槟榔的促胃动力作用及其有效组分的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.利用甘草制作胃动力低下大鼠模型,观察其胃残留率及小肠推进率的影响;
     2.观察槟榔对胃动力低下大鼠胃残留率、小肠推进率的影响,并利用SPECT测定胃半排空时间,观察槟榔对胃动力作用的影响;
     3.透射电镜观察槟榔对Cajal间质细胞超微结构的改变及其与周围肠神经系统的关系,免疫组化方法探索槟榔对c-kit在模型大鼠胃组织中表达的影响。
     4.采用HPLC对槟榔成分进行分析,观察其对离体胃平滑肌细胞收缩效应的影响,并使用LC-MS分析有效组分。
     方法:
     1.胃动力低下大鼠模型的建立
     制备生甘草溶液,分为2.5、5、7.5、10、15g/kg5个剂量组,予大鼠每日灌胃,持续5d。以苯酚红测定法,紫外分光光度计测胃残留率,并测量计算小肠推进率。使用SPECT检测99mTc-MIBI溶液在各组大鼠胃内的半排空时间。
     2.槟榔对胃动力的影响
     采用方法1建立胃动力低下大鼠模型,以莫沙必利作为对照药物,分为模型组(10g/kg甘草)、正常对照组(0.9%NaCl)、西药组(0.4mg/kg莫沙必利)以及中药槟榔组(10g/kg槟榔),灌胃7d后,测量各组大鼠的胃残留率、小肠推进率、胃半排空时间。
     3.槟榔对胃内ICC超微结构及c-kit表达的影响
     造模方法同1,分组方案同2,摘取全胃,并取胃底、胃体、胃窦组织各两块。其中一块制作超薄切片,透射电子显微镜观察记录;另一块制作免疫组化标本,观察c-kit抗体表达,计算阳性细胞面积。
     4.槟榔有效组分的分析提取及其对离体平滑肌的作用制备槟榔冻干粉,制作豚鼠平滑肌肌条,观察不同批次提取物对肌条的效应,选取有效批次槟榔提取物,HPLC记录其紫外吸收图谱并提取有效成分,观察其对豚鼠离体平滑肌的收缩效应,LC-MS测定其分子量。
     结果:
     1.不同剂量(2.5、5、7.5、10、15g/kg)甘草溶液灌胃后发现,10g/kg剂量组的胃残留率比其它组别要高,明显高于正常对照组(P<0.01),且胃半排空时间延长(P<0.05)。而5g/kg剂量组的小肠推进率与正常对照组相比,具有统计学意义(P<0.05)。
     2.与正常对照组相比,中药槟榔组及莫沙必利组的胃残留率降低(P<0.05),胃半排空时间缩短,而小肠推进率增大;同时,模型组胃残留率高于其他三组(P<0.05),胃半排空时间延长。槟榔组与莫沙必利组无统计学差异。
     3.电镜观察发现模型组大鼠胃内ICC形状较扁,甚至不规则,向外伸展的突起变短小;其余三组大鼠ICC呈纺锤形,有巨大的卵圆形核及向外伸展的长突起,25000倍放大观察发现,胞质内有丰富的线粒体,大量滑面内质网和粗面内质网。槟榔组ICC与周围的肠神经元轴突间突触样连接增多。四组中,胃内C-kit阳性表达最高部位均为胃窦部,高于胃体部、胃底部。槟榔组的c-kit阳性表达面积最高,尤其在胃窦部(7.97±0.39万μm2)。
     4.分取槟榔不同组分进行豚鼠离体平滑肌实验,选取有效组分进行HPLC成分分析,紫外吸收光谱显示69个峰值,其中34、42最高,提取该组分,发现10μmol/L剂量BL42对平滑肌胃环形肌和胃纵行肌的收缩效应最强,其曲线下面积分别为5.96±0.58,5.64±0.52g/s,接近于Ach效应。LC-MS检测发现,该有效成分分子量不同于槟榔碱。
     结论:
     1.在剂量为10g/kg时,中药甘草可以增加大鼠的胃残留率,延长胃半排空时间,因此可以用来建立胃动力低下大鼠模型。
     2.槟榔能够降低胃动力低下模型大鼠的胃残留率,缩短胃半排空时间,并增高小肠推进率,推测槟榔具有促进胃动力作用。
     3.槟榔能够增加胃动力低下大鼠胃内ICC与周围肠神经系统的联系,并使c-kit在胃窦、胃体、胃底的阳性表达面积加大,提示槟榔的促胃动力作用与ICC具有一定联系。
     4.HPLC制备的槟榔内组分BL34、BL42对豚鼠离体平滑肌具有较强收缩效应,且该作用类似于Ach,该物质成分的具体分子结构尚需进一步实验研究。
Objectives:
     1. To observe the effects of Chinese medicinal glycyrrhiza on the gastric residual rateand the intestinal propulsive rate of rat models of low gastric motility, which areestablished by utilizing glycyrrhiza;
     2. To observe the effects of areca on the gastric residual rate and the intestinalpropulsive rate of rats with low gastric motility, to determine the gastrichalf-emptying time (GET1/2) by using SPECT (Single Photon Emission ComputedTomography), and to observe the effects of the areca on the gastric motility;
     3. To observe the effects of the areca on changing the ultrastructure of interstitial cellsof Cajal (ICC) and the relationship between the ICC with the peripheral entericnervous system by using a transmission electron microscope (TEM), and to explorethe effects of the areca on the expression of c-kit in gastric tissues of model rats byusing an immunohistochemistrical method.
     4. To analyze components of the areca by adopting HPLC (High Performance LiquidChromatography) and LC-MS (Liquid Chromatography-Mass Spectrometry) andextract effective components of the areca in order to observe the effects of theeffective components on contraction of in-vitro gastric smooth muscle cells.
     Methods:
     1. Establishment of rat models of low gastric motilityRaw glycyrrhiza solutions are prepared and divided into five dose groups, namely,
     2.5g/kg,5g/kg,7.5g/kg,10g/kg and15g/kg. Rats are continuously fed with the rawglycyrrhiza solutions by gavage for5days. The gastric residual rate is measured byusing an ultraviolet spectrophotometer through pH-sensitive assay using phenol red,and the intestinal propulsive rate is measured and calculated. The GET1/2of99mTc-MIBI (Technetium-Methoxy Isobutyl Isonitrile) solution in rat stomachs in allgroups is detected by using SPECT.
     2. Effects of the areca on the gastric motilityBy taking mosapride as a control medicine, the rat models of low gastric motility,established by adopting the method1, are divided into a model group (10g/kgglycyrrhiza), a normal control group (0.9%NaCl), a western medicine group(0.4mg/kg mosapride) and an areca group (10k/kg areca), and are fed by gavage for7days. The gastric residual rate, the intestinal propulsive rate and the GET1/2of therats in each group are measured.
     3. Effects of the areca on the ultrastructure of intragastric ICC and the expression ofc-kitModels and groups are established according to the methods1and2. A wholestomach is removed, and two pieces of tissues are taken from each of the gastric
     fundus, the gastric body and the gastric antrum. One piece of each kind of tissue isused for making an ultrathin section to be observed and recorded by the TEM, and theother piece of each kind of tissue is used for making an immunohistochemistricalspecimen for observation of c-kit antibody expression and calculation of positive cellareas.
     4. Extraction of areca effective components and effects of the areca effectivecomponents on in-vitro smooth muscleLyophilized areca powder is prepared, smooth muscle strips of guinea pigs are made,and the effects of extractives of different batches on the muscle strips are observed; the areca extractives of effective batches are selected, the ultraviolet absorptionspectra of the selected extractives are recorded by means of HPLC, and the effectivecomponents of the selected extractives are extracted; and the effects of the effectivecomponents on the contraction of the in-vitro smooth muscle of the guinea pigs areobserved, and a mechanism is analyzed.
     Results:1. According to the gavage using the glycyrrhiza solutions with different doses
     (2.5g/kg,5g/kg,7.5g/kg,10g/kg and15g/kg), the gastric residual rate in the group of10g/kg dose is higher than that in other groups and is significantly higher than that inthe normal control group (P<0.01), and the GET1/2is prolonged (P<0.05). Whilecomparing the intestinal propulsive rate in the group of5k/kg dose with that in thenormal control group, a statistical significance can be achieved (P<0.05).2. Compared with the normal control group, in the areca group and the western
     medicine group, the gastric residual rate is decreased (P<0.05), the GET1/2isshortened, and the intestinal propulsive rate is increased; meanwhile, the gastricresidual rate in the model group is significantly higher (P<0.05), and the GET1/2isprolonged. No statistical differences are presented between the areca group and themosapride group.
     3. According to TEM-based observations, the shapes of the ICC in the rat stomachs ofthe model group are more flat, or even irregular, and the protrusions of the ICCbecome shot and small; and the ICC in the rats of the other three groups take theshape of a spindle, with huge oval nuclear cores and long protrusions extendingoutwards, and the cytoplasm of the ICC are rich in mitochondria, smoothendoplasmic reticulum and rough endoplasmic reticulum based on observations of25,000×magnification. The connection between the ICC and the surrounding intestinal neurons axoaxonic synapse is increased in the areca group. In the fourgroups, the intragastric positive expression of the c-kit in the gastric antrum is highestand is higher than that in the gastric body and the gastric fundus. The positiveexpression area of the c-kit in the areca group is highest, particularly in the gastricantrum (79,700±3,900μm2).
     4. The lyophilized areca powder of ten batches is respectively used for performingguinea pig in-vitro smooth muscle experiments. The lyophilized areca powder of thebatches1and2are selected to undergo HPLC component analysis, and69peakvalues are shown on the ultraviolet absorption spectrum, wherein the34th and42thpeak value are higher. The component corresponding to the34th and42th peak valueis extracted, and10μmol/L of dose BL42is found to have the strongest effect on thecontraction of the gastric circular muscle and the gastric longitudinal muscle of thesmooth muscle, and the areas under a curve are respectively5.96±0.585g/s and5.64±0.52g/s, which approaches anAch (Acetylcholine) effect.
     Conclusion
     1. When the dose is10g/kg, the glycyrrhiza has the effects of increasing the gastricresidual rate and prolonging the GET1/2for the rats, thus, the glycyrrhiza can beused for establishing the rat models of low gastric motility.
     2. The areca has the effects of lowering the gastric residual rate, shortening the GET1/2and increasing the intestinal propulsive rate for the rat models of low gastricmotility, thus, the areca is proved to have the effect on promoting the gastric motility.
     3. The areca has the effects of enhancing the relationship between intragastric ICC ofrats of low gastric motility and the peripheral enteric nervous system, and enlargingthe positive expression area of c-kit in the gastric antrum, the gastric body and thegastric fundus, thus, a certain relationship is presented between the gastric motility promotion effect of the areca and ICC.
     4. BL34and BL42prepared by means of HPLC has a stronger effect on thecontraction of the in-vitro smooth muscle of the guinea pig, and is similar to Ach, andthe components of BL34and BL42need further experimental studies.
引文
[1]郭海军,林洁,李国成,等.功能性消化不良的动物模型研究.中国中西医结合消化杂志,2001,9(3):141-142.
    [2]许海尘,林琳,张红杰,赵志泉.慢传输型便秘模型的建立及其机制探讨.医学研究生学报,2004,17(6):502-504.
    [3]曹蜂,刘小河,傅延龄.功能性消化不良胃虚饮停证大鼠模型的建立与评价.吉林中医药,2008,28(12):929-931.
    [4]刘清华.甘草的化学成分和药理作用的概述.中国中医药现代远程教育,2011,9(13):84.
    [5]张明发,沈雅琴,朱自平,等.辛温(热)合归脾胃经中药药性研究(Ⅱ)抗溃疡作用.中药药理与临床,1997,13(4):l-4.
    [6]谢子任.甘草药理活性的研究.中国实用医药,2009,4(7):232-233.
    [7]郑天珍,李伟,瞿颂义,等.补气类中药对大鼠离体胃平滑肌条的作用.兰州医学院学报,1998,24(3):3-5.
    [8]寻庆英,王翠芬,魏义全,等.甘草对大鼠胃动力功能影响的实验研究.东南大学学报(医学版),2005,24(4):226-269.
    [9]税典奎,姜楠,刘松林.不同剂量甘草煎剂对小鼠胃肠运动影响的实验研究.江苏中医药,2005,26(5):53-54.
    [10]王学清,王秀杰,李岩.香砂平胃散对小鼠胃排空的影响.世界华人消化杂志,2003,11(5):571-574.
    [11]寻庆英,周怀君,窦国祥,等.甘草对大鼠小肠运动功能影响的实验研究.南京铁道医学院学报,2000,19(4):238-240.
    [12]刘颖,王莹,齐正,等.甘草酸二铵抗大鼠溃疡性结肠炎作用及相关机制研究.中国新药杂志,2007,16(24):2027-2031.
    [13]宋铁山,李湘楚.甘草总黄酮对大鼠肠缺血再灌注损伤的保护作用.咸宁学院学报(医学版),2004,18(5):330-334.
    [14] Romero M R,Efferth T,Serrano M A,et al.Effect of artemisinin/artesunate asinhibitors of hepatitis B virus production in an“in vitro”replicative system.Anti virRes,2005,68(2):75-83.
    [15]汲晨锋,姜薇,王晓晶.甘草多糖的化学与药理研究.哈尔滨商业大学学报(自然科学版),2004,20(5):515-518.
    [16]田庆来,官月平,张波,等.甘草有效成分的药理作用研究进展.天然产物研究与开发,2006,18:343-347.
    [17]杨春花.甘草药理活性的研究.长春医学,2008,6(2):10-11.
    [18]张世蒴,周翌婧,刘艳,等.甘草黄酮诱导肝癌SMMC-7721细胞凋亡及其对相关蛋白survivin表达的影响.南京医科大学学报(自然科学版),2008,28(3):330-334.
    [19]王艾丽,郑航,郑新民,等.异甘草素对人前列腺癌细胞体外增殖的抑制作用.临床泌尿外科杂志,2007,22(11):867-868.
    [20]张丽,葛艳丽,林永辉,等.甘草黄酮体内抗胃癌作用的实验研究.同济大学学报(医学版),2010,36(6):19-22.
    [21]刁亚英,贺平,李琳方,等.甘草酸在小鼠体内的代谢自诱导作用.中国中药杂志,1999,24(9):564.
    [22]刘仁俊.浅谈甘草化学成分及药理作用.中国中医药现代远程教育,2011,9(19):74.
    [23]寻庆英,王翠芬,魏义全,杨德治,窦国祥.甘草对大鼠小肠动力功能影响的实验研究.中国应用生理学杂志,2004,20(4):389-392.
    [24]吴燕敏,王平,魏睦新.不同浓度甘草对小鼠胃肠运动的影响.江苏中医药,2010,42(10):72-74.
    [25]张玉杨,郭成留,董森.实验动物学在生物医学中的地位及其优越性.河南畜牧兽医(综合版),2007,28(08):9-11.
    [1]刘思纯.促胃肠动力药研究现状.新医学,2003,34(12):759-760.
    [2]陈哲宇.胃肠平滑肌运动的细胞信号转导机制.国外医学:消化系疾病分册,2003,23(3):138-140.
    [3]韩丽.浅谈多潘立酮为不良反应.今日应用医学,1999,5(1):50-50.
    [4]许大波,柯美云.新型促胃肠动力药物伊托必利.中国新药杂志,2002,11(6):437-439.
    [5]郭文.替加色罗概述.国外医学:消化系疾病分册,2002,22(4):244-247.
    [6]倪依东,王建华,王汝俊.槟榔水提液对胃肠运动的影响.中药药理与临床,2003,19(5):27-29.
    [7]李晨,胡兵,吕涛,等.槟榔对豚鼠胃平滑肌的作用及机制探讨.中医学报,2011,26(12):1477-1479.
    [8]吴承艳,李振彬,石建喜.木香、丁香和威灵仙镇痛及胃肠动力作用的实验研究.江苏中医药,2005,26(12):61-63.
    [9]朱金照,冷恩仁,陈东风,等.木香对大鼠胃肠运动的影响及其机制探讨.中国中西医结合脾胃杂志,2000,8(4):236-238.
    [10]朱金照,张志坚,张捷,等.中药枳实对功能性消化不良大鼠胃排空的影响.中国临床药学杂志,2005,14(5):291-294.
    [11]王贺玲,白菡,王学清,等.厚朴对实验大鼠的胃动力影响.实用药物与临床,2007,10(2):65-66.
    [12]张宁,李岩,孙利平.不同浓度砂仁水提液对小鼠胃肠运动比较的研究.辽宁医学杂志,2003,17(3):141-142.
    [13]朱金照,桂先勇,冷恩仁.中药砂仁提取液对胃肠激素的影响.华西医药杂志,2001,16(6):417-418.
    [14]何冰,陈小夏,罗集鹏.广藿香去油部分的5种不同极性提取物对胃肠道的影响.中药材.2001,24(6):422-424.
    [15]何占坤,唐方.陈皮、藿香不同提取物对肢体缺血-再灌注大鼠胃肠运动的影响.中国实验方剂学杂志,2010,5:161-163.
    [16]吴建华,孙净云.山楂有机酸部位对胃肠运动的影响.陕西中医,2009,10:1402-1403.
    [17]张三印,周艳霞,孙改侠,等.山楂不同炮制品对胃肠平滑肌收缩的影响研究.中药材,2009,32(10):1519-1522.
    [18]王君,孔彦,王辉.莱菔子对豚鼠离体回肠的动力作用.大连大学学报,2000,21(4):80-81.
    [19]唐健元,张磊,彭成,等.莱菔子行气消食的机制研究.中国中西医结合消化杂志,2003,11(5):287-289.
    [20]刘峰,高士杰,胡慧刚,等.大黄治疗休克后胃肠功能障碍的临床研究.中国急救医学,2003,23(1):38.
    [21]李永渝,魏玉.藿香,大黄等CCB中药影响胃肠运动功能的机制探讨.中国中西医结合外科杂志,1997,3(3):187-190.
    [22] LAN M,WANG X,LIU N,et al. Contraction effect of senna extract on colonsmooth muscle cells in guinea pig. J Fourth Mil Med Univ,2002,23:289-290.
    [23]王志莲,王云展,崔玉珍,等.腹部手术后胃管内注入番泻叶浸剂促进肠蠕动效果观察.山东医药,2004,44(8):6-7.
    [24]郑天珍,李伟,瞿颂义,等.黄芪对大鼠离体胃平滑肌条运动的影响.中药药理与临床,1999,15(2):22-24.
    [25]郑天珍,李伟,瞿颂义,等.黄芪对大鼠离体小肠、结肠平滑肌条收缩活动的影响.中药药理与临床,1999,15(4):32-34.
    [26]王光明,姬爱冬.黄芪对脾虚大鼠胃肠道动力的作用.中药药理与临床,2008,24(1):54-55.
    [27]龙庆林,王振华.白芍对大鼠胃电节律失常的影响机制.世界华人消化杂志,2001,9(1):109-110.
    [28]杨小军,李建军,轩原清史,等.白芍总苷对豚鼠结肠平滑肌作用机制的研究.中国中西医结合消化杂志,2002,10(3):151-153.
    [29]黄海霞,王伟,曲瑞瑶,等.“木香一槟榔”制剂对大鼠胃肠运动的影响.深圳中西医结合杂志,2003,13(2):80-82.
    [30]邹百仓,魏兰福,魏睦新.槟榔对功能性消化不良模型大鼠胃运动的影响.中国中西医结合消化杂志,2003,11(1):6-8.
    [31]杜志敏,万新祥,伍爱婵,等.槟榔碱对离体肠自发性蠕动的影响.解放军医学高等专科学校学报,1999,27(2):87-88.
    [32]杨颖丽,程昉,王慧玲,等.槟榔对动物胃肠运动的影响.西北师范大学学报(自然科学版),2002,38(1):61-63.
    [33]陈海潮.槟榔碱的提取分离及其对胃肠道平滑肌收缩作用的影响.广东药学,2000,10(2):48-50.
    [34]梁宁霞,衣兰娟,田琳,胡凡,刘翠萍,魏睦新.槟榔碱促结肠平滑肌细胞收缩及对胞内钙离子浓度的影响.世界华人消化杂志,2006,14(7):676-681.
    [35]吕涛,魏睦新.槟榔促大鼠结肠平滑肌收缩的量效及机制探讨.中华中医药学刊,2010,1:141-143.
    [1] Iino S, Horiguchi K. Interstitial cells of cajal are involved in neuro transmission inthe gastrointestinal tract. Acta Histochem Cytochem,2006,39(6):145-153.
    [2] Reynhout JK, Duke GE. Identification of interstitial cells of Cajal in the digestivetract of turkeys (Meleagris gallopavo). J Exp Zool.1999;283(4-5):426-440.
    [3] Faussone-Pellegrini MS. Relationships between neurokinin receptor-expressinginterstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med.2006;10(1):20-32.
    [4]张亚萍,张宽学,高革,等.大鼠胃肠道Cajal间质细胞的超微结构研究.胃肠病学和肝病学杂志,2002,11(2):112-114.
    [5] Lee JC, Thuneberg L, Berezin I, et al. Generation of slow waves in membranepotential is an intrinsic property of interstitial cells of Cajal. Am J Physiol.1999,277:409-423.
    [6] Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of Cajal in motilitydisorders of the bowel. Am J Gastroenterol.2003,98:618-624.
    [7] Ekblad E, Sjuve R, Arner A, et al. Enteric neuronal plasticity and a reduced numberof interstitial cells of Cajal in hypertrophic rat ileum. Gut.1998,42:836-844.
    [8] Hanani M, Freund HR. Interstitial cells of Cajal--their role in pacing and signaltransmission in the digestive system. Acta Physiol Scand.2000,170:177-190.
    [9] Huizinga JD, Thuneberg L, Klüppel M, et al. W/kit gene required for interstitialcells of Cajal and for intestinal pacemaker activity. Nature.1995,373:347-349.
    [10] Huizinga JD, Thuneberg L, Vanderwinden JM, et al. Interstitial cells of Cajal astargets for pharmacological intervention in gastrointestinal motor disorders. TrendsPharmacol Sci.1997,18:393-403.
    [11] Bayguinov PO, Hennig GW, Smith TK. Ca2+imaging of activity in ICC-MYduring local mucosal reflexes and the colonic migrating motor complex in the murinelarge intestine. J Physiol.2010,588:4453-4474.
    [12] Hagger R, Gharaie S, Finlayson C, et al. Regional and transmural density ofinterstitial cells of Cajal in human colon and rectum. Am J Physiol.1998,275:1309-1316.
    [13] Kito Y. The functional role of intramuscular interstitial cells of Cajal in thestomach. J Smooth Muscle Res.2011,47:47-53.
    [14] Forrest AS, Ord g T, Sanders KM. Neural regulation of slow-wave frequency inthe murine gastric antrum. Am J Physiol Gastrointest Liver Physiol.2006,290:486-495.
    [15] Long QL, Fang DC, Shi HT, et al. Gastro-electric dysrhythm and lack of gastricinterstitial cells of cajal. World J Gastroenterol.2004,10:1227-1230.
    [16]张丹,夏志伟,韩亚京.长期慢性束缚水浸应激对大鼠胃窦Cajal间质细胞数量的影响.世界华人消化杂志,2010,18(9):920-925.
    [17]张侃,杨杰,余晓云,等.正向低频长脉冲对逆向刺激模拟胃异位起搏点诱发胃电过速的治疗作用.胃肠病学和肝病学杂志,2008,17:460-463
    [18] Hagger R, Finlayson C, Jeffrey I, et al. Role of the interstitial cells of Cajal in thecontrol of gut motility. Br J Surg1997,84:445-450.
    [19]吴燕敏,王平,魏睦新.槟榔对小鼠结肠cajal间质细胞形态学影响的研究.中国中西医结合消化杂志,2011,19(6):353-356.
    [20]刘宁,李平,张建英,等.Cajal间质细胞研究进展.中国中西医结合消化杂志,2011,19(6):418-419.
    [21] Negreanu LM, Assor P, Mateescu B, et al. Interstitial cells of Cajal in the gut--agastroenterologist's point of view. World J Gastroenterol.2008,14:6285-6288.
    [22] Wright GW, Parsons SP, Huizinga JD. Ca(2+) sensitivity of the maxi chloridechannel in interstitial cells of Cajal. Neurogastroenterol Motil.2012Feb1. doi:10.1111/j.1365-2982.2012.01881.x.[Epub ahead of print]
    [23] Park SJ, Mckay CM, Zhu Y, et al. Volume-activated chloride currents in interstitialcells of Cajal. Am J Physiol Gastrointest Liver Physiol.2005,289:791-797.
    [24]胡玉莲,黄志华. Cajal间质细胞与胃肠起搏.国际消化病杂志,2006,26(5):330-333.
    [25]李翠萍,刘诗. Cajal间质细胞与慢传输型便秘.胃肠病学和肝病学杂志,2004,13(4):432-434.
    [26]于彬,梅峰,童卫东,等.慢传输型便秘患者结肠壁内Cajal细胞的形态学研究.消化外科,2004,3(3):185-189.
    [27] Kitamura Y. Gastrointestinal stromal tumors: past, present, and future. J Gastroenterol,2008,43(7):499-508.
    [28]张晓童.胃肠间质瘤诊断和外科治疗进展.吉林医学,2012,33(1):190-192.
    [29]穆标,刘之武,崔海沫,等. Cajal间质细胞在糖尿病胃轻瘫发病机制中的作用.天津医药,2008,36(8):616-618.
    [30] Forster J, Damjanov I, Lin Z, et al. Absence of the interstitial cells of Cajal inpatients with gastroparesis and correlation with clinical findings. J Gastrointest Surg,2005,9(1):102-108.
    [31]宣晓琪,魏明发,周学峰,等. Cajal间质细胞在先天性巨结肠和巨结肠同源病结肠中的分布研究.中华普通外科杂志,2007,22(8):619-622.
    [32]刘浩,藉萍.儿童贲门失弛缓症肠间质细胞的免疫组化研究.西安医科大学学报,2000,21(1):36-38.
    [33] Gherghiceanu M, Hin escu ME, Andrei F, et al. Interstitial Cajal like cells (ICLC)in myocardial sleeves of human pulmonary veins. J Cell Mol Med,2008,12(5):1777-1781.
    [33]王垂杰,姜巍.功能性消化不良肝郁模型大鼠胃动素与Cajal间质细胞的关系研究.中华中医药学刊,2009,27(12):2500-2501.
    [34]李毅,齐清会.大承气汤修复MODS大鼠小肠深部肌间神经丛神经—Cajal间质细胞—平滑肌网络结构损伤的研究.中国中西医结合急救杂志,2007,14(4):200-203.
    [35]刘勇,齐清会.大承气冲剂治疗对多器官功能不全综合征胃肠caial间质细胞形态学影响.中国中西医结合外科杂志,2007,13(1):51-53.
    [36]谭万初,李婧,邓晓虹,等.大半夏汤在防治化疗呕吐作用中对CAJAL间质细胞影响的电镜观察研究.中华实用中西医杂志,2009,22(1):8-9.
    [37]罗明凤,黄秀深,赵娟.理中丸对胃肠道Cajal间质细胞增殖作用的影响.杏林中医药,2009,29(6):535-537.
    [38]邹颖,郑学宝,戴世学,等.枳术汤对脾虚便秘小鼠Cajal间质细胞和一氧化氮表达的影响.时珍国医国药,2011,22(3):591-593.
    [39]时昭红,张介眉,韦秀明,等.调中颗粒对胃肌间Cajal间质细胞功能及数量的影响.中国中西医结合消化杂志,2009,6:354-357.
    [40]包永欣,刘德宝,龙岩,等.电针对糖尿病胃轻瘫大鼠胃Cajal间质细胞超微结构的影响.中国中医药科技,2010,7(1):6-7.
    [1]徐砾.真空冷冻干燥技术在生物制药方面的应用.武汉科技学院学报,2003,16(5):58-60.
    [2]鲍颖,张婧.真空冷冻干燥技术在生物制药方面的应用.中国健康月刊,2011,30(3):351-352.
    [3]真空冷冻干燥技术应用前景解析.硅谷,2011,8:108.
    [4]龙辉,陈惠琼.真空冷冻干燥技术及其在中药制剂生产中的应用.中国中医药现代远程教育.2009,7(11):49-51.
    [5]徐成海,关奎之,张世伟,等.ZLG-1型人参真空冷冻干燥机的研制.真空,1993,2:40-45.
    [6]徐成海,张世伟,喻浸陆,等.冬虫夏草真空冷冻干燥的实验研究.真空.1994,6:34-36.
    [7]咸漠,权文富.鹿茸的冷冻干燥方法.吉林大学自然科学学报,1991,4:73-74.
    [8]孟江,梁慧超,卢国勇.真空冷冻干燥法和自然干燥法对鱼腥草药学品质的影响比较.广东农业科学,2011,4:111-113.
    [9]程轩轩,孟江,卢国勇,等.真空冷冻干燥法和自然干燥法对干姜中多糖和姜酚类成分的影响.广东药学院学报,2011,27(3):264-266.
    [10]李海林,王和才,周翠英,等.鲜芡实冷冻干燥生产工艺.湖北农业科学,2011,50(2):373-375.
    [11]胡滨,陈一资,胡惠民.高效液相色谱法在食品快速检测中的应用.肉品卫生,2005,3:34-36.
    [12]胡滨,陈一资,胡惠民.高效液相色谱法在食品快速检测中的应用.农产品加工,2007,(02):33-35.
    [13]王雁,毕开顺.三七HPLC指纹图谱的建立.中国中药杂志,2003,4(28):4-6.
    [14]赵兴红,王光辉,刘国安,等.高效液相色谱技术(HPLC)在中药研究中的应用.中华临床医学卫生杂志,2006,4(1):34-36.
    [15]汪忠波,蔡明忠.高效液相色谱法测定不同种类甘草中光甘草定的含量.湖北中医杂志,2011,33(12):74-75.
    [16]赵淑杰.HPLC在中成药分析研究中的应用.中成药,1994,16(9):45-46.
    [17]许波,田颂九. HPLC法测定脑通注射液中芍药苷的含量.中南药学,2005,3(1):l9-21.
    [18]石维,魏飞,魏睦新.中药药对半夏生姜分煎、合煎HPLC组分分析.中国实验方剂学杂志,2009,3:4-5.
    [19]魏飞,石维,魏睦新.黄芩柴胡分煎合煎色谱组分的对比研究.中华中医药学刊,2008,26(11):2427-2430.
    [20]夏立新,刘军鸽,刘爱玲.高效液相色谱法测定槟榔中的糖精、苯甲酸和山梨酸.岳阳师范学院学报(自然科学版),2002,15(1):53-55.
    [21]王明月,罗金辉,李建国.HPLC法测定槟榔中的多酚类物质.天然产物研究与开发,2011,23:101-104.
    [22]胡紫艳,田稷馨,李小丽. LC-MS联用技术在中药非目标化学成分分析中的研究进展.中草药,2011,42(1):180-182.
    [23]金蕊,王宝庆,金哲雄.高效液相色谱一质谱联用技术在中药鉴定中的应用.生命科学仪器,2009,05(07):19—21
    [24]马长宏,齐家炜,单作刚.浅析HPLC—MS技术在中药鉴定中的应用.中国中医药咨讯,2010,2(16):206-207.
    [25]邹百仓,董蕾,魏睦新,等.槟榔对胃运动和胃肠激素的影响.陕西中医,2007,28(3):370-372.
    [26]邹百仓,魏睦新,原景龙.槟榔对胃肠激素的影响与其促胃肠运动的关系.中医药学刊,2004,22(6):1040-1041.
    [27]吕涛,魏睦新.槟榔促大鼠结肠平滑肌收缩的量效及机制探讨.中华中医药学刊,2010,1:141-143
    [28]李晨,胡兵,吕涛,等.槟榔对豚鼠胃平滑肌的作用及机制探讨.中医学报,2011,26(12):1477-1479.
    [29]司春峰,魏睦新,轩原清史.氢溴酸槟榔碱对大鼠离体结肠平滑肌细胞作用的研究.上海中医药杂志,2004,38(3):48-50.
    [30]衣兰娟,梁宁霞,田琳,等.不同浓度氢溴酸槟榔碱对结肠平滑肌细胞钙离子移动和收缩力的影响.中国中西医结合消化杂志,2006,14(2):75-78.
    [31]梁宁霞,衣兰娟,田琳,等.槟榔碱促结肠平滑肌细胞收缩及对胞内钙离子浓度的影响.世界华人消化杂志,2006,14(7):676-681.
    [32]李晨,魏睦新.氢溴酸槟榔碱对豚鼠体外胃不同部位肌条作用及其机制.中国中西医结合消化杂志,2007,15(2):77-80.
    [1]Sanders KM, Ord g T, Koh SD, Torihashi S, Ward SM. Development andplasticity of interstitial cells of Cajal.Neurogastroenterol Motil.1999;11(5):311-38.
    [2]Suzuki H. Cellular mechanisms of myogenic activity in gastric smooth muscle. JpnJ Physiol.2000;50(3):289-301.
    [3]Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to theinterstitial cells of Cajal in the guinea-pig small intestine. J Auton Nerv Syst.1996;61(2):169-74.
    [4] Wallace AS, Burns AJ. Development of the enteric nervous system, smoothmuscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell TissueRes.2005;319(3):367-82.
    [5] Vannucchi MG. Receptors in interstitial cells of Cajal: identification and possiblephysiological roles. Microsc Res Tech.1999;47(5):325-35.
    [6] Salmhofer H, Neuhuber WL, Ruth P, Huber A, Russwurm M, AllescherHD.Pivotal role of the interstitial cells of Cajal in the nitric oxide signaling pathwayof rat small intestine-Morphological evidence. Cell Tissue Res.2001;305(3):331-40.
    [7] Torihashi S, Nishi K, Tokutomi Y, Nishi T, Ward S, Sanders KM. Blockade of kitsignaling induces transdifferentiation of interstitial cells of cajal to a smooth musclephenotype. Gastroenterology.1999;117(1):140-8.
    [8] Thuneberg L. Interstitial cells of Cajal:intestinal pacemaker cells?[J]. Adv AnatEmbryol Cell Biol.1982;71:1-130.
    [9] Rumessen JJ, Thuneberg L.Pacemaker cells in the gastrointestinal tract: interstitialcells of Cajal. Scand J Gastroenterol Suppl.1996;216:82-94.
    [10] Ward SM, Sanders KM.Interstitial cells of Cajal: primary targets of entericmotor innervation.Anat Rec,2001,262(1):125.
    [11] Publicover NG, Horowitz NN, Sanders KM.Calcium oscillations in freshlydispersed and cultured interstitial cells from canine colon. Am J Physiol.1992;262(3Pt1):C589-97.
    [12] Lee HK, Sanders KM. Comparison of ionic currents from interstitial cells andsmooth muscle cells of canine colon. J Physiol.1993;460:135-52.
    [13] Ward SM, Burns AJ, Torihashi S, Sanders KM.Mutation of the proto-oncogenec-kit blocks development of interstitial cells and electrical rhythmicity in murineintestine. J Physiol.1994;480(Pt1):91-7.
    [14] Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Developmentof electrical rhythmicity in the murine gastrointestinal tract is specifically encoded inthe tunica muscularis. J Physiol.1997Nov15;505(Pt1):241-58.
    [15] Dickens EJ, Hirst GD, Tomita T. Identification of rhythmically active cells inguinea-pig stomach. J Physiol.1999;514(Pt2):515-31.
    [16] Dickens EJ, Edwards FR, Hirst GD.Selective knockout of intramuscularinterstitial cells reveals their role in the generation of slow waves in mouse stomach. JPhysiol.2001;531(Pt3):827-33.
    [17] Hirst GD, Beckett EA, Sanders KM, Ward SM.Regional variation in contributionof myenteric and intramuscular interstitial cells of Cajal to generation of slow wavesin mouse gastric antrum. J Physiol.2002;540(Pt3):1003-12.
    [18]Suzuki H, Hirst GD.Regenerative potentials evoked in circular smooth muscle ofthe antral region of guinea-pig stomach. J Physiol.1999;517(Pt2):563-73.
    [19]邓晶晶.针刺对结肠吻合术后Cajal间质细胞修复与再生的影响.世界华人消化杂志,2010,18(36):3863-3868.
    [20]陈慧群.消化道Cajal间质细胞及其受体的研究进展.胃肠病学和肝病学杂志,2008,17(4):332-334.
    [21]刘诗.胃肠道Cajal间质细胞.临床消化病杂志,2009,21(2):104-106.
    [22]童卫东,刘宝华,张连阳,等.慢传输性便秘乙状结肠Cajal间质细胞分布的免疫组化观察.大肠肛门病外科杂志,2005,11(1):9-13.
    [23]于彬,梅峰,童卫东,等.慢传输型便秘患者结肠壁内Cajal细胞的形态学研究[J].消化外科,2004,3(3):185-189.
    [24] Kitamura Y. Gastrointestinal stromal tumors: past, present, and future. J Gastroenterol,2008,43(7):499-508.
    [25] Long QL, Fang DC, Shi HT, et al. Gastro-electric dysrhythm and lack of gastricinterstitial cells of cajal. World J Gastroenterol,2004,10(8):1227-1230.
    [26] Forster J, Damjanov I, Lin Z, et al. Absence of the interstitial cells of Cajal inpatients with gastroparesis and correlation with clinical findings. J Gastrointest Surg,2005,9(1):102-108.,
    [27]汤玉蓉,林琳,徐丽明,等.血糖和胰岛素对糖尿病小鼠胃窦Cajal细胞的影响.南京医科大学学报:自然科学版,2008,28(6):693-696.
    [28] Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling inducestransdifferentiation of interstitial cells of cajal to a smooth muscle phenotype.Gastroenterology,1999,117(1):140-148
    [29] Hagger R, Finlayson C, Kahn F, et al. A deficiency of interstitial cells of Cajal inChagasic megacolon [J]. J Aut onNerv Syst,2000,80(1/2):108-111
    [30]王亮,王忠荣,李龙,等. Cajal间质细胞在先天性巨结肠发病中的作用.蚌埠医学院学报;2007,326):682-683,封四.
    [31] Adachi Y, Ishii Y, Yoshimoto M, et al. Phenotypic alteration of interstitial cells ofCajal in idiopathic sigmoid megacolon. J Gastroenterol,2008,43(8):626-631.
    [32]刘浩,藉萍.儿童贲门失弛缓症肠间质细胞的免疫组化研究.西安医科大学学报,2000,21(1):36-38.
    [33] De Lima MA, Cabrine Santos M, Tavares MG, et al. Interstitial cells of Cajal inchagasic megaesophagus. Ann Diagn Pathol,2008,12(4):271-274.
    [34] Der T, Bercik P, Donnelly G, et al. Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroentrol,2000,119(6):1590-1599.
    [35] Gherghiceanu M, Hin escu ME, Andrei F, et al. Interstitial Cajal like cells(ICLC) in myocardial sleeves of human pulmonary veins. J Cell Mol Med,2008,12(5):1777-1781.
    [36]黄悦,陈飞,于彬,等.豚鼠壶腹Cajal样细胞的分布及oddi括约肌肌电活动观察.解放军医学杂志,2008,33(9):1069-1073.
    [37] Morel E, Meyronet D, T hivolet-Bejuy F, et al. Identification and distribution ofinterstitial Cajal cells in human pulmonary veins[J]. Heart Rhythm,2008,5(7):1063-1067.