矿渣粉煤灰混合胶凝体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能增效是我国石油工业生产与开发中一直倍受关注的问题,本文即是以实现油气井固井低成本节能材料的研制与开发为主要目标而提出的。以面向利用工业废料矿渣和粉煤灰为基本材料开发无水泥熟料新型胶结材料为中心内容,力求通过对体系开展系统的实验及理论研究,找寻和开发出能够满足常规固井作业要求的胶结封固新材料的可行途径及体系设计方法。论文研究成果的完成,不仅能直接降低固井水泥材料成本、提高油气田开发效益,而且能够进一步扩大我国工业废料在生产中的应用,对节约水泥生产资源和能源,保护环境等方面均具有十分重要的意义。本文的研究内容和成果如下:
     首先,论述混合胶凝体系采用矿渣和粉煤灰这两种工业废渣作为基本掺合材料混合体系基材的形成、作用及其物理化学性能。通过对掺和材料体系的特性分析提出有效地利用该胶凝体系不仅有利于环境保护而且经过多元组分的有机配比能够满足常规固井作业的要求。
     其次,本文以颗粒密集堆积理论为基础,通过对比不同细度的粉煤灰、矿渣这两种矿物掺合料以不同比例掺配后形成的粉体颗粒级配及胶凝试件的强度,分析了在胶凝材料颗粒级配逐渐趋向于紧密堆积时对水泥胶砂试件强度的影响。
     再次,研究分析了矿渣-粉煤灰混合胶凝体系在合适的碱性激发剂作用下协同发挥水硬性的作用特征,为开展矿渣-粉煤灰混合胶凝材料的试制研究工作提供了可行的途径。
     利用X-射线衍射仪和扫描电子显微镜等设备对该混合胶凝体系在常温常压条件下的水化产物进行了较详细地分析和研究,揭示了矿渣粉煤灰材料的水化作用特点及强度特征,并通过对矿渣与粉煤灰两种基质材料在不同物质组分配比、不同激活剂及外加剂的成分及加量、不同水灰比条件下所组成的多元组分体系的流动性、流变性、凝结特性、强度等主要工程性能的变化进行了测试和分析,提出了矿渣、粉煤灰、碱激活剂及其它外加剂等的有关颗粒级配、组分加量与水灰比等因素对混合胶凝体系工程性能的影响规律。
     最后,根据油田现场中浅井固井作业的实际要求,提出了密度在1.78~1.80g/cm3,流动度在19~22cm,凝结时间为初凝在1h30min~3h30min、终凝在1h以内的混合胶凝体系结构,为探索节能、环保、低成本固井液体系提供技术开发的理论及实验基础与可行性途径。
     本文创新性的将粉煤灰污染物质有效的和高炉矿渣有机的结合应用于石油工业的固井工艺。通过对矿渣、粉煤灰及相关掺料多元组分的化学特性的深入研究,分析胶凝体系的不同配比对固井水泥浆体系性能和强度影响规律,提出满足常规固井作业要求的胶结封固新型水泥浆体系的研究途径和设计方法。本文的研究不仅降低了石油固井的作业成本,而且弥补了石油固井作业充分利用废渣提高固井质量研究方面的空白,丰富和发展油井水泥浆体系的材料学理论,同时对进一步扩大和深化工业废料在新的领域应用,实现矿渣资源的有效利用和粉煤灰污染物的有效处理,在节约能量利用和环境保护方面均具有巨大的意义。
Energy saving and efficiency increasing are always the problems which have been attracted the attentions in the petroleum manufacturing and developing in our country. This dissertation is put forward by the principal target as achieve the manufacturing and developing of low-cost and saving energy materials that are used in oil and gas well cementing job. It is put as the center content that using the industrial discharge slag and fly ash as the fundamental material to develop the new cementing material without cement clinker. Through doing the best to launch the systematical experiment and theoretical research to the system, looking for and developing the practicable way and the system design method of new cementing material can be contented to the conventional cementing job demand. The completion of the dissertation research achievement, not only can directly reduce the cementing material cost and enhance the benefit of oil and gas field exploiting, but also can expand the apply of industrial waster in production. It also has very important significance in some parts such as saving production resources and energy and protecting environment. The research contents and results are as follows:
     Firstly, the forming, function, physical and chemical properties of mixed gel system using industrial waste of slag and fly ash as substrate materials of a basic admixture materials mixed system was discussed in this paper. Through the analysis of the characteristics of mixed material system,effective use of the proposed gel system is not only favorable to the environment protection, but also can satisfy the requirement of conventional cementing operation by means of matching organic ratio of multiple components.
     Secondly, on the basic of grain concept of high packing density theory, by contrast of different proportion of powder particle gradation and gel strength of the specimen, which are made of different fineness of fly ash and slag, on the strength of cement grinding specimens when gel particle gradation tend to close up was analyzed.
     Thirdly, the characteristics of synergetic hydraulic effect, which is stimulated by alkaline chemicals in the mixed gel system of slag and flying ash, was analyzed,and it provides an available method in the study of mixed gel system of slag and flying ash.
     The hydration products of the mixed gel system under atmospheric conditions was analyzed and studied in detail by using equipment as XRD and SEM etc, the hydration characteristic of the slag-fly ash materials and strength characteristics are revealed, and through carrying on the related survey and analysis to the main engineering capacity transformation of the multi-component system formed by slag and fly ash in different component addition, different activator and additives component and addition, different water-cement ratio condition, such as flow property, rheological property, thickening property, water loss, permeability and strength property etc. It puts forward the law that the factors as grain fraction, component addition, water-cement ratio etc. of slag, fly ash and alkali-activator and other additives affect the engineering capacity of mixed gel system.
     At last, according to the oil field actual requirements of shallow cementing operation, the conclusion obtained is the mixed gel system of the density 1.78~1.80 g/cm3,the fluidity 19 ~ 22cm, the initial setting time 1 hour 30 minutes to 3 hour 30 minutes, and the final setting time within 1h,which can supply the technical development theory, the experiment foundation and the practicable way for exploring the saving energy, protecting environment and low-cost cementing fluid system.
     In this paper, the innovative organic combination of the fly ash pollutants and blast furnace slag is applied to the oil industry cementing technique. Through the further research on chemical properties of slag, fly ash and related admixtures multiple components, the influence law of cementing mud system performance and strength at different ratio gel system is analyzed, It puts forward new approaches and design method of cementation cementing slurry system to satisfy regular cementing operation requirements. This study not only reduces the cost of cementing operation but also fill a vacancy in full use of waste residue to improve cementing quality, enriches and develops oil well slurry system material science theory ,and further expands and deepens the industrial waste in new applications, realizes the effective utilization of slag resources and the effective treatment of fly ash pollutants, has great significance in saving energy utilization and environmental protection aspect.
引文
[1]张景富.G级油井水泥的水化硬化及性能.浙江大学博士学位论文[D].浙江杭州,2001年.1~4.
    [2]黄柏宗,吴达华.油井水泥及其外加剂进展[J].钻井液与完井液,1994,11(3):1~10.
    [3]宋长生.塔里木油井水泥外加剂应用展望[J].石油与天然气化工,1994,23(1):45~46.
    [4]黄柏宗等.世界主要固井公司基本水泥、特种水泥及外加剂产品汇总[J].钻井液与完井液,1999,16(5,6):35~41,30~37.
    [5]张景富等.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167~171,177.
    [6]张景富等.温度及外加剂对水泥浆流变性的影响[J].钻井液与完井液,2003,20(3):35~38.
    [7]张景富等.温度及外加剂对G级油井水泥强度的影响[J].石油钻采工艺,2003,25(3):19~23.
    [8] Nelson E.B.Casabonne J.M. Method for better control of cement performance in high-temperature wells [R]. SPE 24556, 1992: 323~327.
    [9]牟善彬.粉煤灰的微观形态及其在水泥中的水化[J].新世纪水泥导报,2002,2:12~16.
    [10]张文生等.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述[J].硅酸盐学报,2000,28(2):160~164.
    [11] Jiang Y et al. Influence of particles size of fly ash on cement performances application of gray system theory[J].Inorgainic Materials, 1998, 5: 540~511.
    [12]金卓仁.高掺量矿渣硅酸盐水泥的研究[J].水泥,1998,6:26~30.
    [13]王复生等.超高强度高抗硫酸盐矿渣水泥的试验研究[J].水泥,1999,7:18~21.
    [14]张京晶等.大掺量粉煤灰高标号复合水泥生产技术[J].水泥技术,2001,3:34~36.
    [15]刁胜贤等.粉煤灰水泥浆体系研究与应用[J].石油钻探技术,2002,30(5):39~41.
    [16]安耀彬等.深井矿渣油井水泥的试验研究[J].钻井液与完井液,1999,16(1):22~24.
    [17]齐奉忠等.MTC固井液固化影响因素的探讨[J].钻井液与完井液,1999,16(4):11~13.
    [18]黄柏宗等.固井水泥环柱的腐蚀研究[J].钻井液与完井液,1999,16(4):377~383.
    [19] Bruckdorfer R.A Carbon dioxide corrosion in oilwell cements.SPE.15176,1986: 531~539.
    [20] Trief L. The new Trief cementprocess. Proc. of 4th Ontermatopma. Fly ash Symposium St. Louis, 1979, 14:16~31.
    [21] Smith M.A. et al. Slag/fly ash cements [J].World Cement Technology, 1997, 8:223~233.
    [22] Forss B. F-cement, a new loe-porosity slag cement [J]. Silicates Industriels,1983,3: 79~82.
    [23] Narang K. C.Investigations on microstruvtureal behaviour and performance of nonPortland binders[C].Int. Conference on Cement Microrcopy. 10th. Texas. USA,1988, 71~81.
    [24] Bhatty M.S.Y. Kiln. Dust cement blends evaluated[J]. Rock products, 1983, 88:45~52.
    [25] ACC Cetral Research Station.Alkali-activated slag-fly ash cement. Progress Report Thane. India,1984:660~668.
    [26] Daviovits J.Geopolymers of the first gemeration. Siliface process.Proceedings of the first European Conference on Soft Mineralogy. France,1988,l:49~67.
    [27]陈全德.应用新技术建设“环境材料型”水泥工业[J].水泥工程,2003,1:56~64.
    [28]高长明.国内外水泥工业技术发展热点简评[J].水泥工程,2002,6:42~48.
    [29] Mostafa N.Y. et al. Hydraulic activity of water-cooled and air cooled slag at different temperaure. Cement and Concrete Research,2001,31(3):475~484.
    [30] Wang Kunsheng et al. Hydraulic activity of municipal solid waste incinerater fly-slag-blended eco-cement. Cement and Concrete Research,2001,31(1):97~103.
    [31] Xuequan Wu et al. Study on steel slag and fly ash composite Portland cement. Cement and Concrete Research,1999,29(7):1103~1106.
    [32]邹伟斌等.钢渣-矿渣-粉煤灰复合硅酸盐水泥[J].水泥工程,2002,5:36~42.
    [33]陈美祝等.矿渣-粉煤灰复合胶凝材料中石膏的优化[J].中国水泥,2002,11:82~89.
    [34]蒋尔忠,崔源声.面向可持续发展的水泥工业[M].北京:化学工业出版社,2003,12:160~209.
    [35]周焕海等.碱-矿渣水泥浆体的孔结构和强度[J].硅酸盐通报,1994,3:62~65.
    [36]孙抱真等.粉煤灰的颗粒形貌及其物理性质[J].硅酸盐学报,1982,10(1):64~69.
    [37]谷章昭等.粉煤灰活性的研究[J] .硅酸盐学报,1982,10(2):151~159.
    [38]诸培南.粒化高炉矿渣与活性关系的探讨[J].硅酸盐学报,1982,11(3):290~296.
    [39]李立坤等.碱-矿渣胶凝材料水化机理及动力学特征[J].硅酸盐通报,1994,3:49~52.
    [40]钟白茜等.水玻璃-矿渣水泥的水化性能研究[J].硅酸盐通报,1994,1:4~8.
    [41]吴承宁等.碱-矿渣水泥性能研究及应用[J].硅酸盐学报,1993,21(2):176~181.
    [42]丁树修.高温矿渣砂质水泥的研究[J] .硅酸盐学报,1995,23(6):652~660.
    [43]张树清.矿粉颗粒级配及其对高掺量矿渣水泥强度的影响[J].水泥,2001,2:62~66.
    [44]李滢,杨静.胶凝材料颗粒级配对水泥胶凝体结构及强度的影响[J].建筑石膏与胶凝材料,2004,3:44~48.
    [45]李滢等.复合矿物掺和料颗粒级配对水泥砂浆强度及微观结构的影响[J] .青海大学学报2003,21(6):24~27.
    [46]丁保刚.固井优化设计方法及应用[D].大庆石油学院,2003:50~68.
    [47] McCormick A V, Bell A T, Radke C J. Influence of alkali-metal cations on silicon exchange and silicon-29 spin relaxation in alkaline silicate solutions .J Phys Chem, 1989, 93(5) :1737~1741 .
    [48] Sutton D L, Ravi K M. NewMethod for Determining Downhole Properties That Affect Gas Migration and Annular Sealing[R]. SPE:19520.
    [49] Nahm J J, Romero R N. Interfacial Sealing Properties of Slag Mix (Mud to Cement Conversion Technology) : Laboratory and Field Evaluation[R] .SPE/IADC :29407
    [50]张保平,单文文,田国荣,申卫兵.泥页岩水化膨胀的实验研究[J].岩石力学与工程学报,2000,(S1):86~88.
    [51]郑宏,李焯芬,葛修润,岳中琦.界面问题的混合有限元法[J].岩石力学与工程学报,2002,(01):98~101.
    [52]牟善彬,孙振亚,粉煤灰加气砼的水化产物及其结构的研究[J].粉煤灰综合利用,2002,(01):16~18.
    [53]谢英,侯文萍,王向东.差热分析在水泥水化研究中的应用[J].水泥,1997,(05):44~47.
    [54]郑克仁,孙伟,贾艳涛,等.矿渣掺量对高水胶比水泥净浆水化产物及孔结构的影响[J].硅酸盐学报,2005,(04):20~24.
    [55]王业善,张声显.水泥中粉煤灰掺量的测定方法[J].水泥,1984,(01):24~25.
    [56] Feuerbacher Bet al. Materials Science in Space .Berlin: Springerverlag, 1986: 456~473.
    [57] Lacy L, Otter G H. The stability of liquid dispersion in low gravity .AIAA IAGU Conference on Scien- tific Experiments of SKYLAB. Huntsrille: AIAA, 1974: 74~91.
    [58] Lacy L, Ang C Y. Apolla-Soyuz Test Project .California: NASA Johnson Space Center, 1977:77~98.
    [59]冯乃谦.粉煤灰高性能混凝土及其微结构[J].混凝土,1996,(06):25~28.
    [60]何世葆.粉煤灰混合材喷吹掺入工艺的探讨[J].水泥,1990,(06):36~39.
    [61]徐永模,黄大能,谢尧生.新拌水泥浆体结构及其触变特性的探讨[J].硅酸盐学报,1989,(02):95~98.
    [62]冯秀平,杨南如.CaO-SiO_2-P_2O_5-H_2O体系中CBC材料的水化产物(一)水化产物组成[J].南京化工大学学报,1996,(03):85~89.
    [63]王栗然.水泥水化过程及三维细观结构的计算机模拟[D].兰州理工大学,2008:89-93.
    [64]陈津民.三谈土力学中的e、a和E_s[J].岩土工程界,2006,(07):25~27.
    [65]史佩栋.介绍美国麻省理工学院的一本土力学教材T.William Lambe & Robert V.Whitman:Soil Mechanics,SI Version[J].岩土工程界,2007,(01):25~29.
    [66]李广信,吕禾,张建红.土力学课程中的实践教学[J].实验技术与管理,2006,(12):3~5.
    [67]刘璋,黄梓墀.用钙铁仪测定水泥中粉煤灰的掺量[J].四川水泥,2005,(05):49~52.
    [68]周达,李杰.粉煤灰计量技术与应用[J].水泥技术,2007,(02):.61~62.
    [69]汪雪瑞,张喜发,矫清先,等.大庆地区湿陷性黑土研究[J].工程地质学报,2004,(01):73~78.
    [70] Foestner, U. and Calmano, W. Characterisation of Dredged Materials .Water Science and Technology, 1998,38(11): 149~157.
    [71] CEB-FI P. Model Code for concrete structures 1990(R) .Evaluation of the Time Department Behavior of Con-crete, Bulletin d Information No.199. Lausanne: Comite Europeandu Beton Federation Internationale de la Precontrainte, 1991: 201.
    [72] S.S.Stipho. On the engineering properties of saline soil. Q.J.eng.Geol. (UK). 1985: 20~31.
    [73]李肖音,李建军,巫静波等.粗糙岩石节理剪切强度的修正公式[J].河北理工学院学报,2005,(01):52~58.
    [74]赵平劳.层状结构岩石抗剪强度各向异性试验研究[J].兰州大学学报(自然科学版),1990,(04):35~39.
    [75]杨晓东.从剪切试验分析滑坡机理[J].山西建筑,2007,(13):38~42.
    [76]张西平.水的力学特性及应用[J].科技信息(学术版),2006,(12):49~53.
    [77] Liu Q, Shaw M T,Parnas R S. Investigation of basalt fiber composite mechanical properties for applications in transportation[J] .Polymer Composite, 2006, (10) :41~48.
    [78] Dylmar Penteado Dias and Clelio Thaumaturgo. Fracture toughness of geopolymeric concretes reinforced with basalt fibers .Cement and Concrete Composites, 2005, 27 (1): 49~54.
    [79] A. Katz. Effect of fiber modulus of elasticity on the long term properties of micro-fiber reinforced cementitious composites .Cement and Concrete Composites, 1996, 18 (6): 389~399.
    [80] Jongsung Sim, Cheolwoo Park,Do Young Moon. Characteristics of basalt fiber as a strengthening material for concrete structures[J] .Compos.Part B. 2005, 36 :504~512.
    [81] Elbieta Horszczaruk. Abrasion resistance of high-strength concrete in hydraulic structures .Wear, 2005, 259 (1-6): 62~69.
    [82]李坚.水灰比对水泥混凝土各力学指标影响的试验研究[D].吉林大学,2008:70~77.
    [83]王美芹.对GB13544-2000《烧结多孔砖》的一点建议[J].砖瓦,2005,(10):26~29.
    [84]沈卫国,肖立奇,马威等.水化硅酸钙纳米尺度微结构的AFM研究(英文)[J].硅酸盐学报,2008,(04):32~36.
    [85]赵俊梅.无机胶凝材料常用现代测试方法简介[J].水泥技术,2007,(02):24~28.
    [86]张洪滔,王玲,张文生等.高细度水泥水化机理的初步研究[J].电子显微学报,2001,(04):72~76.
    [87] Byung Hwan Oh Dae Gyun Park, Ji Cheol Kim and Young Cheol Choi. Experimental and theoretical investigation on the postcracking inelastic behavior of synthetic fiber reinforced concrete beams .Cement and Concrete Research, 2005,35 (2):384~392.
    [88] YAO Wu, WU Ke-ru. Study of mechanical properties on polypropylene fiber reinforced concrete [A] .Proceedings of the 3rdAsia Symposium on Polymers in Concrete[C]. Shanghai: Tongji University Press, 2000:293~298.
    [89] Seehra S S,Gupta S,Kumar S. Rapid setting magnesium phosphatecement for quick repair of concrete pavementscharacterization and durability aspects .Cement Concrete Res, 1993, (23):254.
    [90] DAVIES J D, BOSE D K.Stress Distribution in Splitting Tests[J] .Proc.J.Am.Concrete Inst, 1968,65 (8):5~9.
    [91] HIROSHI H, IKEUTIM.On the tensile strength of distcurbed soils [M] .KRAVTDRENCO J; SIRIEYS P M ed. Berlin: Springer, 1964:15~19.
    [92] Sugama T, Kukacka L E. Magnesium monophosphate cement derived from diammonium phosphate solutions .Coordination Chemistry Reviews. 1983,13(3):407~416.
    [93] Zhu Ding, Zongjin Li. Effect of aggregates and water contents on the properties of magnesium phospho-silicate cements .Cement & Concrete Composites. 2005, 27:11~18.
    [94] Yang Q, Zhu B, Wu X. Characteristics and Durability Test of Magnesium Phosphate Cement-Based Material for Rapid Repair ofConcrete[J] .Materials and Structures/Materiaux et Constructions, 2000,33(228):229~234.
    [95] Yang Q,Wu X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete[J] .Cement and Concrete Research. 1999, 29 :389~396.
    [96] Jiang HY,Zhang LM. Investigation of phosphate cement-based binder with super high early strength for repair of concrete[J]. Journal ofWuhanUniversity ofTechnology, 2001, 16 (3) :46~48.
    [97] Wagh A,Jeong S,Singh D. High strength phosphate cement using industrial byproduct ashes[A] .Azizinamini A,et al.editors. Proceedings of First International Conference[C]. ASCE, 1997,:542~553.
    [98]沈旦申,张荫济.粉煤灰效应的探讨[J].硅酸盐学报,1981,(01):28~31.
    [99]张景富,朱健军,代奎,佟卉,姜涛.温度及外加剂对G级油井水泥水化产物的影响[J].大庆石油学院学报,2004,(05):45~48.
    [100]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色系统研究[J] .硅酸盐学报,1998,(04):32~37.
    [101]施惠生,方泽锋.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,(01):47~51.
    [102] Van Jaarsveld J G S, Van Deventer J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers .Industrial and Engineering Chemistry Research, 1999, 38(11):3932~3941.
    [103] Van Jaarsveld J G S, Van Deventer J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers .Ind Eng Chem Res, 1999, 38 :3932~3941 .
    [104] Xu H, Van Deventer J S J. The geopolymerization of alumino-silicate minerals .Int J Miner Process, 2000, 59 :247~266.
    [105] Barbosa V F F, Mackenzie K J D, Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers .International Journal of Inorganic Materials, 2000, (2) :309~317.
    [106] Davidovits J. Geopolymers and geopolymeric new materials .Journal of Thermal Analysis, 1989, 35 :429~441 .
    [107] Wu Xuequan, et al. Alkali -activated slag cement based radioactive waste forms .CemConcr Res, 1991, 12 :16~20.
    [108] Davidovits J. Recent progresses in concretes for nuclear waste and uranium waste containment .Concrete International, 1994, 16(12):53~58 .
    [109] Davidovits J. Ancient and modern concretes: what is the real difference? .Concrete International: Design & Construction, 1987,9(12):23~35 .
    [110] Van Jaarsveld J G S, Van Deventer J S J, Lorenzen L. Factors affecting the immobilisation of metals in geopolymerized fly ash .Met Mater Trans B, 1998, 29 :283~291.
    [111]杨振杰.胶结界面的微观结构与界面胶结强度强化机理研究[D].西南石油学院,2002:23~49.
    [112]陆惠民,赵永胜,董富林.油层套管损坏的前兆特征[J].大庆石油地质与开发,1990,(01):72~76.
    [113]林永学,于忠厚,张贞勇,黄河福.三轴应力状态下页岩水化破坏实验研究[J].石油钻探技术,1996,(01):22~25.
    [114] Cowan K M, et al. Conversion of Drilling Fluids to Cements With Blast Furnace Slag: Performance Properties and Applications for Well Cementing[R].SPE :24575 .
    [115] Mueller D T, Dicerson J P. Blast Furnace Slag Technology:Feature, Limitations, and Practical Applications[R] .SPE:28475.