合,而CoV-OC43模建蛋白不能结合,这种差别可能是两种不同冠状病毒感染频率不同的原因之一。
Acute respiratory tract infections (ARTI) are among the most common infectious diseases of human worldwide, causing influenza like illnesses. ARTI is the secondary cause of mortality in children and nearly 90% of pneumonias among this population are caused by viral pathogens. Respiratory viral infections are easy to transmit in population because of their special route for transmission. A series of newly discovered or recombination pathogens had been confirmed to be related with respiratory infections since 2001. Influenza-like illness (ILI) definitions have been used worldwide for influenza surveillance. However, ILI may be difficult to distinguish influenza infection based on the symptoms alone from symptomatic infections caused by other respiratory viruses. Therefore, ILI is usually used for surveillance of respiratory infections. According to ILI surveillance, the spectrum of viral pathogens in respiratory infections could be described, and the evolutionary pattern of virus may be further highlight and even clues for novel pathogens discovery would be offered.
     In this thesis, the most common respiratory viral pathogens, influenza A, B C(Flu-A, -B, -C), parainfluenza viruses 1-4 (PIV-1~IV), adenovirus(ADV), coronavirus-229E, -OC43 (CoV-229E, CoV-OC43), respiratory syncytial viruses-A, -B (RSV-A, -B), human metapneumovirus (MPV) and human bocavirus(BoV), were included in the surveillance for respiratory infectious diseases. The regions were Beijing, Tianjin, Chongqing, Shandong, Shanxi and Henan. In addition, clinical characteristics of viral infections, evolutionary dynamics of influenza and coronavirus were further studied based on the surveillance.
     The main results:
     1. Surveillance of respiratory viral pathogens in some regions of China During a two-year period of surveillance in six sentinel hospitals from Apr 2009 to Mar 2010, 3865 ILI cases (person-time) with monthly of 160 were included in this study. Surveillance data showed that ILI cases increased from September, lasting for 7 months, to March next year. The least detected positive rate for viral pathogen was 37.85% (1463/3865) and the most common virus was influenza with positive rate of 21.57%(834/3865). Following influenza were PIV(6.65%,257/3865), ADV(6.57%, 245/3865), RSV(5.46%, 211/3865), BoV(5.02%, 194/3865), MPV(2.25%, 87/3865) and CoV(1.81%,70/3865). Co-infections with more than two viruses, which accounted for 23.30%(341/1463) of all positive samples, were also observed (positive rate 8.82%,341/3865). Among co-infections, 75.07% (256/341) were two-virus, 19.94%(68/341) were triple-virus and 4.99%(17/341) were more than four viruses. Co-infections of Flu and ADV, ADV and PIV, BoV and RSV were the most common. MPV (80.46%, 70/87) and BoV (65.46%, 127/194) were more frequently detected with co-infections.
     Epidemiological results showed that the viral positive rates were higher in children(62.08%, 650/1047) than in the adults(29.05%, 700/2410)(P<0.00). Among children, the group of less than 5-years old was more frequently detected with viruses infection (69.62%, 550/790) and there was a remarkable decrease trend with age in this group(P<0.00). In addition, co-infection rates were much higher in children (26.36%, 276/1041) than that of the adults (2.45%, 59/2410)(P<0.01).
     Though there were yearly occurrences of respiratory viral infections, the seasonality was virus-dependent. For example, PIV, ADV and MPV reached their climax in September, RSV in October, BoV in the middle of November, Flu in December and CoV in the end of January.
     For ILI cases, the symptoms were cough(72%), expectoration(39%), sore throat(35%), runny nose(30%), headache(22%), hypodynamia(18%), muscular soreness(14%), diarrhea(10%), dyspnea (6%), chest pain (5%) and bellyache(3%). However, in viral positive cases, cough, expectoration, and runny nose were more common compared with negative cases among which runny nose, sore throat and cough were more frequently seen.
     Associated factors, which may affect the detection of viruses including age, disease histories, preclinical treatment of diseases and duration from onset to visit doctor, were studied and positive correlations were observed in univariate analysis. Opposite to age in which increase with decrease the detection rates(OR=0.97, 95% CI 0.97-0.98), disease histories, preclinical of diseases and duration from onset to visit doctor may lower the detection rates. However, only age and duration from onset to visit doctor displayed significantly affecting the detection rates when adjusted by other factors. And, the factors mentioned above may differ by infection type(single and coninfection), population (adults and children) and virus. 2. Seroprevalence and genetic characteristics of swine influenza viruses in Chinese swine population: a pooled data analysis.
     A literature review and data pooling analysis were made on the antibodies prevalence against five influenza viruses subtypes in pigs in China for the last 10 years. The grand average of seropositive rates of subtypes H1, H3, H5, H7 and H9 were calculated as 32.55% (3402/10451), 28.60%(2900/10139), 1.20%(77/6392), 0%(0/1815) and 2.15% (86/3944), respectively. Moreever, there was a higher level of antibodies against H1 than against H3(P<0.01). There were large geographical variations in seroprevalence of subtypes -H1, with South and East China as the top regions with high seroprevalence in pigs. In addition, the region with high densities of pigs raising had higher seroprevalence than that of the regions with median and low densities (P=0.02, P=0.04).
     BLAST analysis of genetic sequences revealed that genome segments with moderate homology to the 2009 pandemic influenza A (H1N1)(pH1N1) virus were present among swine influenza viruses isolated in China, especially in South and East China.
     3. Influenza virologic surveillance during Apr 2009- Mar 2011 in some regions of China
     In order to cope with ourbreaks of pH1N1, virologic surveillance for influenza was carried out during 2009-2011 in Beijing, Tianjin, Chonqging, Shandong, Henan and Shanxi. Based on respiratory viral surveillance, two more sentinel hospitals were added in this svrveillance and 6143 ILI cases (person-time) with monthly 255 cases (person-time) were included. ILI cases increased from August to March next year during 2009-2010 influenza season. However, in 2010-2011 season, ILI cases increased from November to January next year.
     One thousand six hundred and forty five cases were diagnosed (26.78%,1645/6143) positive for influenza, in which pH1N1, seasonal H3N2(sH3N2), seasonal H1N1(sH1N1), untyped and influenza B accounted for 31.98%(526/1645), 41.76%(687/1645), 1.88%(31/1645), 3.22%(53/1645) and 21.15%(348/1645), respectively.
     Different epidemic pattern was observed between 2009-2010 and 2010-2011 influenza season in this surveillance. Firstly, in 2009-2010 influenza season, the highest detected rate was 52.84%, obviously greater than that of the 2010-2011 season (24.12%). Secondly, in the 2009-2010 season, influenza viruses composed of sH3N2, pH1N1, influenza B and sH1N1. However, in 2010-2011 season, influenzas were mainly sH3N2, pH1N1, influenza B, and sH1N1 was less detected. Thirdly, in the 2009-2010 influenza season, the order of subtype scheduled as sH1N1, sH3N2, pH1N1 and influenza B and this pattern was changed with sH3N2, pH1N1 and influenza B in 2010-2011 season. Finally, no obvious changes of sH3N2 intensity in both seasons were observed though the epidemic strength of pH1N1 and sH1N1 lowered very much. In addition, no oseltamivir resistance mutations were observed according to drug resistance surveillance.
     Epidemic data showed that the infections of the males were more frequently seen with influenza A than with influenza B. The age distribution was different among (sub)types of influenza, in which pH1N1 with the highest age specific rate in group of 10-14 years old, sH3N2 in 30-39 age group, sH1N1 in elders than 70 years and B in 5-9 age group.
     For influenza cases, the symptoms were cough(76%), sore throat(47%), expectoration(38%), runny nose(35%), headache(26%), hypodynamia(18%), muscular soreness(12%), diarrhea(8%), chest pain (5%), dyspnea (4%) and bellyache (2%). Moreover, a different list of symptoms was observed among children and adults. For example, symptoms in adults were mainly cough, sore throat, runny nose and headache, however, in children the mainly symptoms were cough, expectoration, diarrhea and runny nose.
     Factors analysis showed that age, preclinical treatments were associated with rates of influenza detection what was (sub)type dependent. Compared with the influenza negative cases, the risk for positive detection of pH1N1 and sH3N2 increased without preclinical treatments with odds ratio of 2.5 and 1.7, respectively. However, to influenza B, preclinical treatment decreased the detection rates. In adults, the detection rate was positively associated with age for seasonal influenza (sH1N1 and sH3N2), yet, in children, age increased the detection of novel influenza (pH1N1).
     4. Evolutionary pattern of seasonal H3N2 during pandemic of H1N1 There was no positive selection pressure (dN/dS <1) for seasonal H3N2 during the pandemic of influenza A/H1N1, 2009. Higher dN/dS ratios for PB1-F2, HA, NA, M2 and NS genes existed, which imply higher evolutionary rate in these gene segments. Phylogenetic analysis showed that NA gene had the highest evolutionary rate with substitution rate of 4.30×10-3/nt/year. The most likely ancestor of influenza in this study may come from seasonal influenza strains in 2007. Among the eight segments, PB1 gene originated from strains in Mar 2007 and NA from strains in Nov 2007. Recombination existed in PB1 gene and the region between 40-821bp might from other influenza strains.
     5. Molecular study of coronavirus in some regions of China Among coronavirus infections, CoV-229E and CoV-OC43 were the main strains. Phylogenetic analysis showed that CoV-229E was in the main branch of Chinese strain reported in 2009 but closer to strains reported by Australia, USA and Germany. However, CoV-OC43 was closely to strains reported by Belgium in 2003 and France in 2006. No positive selection pressure was observed in CoV-229E and CoV-OC43 when evaluated by dN/dS. Two polymorphism sites with nonsynonymous nucleotide substitutions located at 1681(A561S) and 2692(Y898H) in CoV-229E and three such sites in CoV-OC43 located at 3073(D1024H), 3085(E1028Q) and 3202(S1064A). Deduced amino acid sequence showed that there was a 16aa and a 17aa signal peptide in CoV-229E and CoV-OC43, respectively. Homology protein modeling of the receptor binding domain(RBD) was success for CoV-229E and CoV-OC43. Successfully docking of CoV-229E with angiotensin-convertion enzyme-2(ACE-2) was modeled, however, no docking of CoV-OC43 with ACE-2 was observed and this difference partial explained the difference of the infection caused by CoV-229E and CoV-OC43.
     Conclusions:
     1.The common respiratory viral pathogens spectrum were influenza virus, parainfluenza virus, adenovirus, respiratory syncytial viruses, human bocavirus, human metapneumovirus, and coronavirus. Co-infections with more than two viruses were frequently seen in respiratory viral infections and two-virus infection was the major of co-infections. Flu and ADV, ADV and PIV, BoV and RSV were the most common mix infections, and MPV and BoV had the high proportion of combining infection with other viruses. An obvious age specific distribution pattern existed in respiratory infections. The seasonalities of virus infection as following: PIV, ADV and MPV reached their climax in September, RSV in October, BoV in the middle of November, Flu in December and CoV in the end of January. Cough, expectoration, and runny nose were the most common symptoms. Age and duration from onset to visit doctor may affect the detection of respiratory viral infections.
     2. H1 and H3 were the main serotypes in pig in China during 1999-2007 and a large geographical variation in seroprevalence of subtypes -H1 existed in South and East China, which related with densities of pig-raising. Genetic sequences blast revealed that swine influenza virus isolated in China were moderate homologous to the pH1N1, especially those isolated in South and East China.
     3. Virological surveillance showed the major (sub)type of influenza were seasonal H3N2, pH1N1 and influenza B during Apr,2009 to Mar, 2011. The pandemic of H1N1 influenza in 2009 affected the epidemic influenza, in which the intensity, the duration of epidemic, and the peak of (sub)type were changed. The clinical symptoms of influenza were (sub)type dependent in population. Age and preclinical treatment may determine the detection of influenza.
     4. Stochastic mutations without selection pressure may be the evolutionary manner of seasonal influenza H3N2 during pandemic of H1N1 in 2009. Among the segments, NA had the highest evolutionary rate. The most likely ancestor of influenza in this study may come from seasonal influenza strains in 2007 and PB1 gene might recombine whit other influenza strains.
     5. The major strains of coronavirus were CoV-229E and CoV-OC43 and stochastic mutations without selection pressure was the source of mutations. Two polymorphism sites with nonsynonymous nucleotide substitutions located at 1681(A561S) and 2692(Y898H) in CoV-229E and three such sites in CoV-OC43 located at 3073(D1024H), 3085(E1028Q) and 3202(S1064A). Successfully docking of CoV-229E receptor binding domain with angiotensin-convertion enzyme-2(ACE-2) may partial explain the difference of the infection caused by CoV-229E and CoV-OC43.
引文
1.Templeton KE. Why diagnose respiratory viral infection? J Clin Virol. 2007;40 Suppl 1:S2-4.
    2.van Woensel JB, van Aalderen WM, Kimpen JL.Viral lower respiratory tract infection in infants and young children. BMJ. 2003;327(7405):36-40.
    3.Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545-55.
    4.Madhi SA, Klugman KP. Acute Respiratory Infections. Disease and Mortality in Sub-Saharan Africa. 2nd edition. Washington (DC): World Bank; 2006. Chapter 11.
    5.Henrickson KJ. Cost-effective use of rapid diagnostic techniques in the treatment and prevention of viral respiratory infections. Pediatr Ann. 2005;34(1):24-31.
    6.Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112 Suppl 6A:4S-12S.
    7.Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21(4):716-47
    8.Johnston SL. Overview of virus-induced airway disease. Proc Am Thorac Soc. 2005;2(2):150-6
    9.Nicholson KG, Kent J, Hammersley V, et al. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ. 1997;315(7115):1060-4.
    10.Talbot HK, Falsey AR. The diagnosis of viral respiratory disease in older adults.Clin Infect Dis. 2010;50(5):747-51.
    11.Leng J, Goldstein DR. Impact of aging on viral infections. Microbes Infect. 2010; 12 (14-15):1120-4.
    12.Klein MB, Yang H, DelBalso L, et al. Viral pathogens including human metapneumovirus are the primary cause of febrile respiratory illness in HIV-infected adults receiving antiretroviral therapy. J Infect Dis. 2010;201(2):297-301.
    13.Moore HC, de Klerk N, Richmond P, et al. A retrospective population-based cohort study identifying target areas for prevention of acute lower respiratory infections in children. BMC Public Health. 2010;10:757.
    14.Ko FW, Ip M, Chan PK, et al. Viral etiology of acute exacerbations of COPD in Hong Kong. Chest. 2007;132(3):900-8.
    15.Karakis I, Kordysh E, Lahav T, et al. Life prevalence of upper respiratory tract diseases and asthma among children residing in rural area near a regional industrial park: cross-sectional study. Rural Remote Health. 2009;9(3):1092.
    16.Longo BM, Yang W. Acute bronchitis and volcanic air pollution: a community-based cohort study at Kilauea Volcano, Hawai'i, USA. J Toxicol Environ Health A. 2008;71(24):1565-71.
    17.Graat JM, Schouten EG, Heijnen ML, et al. A prospective, community-based study on virologic assessment among elderly people with and without symptoms of acute respiratory infection. J Clin Epidemiol. 2003;56(12):1218-23.
    18.Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967-76.
    19.Zhu QY, Qin ED, Wang W, et al. Fatal infection with influenza A (H5N1) virus in China. N Engl J Med. 2006;354(25):2731-2.
    1.Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21(4):716-47
    2.侯云德.急性呼吸道病毒感染的病原学与防治. [M]北京:中国协和医科大学出版,2005:1-36
    3.Creer DD, Dilworth JP, Gillespie SH, et al. Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care. Thorax.2006;61(1):75-9.
    4.van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719-24.
    5.Allander T, Tammi MT, Eriksson M, etal. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102(36):12891-6.
    6.Drosten C, Günther S, Preiser W, etal. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967-76.
    7.Pyrc K, Jebbink MF, Berkhout B, et al. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J. 2004;1:7.
    8.Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884-95.
    9.Gaynor AM, Nissen MD, Whiley DM, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections.PLoS Pathog. 2007;3(5):e64.
    10.Zhu QY, Qin ED, Wang W, et al. Fatal infection with influenza A (H5N1) virus in China. N Engl J Med. 2006;354(25):2731-2.
    11.Yang Y, Sugimoto JD, Halloran ME, et al. The transmissibility and control of pandemic influenza A (H1N1) virus. Science. 2009;326(5953):729-33
    12.Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112 Suppl 6A:4-12.
    13.王莉佳,刘恩梅,赵晓东.重庆医科大学儿童医院急性呼吸道感染住院患儿病毒病原学分析.中国实用儿科杂志,2005,20(12): 735-737
    14.宋靖荣.2007-2008年兰州地区儿童急性呼吸道感染病毒病原学研究.兰州大学2009年硕士研究生学位论文
    15.赵扬.2008-2009年兰州地区儿童急呼吸道感染病毒病原学研究.兰州大学2010年硕士研究生学位论文
    16.WHO. CDCprotocol of realtime RT-PCR for swine influenzaA(H1N1). 2009. http://www.who.int/entity/csr/resources/publications/swineflu/CDCRealtimeRTPCR_SwineH1Assay-2009_20090430.pdf
    17.Gunson RN, Collins TC, Carman WF. Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions. J Clin Virol 2005;33(4):341-4.
    18.Coiras MT, Pérez-Bre?a P, García ML, et al. Simultaneous detection of influenza A,B,and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay. J Med Virol. 2003;69(1):132-44.
    19.Coiras MT, Aguilar JC,García ML, et al. Simultaneous detection of fourteen respiratory viruses inclinical specimens by two multiplex reversetranscription nested-PCR assays.J Med Virol. 2004;72(3):484-95.
    20.Peiris JS, Tang WH, Chan KH, et al. Children with respiratory disease associated with metapneumovirus in HongKong. Emerg Infect Dis. 2003;9(6):628-33.
    21.Templeton KE. Why diagnose respiratory viral infection?J Clin Virol. 2007;40 Suppl 1:S2-4.
    22.Henrickson KJ. Cost-effective use of rapid diagnostic techniques in the treatment andprevention of viral respiratory infections. Pediatr Ann. 2005;34:24?31.
    23.Madhi SA, Klugman KP. Acute Respiratory Infections. Disease and Mortality in Sub-Saharan Africa. 2nd edition. Washington (DC): World Bank; 2006. Chapter 11.
    24.周一平,陆学东,陈小可,等.成人急性下呼吸道感染患者病毒病原学研究.中国呼吸与危重监护杂志,2010,9(4):379-382
    25.张朝明,王英.成人呼吸道感染的病毒病原学研究.四川省卫生管理干部学院学报,2000,19(4):261-262
    26.Ren L, Gonzalez R, Wang Z, et al. Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005-2007. Clin Microbiol Infect. 2009;15(12): 1146-53
    27.Simoes EAF, Cherian T, Chow J, et al. Acute Respiratory Infections in Children. Disease Control Priorities in Developing Countries. 2nd edition. Washington (DC): World Bank; 2006. Chapter 25.
    28.Bellei N, Carraro E, Perosa A, et al. Acute respiratory infection and influenza-like illness viral etiologies in Brazilian adults. J Med Virol. 2008 Oct;80(10):1824-7.
    29.Longtin J, Bastien M, Gilca R, et al. Human bocavirus infections in hospitalized children and adults. Emerg Infect Dis. 2008;14(2):217-21.
    30.DeLeo FR, Musser JM. Axis of coinfection evil. J Infect Dis. 2010;201(4):488-90.
    31.车大钿,陆权,陆敏,等. 2000年上海地区儿童急性下呼吸道感染的病原学研究.中国当代儿科杂志,2000,6(2):136-138
    32.Peng D, Zhao D, Liu J, et al. Multipathogen infections in hospitalized children with acute respiratory infections.Virol J. 2009;6:155.
    33.Graat JM, Schouten EG, Heijnen ML, et al.A prospective, community-based study on virologic assessment among elderly people with and without symptoms of acute respiratory infection. J Clin Epidemiol. 2003;56(12):1218-23.
    34.Talbot HK, Falsey AR. The diagnosis of viral respiratory disease in older adults.Clin Infect Dis. 2010;50(5):747-51.
    35.Ghedin E, Wentworth DE, Halpin RA, et al. Unseasonal transmission of H3N2 influenza A virus during the swine-origin H1N1 pandemic. J Virol. 2010;84(11):5715-8.
    36.Tang JW, Lee CK, Lee HK, et al. Tracking the emergence of pandemic Influenza A/H1N1/2009 and its interaction with seasonal influenza viruses in Singapore.Ann Acad Med Singapore. 2010;39(4):291-4.
    37.Monto AS. Occurrence of respiratory virus: time, place and person. Pediatr Infect Dis J. 2004; 23(1Suppl): S58-64.
    38.Moore HC, de Klerk N, Richmond P, et al. A retrospective population-based cohort study identifying target areas for prevention of acute lower respiratory infections in children. BMC Public Health. 2010;10:757.
    39.Ko FW, Ip M, Chan PK, et al. Viral etiology of acute exacerbations of COPD in Hong Kong. Chest. 2007;132(3):900-8.
    40.Turbelin C, Pelat C, Bo?lle PY, et al. Early estimates of 2009 pandemic influenza A(H1N1) virus activity in general practice in France: incidence of influenza-like illness and age distribution of reported cases. Euro Surveill. 2009;14(39):19341.
    41.Nguyen-Van-Tam JS, Openshaw PJ, Hashim A, et al. Risk factors for hospitalisation and poor outcome with pandemic A/H1N1 influenza: United Kingdom first wave (May-September 2009). Thorax. 2010;65(7):645-51.
    1.WHO. WHO, 2009. Pandemic (H1N1) 2009 - update 58. (Accessed July 7, 2009, available at http://www.who.int/csr/don/2009_07_06/en/index.html.).
    2.Shinde V, Bridges CB, Uyeki, et al. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. N Engl J Med. 2009;360(25):2616-25.
    3.Smith GJD, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459:1122-1126
    4.Karasin AI, Brown IH, Carman S, et al. Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada. J Virol. 2000;74, 9322-9327.
    5.Ma W, Gramer M, Rossow K, et al. Isolation and genetic characterization of new reassortant H3N1 swine influenza virus from pigs in the midwestern United States. J Virol. 2006; 80:5092-5096.
    6.Webby RJ, Rossow K, Erickson G, et al. Multiple lineages of antigenically and genetically diverse influenza A virus co-circulate in the United States swine population. Virus Research. 2004; 103: 67-73.
    7.Wright, SM, Kawaoka Y, Sharp GB, et al. Interspecies transmission and reassortment of influenza A viruses in pigs and turkeys in the United States. Am J Epidemiol. 1992;136:488-497.
    8.Choi YK, Lee JH, Erickson G, et al. H3N2 influenza virus transmission from swine to turkeys, United States. Emerg Infect Dis. 2004;10(12):2156-60.
    9.鄢明华,李秀丽,王英珍,等.天津地区猪流感血清学调查.动物医学进展.2006,27(10):92-95
    10.Olsen CW, Karasin A, Erickson G. Characterization of a swine-like reassortant H1N2 influenza virus isolated from a wild duck in the United States. Virus Research. 2003;93:115-121.
    11.Jung K, Chae C. Phylogenetic analysis of an H1N2 influenza A virus isolated from a pig in Korea. Brief Report. Arch Virol. 2004;149:1415-1422.
    12.Jung K, Chae C. First outbreak of respiratory disease associated with swine influenza H1N2 virus in pigs in Korea. J Vet Diagn Invest. 2005;17(2):176-8..
    13.Jung K, Song DS. Evidence of the co-circulation of influenza H1N1, H1N2 and H3N2 viruses in the pig population of Korea. Vet Rec. 2007;161(3):104-5.
    14.Song DS, Lee CS, Jung K, et al. Isolation and phylogenetic analysis of H1N1 swine influenza virus isolated in Korea. Virus Res. 2007;125(1):98-103.
    15.Van Reeth K, Brown IH, Pensaert M. Isolations of H1N2 influenza A virus from pigs in Belgium. Vet Rec. 2000;146(20):588-9.
    16.李海燕,于康震,辛晓光,等.部分省市猪群猪流感的血清学调查及猪流感病毒的分离与鉴定.动物医学进展,2003,24(3):67—7
    17.韩庆功,张智勇,崔艳红.我国猪流感的流行现状与危害.吉林农业科学,2008,33(5): 49- 52
    18.Yu H, Zhou YJ, Li GX, et al. Further evidence for infection of pigs with human-like H1N1 influenza viruses in China. Virus Res. 2009;140:85-90.
    19.Liu JH, Bi YH, Qin K, et al. Emergence of European Avian Influenza Virus-Like H1N1 Swine Influenza A Viruses in China. J Clin Microbiol. 2009 ;47(8):2643-6.
    20.陈俊敏,杨珊,赵伟,等.汕头市猪禽流感血清学监测报告.畜禽业, 2009, 239(3):62
    21.刘晓慧,王占菊.人群与猪群血清流感抗体水平间相关性分析.工企医刊,1998,11(1):21-22
    22.Nelli RK , Kuchipudi SV, White GA , et al. Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res. 2010;6:4.
    23.Guan Y, Shortridge KF, KraussS, et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol. 2000;74:9372-9380
    24.Xu KM, Li KS, Smith GJ, et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. J Virol. 2007;81:2635-2645.
    25. Peiris JS, Guan Y, Markwell D, et al. Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol. 2001;75:9679-9686.
    1.CoxNJ,SubbaraoK.Influenza.Lancet. 1999;345:1277—1282
    2.Taubenberger JK and Morens DM. 1918 Influenza: the Mother of All Pandemics. Emerg Infect Dis.2006;12(1):15-22
    3.孔梅,郭小华,段卫平,等.天津市2001年-2004年流感病原学监测分析.天津医药,2005,33(l2):770-772
    4.李晓燕,孔梅,雷明,等.天津市2004年-2007年流感病原学监测分析.中国卫生检验杂志,2007,l7(l2):2278-2279
    5.Smith GJD, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature.2009;459:1122-1126
    6.WHO. CDC protocol of realtime RT-PCR for swine influenzaA(H1N1). 2009. http://www.who.int/entity/csr/resources/publications/swineflu/CDCRealtimeRTPCR_SwineH1Assay-2009_20090430.pdf
    7.Suwannakarn K, Payungporn S, Chieochansin T, et al. Typing(A/B) and subtyping (H1/H3/H5) of influenza A viruses by multiplex real-time RT-PCR assays. J Virol Methods 2008;152(1-2):25-31
    8.Tiveljung-Lindell A, Rotzén-Ostlund M, et al. Development and implementation of a molecular diagnostic platform for daily rapid detection of 15 respiratory viruses. J Med Virol. 2009; 81(1):167-75.
    9.Bright RA, Medina MJ, Xu X, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005; 366(9492):1175-81
    10.Guo L, Garten RJ, Foust AS, et al. Rapid identification of oseltamivir-resistant influenza A(H1N1) viruses with H274Y mutation by RT-PCR/restriction fragment length polymorphism assay. Antiviral Res. 2009;82(1):29-33.
    11.黄维娟,董婕,舒跃龙.中国流感监测网络发展概况.疾病监测,2008,23(8):463-469
    12.国家流感中心.流感监测周报第120期(2011年第15周:4月11日-17日).2011,15: http://www.cnic.org.cn/chn/
    13.Centers for Disease Control and Prevention (CDC). CDC Serum Cross-Reactive Antibody Response to a Novel Influenza A (H1N1) Virus After Vaccination with Seasonal Influenza Vaccine. MMWR 2009;58(19):521-524.
    14.Bragstad K, Martel CJ, Thomsen JS, et al. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza Other Respi Viruses. 2011;5(1):13-23.
    15.Russell CA, DL Smith, JE Childs, et al. The global circulation of seasonal influenza A(H3N2) viruses. Science. 2008;320:340–346. 2005.
    16.Zhu FC, Wang H, Fang HH, et al. A novel influenza A (H1N1) vaccine in various age groups. N Engl J Med. 2009;361(25):2414-23.
    17.Yang P, Duan W, Lv M, et al. Review of an Influenza Surveillance System, Beijing, People's Republic of China. Emerg Infect Dis. 2009;15(10):1603-8.
    18.俞顺章,居丽雯,姜庆五.防控甲型H1N1流感要有较长时间的思想准备.中华流行病学杂志,2009,30(6):542
    19.WHO. Influenza A (H1N1) Alert 44. 12 June 2009; Available from: http://www.wpro.who.int /philippines/alerts/2009/june/update+44.htm
    20.郗萌,高燕.流感样病例(ILI)监测在流感诊疗中的作用.中国现代医药杂志.2006,8(8):5-6
    21.Fisman DN, Savage R, Gubbay J, et al. Older age and a reduced likelihood of 2009 H1N1 virus infection. N Engl J Med. 2009;361(20):2000-1.
    22.Khiabanian H, Farrell GM, St George K, et al. Differences in patient age distribution between influenza A subtypes. PLoS One. 2009;4(8):e6832.
    23.Lamaitre M, Carrat F. Comparative age distribution of influenza morbidity and mortality during seasonal influenza epidemics and the 2009 H1N1 pandemic. BMC Infect Dis. 2010; 10: 162.
    24.Hancock K, Veguilla V, Lu X, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 2009;361:1945-52.
    25. Carrat F, Vergu E, Ferguson NM, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 2008;167:775–785
    26.O'Riordan S, Barton M, Yau Y, et al. Risk factors and outcomes among children admitted to hospital with pandemic H1N1 influenza. CMAJ. 2010;182(1):39-44.
    1.Nicholson KG, Wood JM, Zambon M. Influenza. Lancet. 2003;362(9397):1733-45.
    2.Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 2005;79(5):2814-22.
    3.St?hr K. Influenza--WHO cares. Lancet Infect Dis. 2002;2(9):517
    4.Russell CA, DL Smith, JE Childs, et al. The global circulation of seasonal influenza A(H3N2) viruses. Science.2008; 320:340–346.
    5.Taubenberger JK and Morens DM. 1918 Influenza: the Mother of All Pandemics. Emerg Infect Dis. 2006;12(1):15-22.
    6.Zhu QY, Qin ED, Wang W, et al. Fatal infection with influenza A (H5N1) virus in China. N Engl J Med. 2006;354(25):2731-2.
    7.Shinde V, Bridges CB, Uyeki, et al. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. N Engl J Med. 2009;360(25):2616-25.
    8.Smith GJD, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009; 459:1122-1126
    9.WHO. WHO, 2010. Pandemic (H1N1) 2009 - update 58. (Accessed August 6, 2010, at 377 http://www.who.int/csr/don/2010_08_06/en/index. html.)
    10.WHO. WHO, 2010. Pandemic (H1N1) 2009 - update 58. (Accessed August 10, 2010, at 377 http://www.who.int/csr/don/2010_08_10/en/index. html.)
    11.Rambaut A, Pybus OG, Nelson MI, et al. The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008;453:615-620
    12.Smith GJD, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009; 459:1122-1126
    13.Lee N, Chan PKS, Lam Wai-yip, et al. Co-infection with pandemic H1N1 and Seasonal H3N2 influenza viruses. Ann Intern Med. 2010;152(9):618-9.
    14.Liu W, Li ZD, Tang F, et al. Mixed Infections of Pandemic H1N1 and Seasonal H3N2 Viruses in 1 Outbreak. Clin Infect Dis. 2010;50(10):1359-65.
    15. Cong Y, Wang G, Guan Z, et al. Reassortant between Human-Like H3N2 and Avian H5 Subtype Influenza A Viruses in Pigs: A Potential Public Health Risk. PLoS ONE. 2010; 5(9): e12591.
    16.Shiraishi K, Mitamura K, Sakai TY, et al. High frequency of resistant viruses harboring different mutations in amantadine treated children with influenza. Infect Disease. 2003; 188: 57-61
    17.Lee VJ, Fernandez GG, Chen MI, etal. Influenza and the pandemic threat. Singapore Med J. 2006;47(6):463-70.
    18.Nelson MI, Simonsen L, Viboud C, et al. Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog. 2006;2(12):e125.
    19.Shiino T, Okabe N, Yasui Y, et al. Molecular Evolutionary Analysis of the Influenza A(H1N1)pdm, May–September, 2009:Temporal and Spatial Spreading Profile of the Viruses in Japan. PLoS ONE. 2010;5(6): e11057.
    20.Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-20.
    21.Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596-9.
    22.Maddison, W.P. & D.R. Maddison. 2010. Mesquite: A modular system for evolutionaryanalysis. Version 2.74. http://mesquiteproject.org
    23.Martin DP, Lemey P, Lott M, et al. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26:2462-2463.
    24.Holmes EC, Ghedin E, Miller N, et al. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 2005;3(9): e300.
    25.Ghedin E, Sengamalay NA, Shumway M, et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature. 2005;437(7062):1162-6.
    26.Ferguson NM, Galvani AP, Bush RM.Ecological and immunological determinants of influenza evolution. Nature. 2003;422(6930):428-33.
    27.Hensley SE, Das SR, Bailey AL, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science. 2009;326(5953):734-6.
    28.Hoffmann E, Stech J, Guan Y, et al. Universal primer set for the full-length amplification of all influenza A viruses.Arch Virol. 2001;146(12):2275-89.
    29.Chan CH, Lin KL, Chan Y, et al. Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. J Virol Methods. 2006;136(1-2):38-43.
    30.Obenauer JC, Denson J, Mehta PK, et al. Large-scale sequence analysis of avian influenza isolates. Science. 2006;311(5767):1576-80.
    31.Gorman OT, Donis RO, Kawaoka Y, et al. Evolution of Influenza A Virus PB2 Genes: Implications for Evolution of the Ribonucleoprotein Complex and Origin of Human Influenza A Virus J Virol. 1990; 64(10):4893-4902
    32.Chen W, Calvo PA, Malide D, et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 2001, 7:1306–1312.
    33.Newby CM, Sabin L, Pekosz A. The RNA binding domain of influenza A virus NS1 protein affects secretion of tumor necrosis factor alpha, interleukin-6, and interferon in primary murine tracheal epithelial cells. J Virol. 2007; 81:9469-9480.
    34.Fernandez SA. The influenza virus NS1 protein: inhibitor of innate and adaptive immunity. Infect Disord Drug Target. 2007; 7:336-343.
    35.Campanini G, Piralla A, Paolucci S, et al. Genetic divergence of influenza A NS1 gene in pandemic 2009 H1N1 isolates with respect to H1N1 and H3N2 isolates from previous seasonal epidemics. Virol J. 2010;7:209.
    1.Feng D, de Vlas SJ, Fang LQ, et al. The SARS epidemic in mainland China: bringing together all epidemiological data. Trop Med Int Health. 2009;14 Suppl 1:4-13.
    2.van der Hoek L, Pyrc K, Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol Rev. 2006;30(5):760-73.
    3.Pyrc K, Berkhout B, van der Hoek L. Identification of new human coronaviruses. Expert Rev Anti Infect Ther. 2007;5(2):245-53.
    4.Masters PS. The molecular biology of coronaviruses. Adv. Virus Res. 2006;66: 193–292.
    5.Tannock GA, Hierholzer. The RNA of human coronavirus OC-43. Virology. 1977;78(2):500-10.
    6.芮伟,张其鹏,石磊,等. SARS冠状病毒基因组、蛋白质与侵入宿主细胞过程的研究近况.中华医学杂志, 2003, 83(11): 913-21
    7.Xu YH, Lou ZY, Liu YW, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem. 2004; 279 (47):49414-9.
    8.Marra MA, Jones SJ, Astell CR, et al. The genome sequence of the SARS associated coronavirus. Science. 2003; 300(5624):1399-404.
    9.Li WH, Moore MJ, Vasilieva NY. Angiotensin converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454.
    10.Wu K, Li W, Peng G, Li F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc Natl Acad Sci USA. 2009;24;106(47):19970-4.
    11.Yeager CL, Ashmun RA, Williams RK, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420-2.
    12.Yokomori K, Lai MM. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol. 1992;66(10):6194-9.
    13.Hofmann H, Pyrc K, van der Hoek L, et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA. 2005;102(22):7988-93.
    14.Glowacka I, Bertram S, Herzog P, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2010;84(2):1198-205
    15.Huang IC, Bosch BJ, Li F, Li W, et al.SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem. 2006;281(6): 3198- 203 .
    16.Bendtsen JD, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP
    3.0. Mol Biol. 2004;340(4):783-95.
    17.Finn RD, Mistry J, Tate J, et al. The Pfam protein families database. Nucleic Acids Res. 2004;32(Database issue):D138-41.
    18.Wang LF, Eaton BT. Bats, civets and the emergence of SARS. Curr Top Microbiol Immunol. 2007;315:325-44.
    19.Pyrc K, Jebbink MF, Berkhout B, et al. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J. 2004;1:7.
    20.Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884-95.
    21.朱汝南,钱渊,赵林清,等.从北京地区急性呼吸道感染患儿标本中检测到新型冠状病毒NL-63基因.中华儿科杂志,2006, 44 (3) :202-205.
    22.曾秀雅,伍严安,吴小青,等.福州地区儿童急性呼吸道感染与人类冠状病毒NL63.福建医科大学学报,2008,42(1):176-179
    23.Larson HE, Reed SE, Tyrell DAJ. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J. Med. Virol. 1980;5:221– 229.
    24.Ren L, Gonzalez R, Xu J, et al. Prevalence of human coronaviruses in adults with acute respiratory tract infections in Beijing, China. J Med Virol. 2011;83(2):291-7.
    25.Abdul-Rasool S, Fielding BC.Understanding Human Coronavirus HCoV-NL63. Open Virol J. 2010;4:76-84.
    25.Gaunt ER, Hardie A, Claas EC, et al.Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940-7.
    26.常全忠,胡德辉,朱玉山,等. SARS冠状病毒S2蛋白对A549细胞氯通道电流的抑制作用.解放军医学杂志,2006 ,31(5): 431-432
    27.Liu SW, Xiao GF, Chen YB, et al. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus:implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet. 2004; 363 (9413): 938-47.
    28.Bonavia A, Zelus BD, Wentworth DE, et al.Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol. 2003;77(4):2530-8.
    1.Templeton KE. Why diagnose respiratory viral infection?J Clin Virol. 2007;40 Suppl 1:S2-4.
    2. van Woensel JB, van Aalderen WM, Kimpen JL.Viral lower respiratory tract infection in infants and young children. BMJ. 2003;327(7405):36-40.
    3.Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545-55.
    4.Madhi SA, Klugman KP. Acute Respiratory Infections. Disease and Mortality in Sub-Saharan Africa. 2nd edition. Washington (DC): World Bank; 2006. Chapter 11.
    5.Henrickson KJ.Cost-effective use of rapid diagnostic techniques in the treatment and prevention of viral respiratory infections. Pediatr Ann. 2005;34(1):24-31.
    6.Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21(4):716-47
    7.Creer DD, Dilworth JP, Gillespie SH, et al. Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care. Thorax,2006,61(1):75-9.
    8.Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112 Suppl 6A:4S-12S.
    9.侯云德.急性呼吸道病毒感染的病原学与防治.北京:中国协和医科大学出版,2005:1-36
    10.van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719-24.
    11.Allander T, Tammi MT, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA. 2005;102(36):12891-6.
    12.Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967-76.
    13.Pyrc K, Jebbink MF, Berkhout B, et al. Genome structure and transcriptional regulation of human coronavirus NL63.Virol J. 2004 Nov 17;1:7.
    14.Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884-95.
    15.Gaynor AM, Nissen MD, Whiley DM, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections.PLoS Pathog. 2007;3(5):e64.
    16.Zhu QY, Qin ED, Wang W, et al. Fatal infection with influenza A (H5N1) virus in China. N Engl J Med. 2006;354(25):2731-2.
    17.Yang Y, Sugimoto JD, Halloran ME, et al. The transmissibility and control of pandemic influenza A (H1N1) virus. Science. 2009;326(5953):729-33
    18.Ren L, Gonzalez R, Wang Z, et al. Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005-2007. Clin Microbiol Infect. 2009;15(12):1146-53
    19.陈沙力,冷丽,郑永晨,等. 1017例急性呼吸道病毒感染病原学研究.临庆儿科杂志,1993,11(1):365-366
    20.Jartti T, Lehtinen P, Vuorinen T, et al. Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children. J Med Virol. 2004; 72: 695–699.
    21. Liu W, Li ZD, Tang F, et al. Mixed Infections of Pandemic H1N1 and Seasonal H3N2 Viruses in 1 Outbreak. Clinical Infectious Diseases 2010; 50(10):1359–1365
    22.Che XY, Qiu LW, Liao ZY, et al. Antigenic cross-reactivity between severe acute respiratory syndromes associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis. 2005; 191:2033–2037.
    23.Oh JW. Respiratory viral infections and early asthma in childhood. Allergol Int. 2006;55(4):369-72.
    24.Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21(4):716-47
    25.Johnston SL. Overview of virus-induced airway disease. Proc Am Thorac Soc. 2005;2(2):150-6
    26.Nicholson KG, Kent J, Hammersley V, et al. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study ofdisease burden. BMJ. 1997;315(7115):1060-4.
    27.Talbot HK, Falsey AR. The diagnosis of viral respiratory disease in older adults. Clin Infect Dis. 2010;50(5):747-51.
    28.Leng J, Goldstein DR. Impact of aging on viral infections. Microbes Infect. 2010;12(14-15):1120-4.
    29.Klein MB, Yang H, DelBalso L, et al. Viral pathogens including human metapneumovirus are the primary cause of febrile respiratory illness in HIV-infected adults receiving antiretroviral therapy. J Infect Dis. 2010;201(2):297-301.
    30.Fisman DN, Savage R, Gubbay J, et al. Older age and a reduced likelihood of 2009 H1N1 virus infection. N Engl J Med. 2009;361(20):2000-1.
    31.Khiabanian H, Farrell GM, St George K, et al. Differences in patient age distribution between influenza A subtypes. PLoS One. 2009;4(8):e6832
    32.Hancock K, Veguilla V, Lu X, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 2009;361:1945-52.
    33.Longtin J, Bastien M, Gilca R, et al. Human bocavirus infections in hospitalized children and adults. Emerg Infect Dis. 2008;14(2):217-21.
    34.Balkhy HH, El-Saed A, Sallah M. Epidemiology of H1N1 (2009) influenza among healthcare workers in a tertiary care center in Saudi Arabia: a 6-month surveillance study. Infect Control Hosp Epidemiol. 2010;31(10):1004-10.
    35.汤洪伟,黄吉城,何剑峰,等.广东省野生动物接触人群SARS冠状病毒感染危险因素分析.中国热带医学,2006,6(7):1155-1156
    36.向妮娟,周蕾,怀扬,等. 2005- 2009年中国人禽流感(H5N1)病例流行病学特征分析.实用预防医学,2010,17(6):1070-1073
    37.Moore HC, de Klerk N, Richmond P, et al. A retrospective population-based cohort study identifying target areas for prevention of acute lower respiratory infections in children. BMC Public Health. 2010;10:757.
    38.Ko FW, Ip M, Chan PK, et al. Viral etiology of acute exacerbations of COPD in Hong Kong. Chest. 2007;132(3):900-8.
    39.Rudan I, Boschi-Pinto C, Biloglav Z, et al. Epidemiology and etiology of childhood pneumonia. Bull World Health Organ. 2008;86(5):408-16.
    40.Loustalot F, Silk BJ, Gaither A, et al. Household transmission of 2009 pandemic influenza A (H1N1) and nonpharmaceutical interventions among households of high school students in San Antonio, Texas. Clin Infect Dis. 2011;52 Suppl 1:S146-53.
    41.Karakis I, Kordysh E, Lahav T, et al. Life prevalence of upper respiratory tract diseases and asthma among children residing in rural area near a regional industrial park: cross-sectional study. Rural Remote Health. 2009;9(3):1092.
    42.Mannelli A, FerrèN, Marangon S. Analysis of the 1999-2000 highly pathogenic avian influenza (H7N1) epidemic in the main poultry-production area in northern Italy. Prev Vet Med. 2006;73(4):273-85.
    43.Longo BM, Yang W. Acute bronchitis and volcanic air pollution: a community-based cohort study at Kilauea Volcano, Hawai'i, USA.J Toxicol Environ Health A. 2008;71(24):1565-71
    44.宋靖荣.2007-2008年兰州地区儿童急性呼吸道感染病毒病原学研究.兰州大学2009年硕士研究生学位论文
    45.赵扬.2008-2009年兰州地区儿童急呼吸道感染病毒病原学研究.兰州大学2010年硕士研究生学位论文.