CD4+T淋巴细胞异常表达微小核糖核酸在不稳定型心绞痛中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化(Atherosclerosis,AS)是慢性炎症反应和免疫性疾病,是冠心病的主要病理基础。在AS斑块中可发现大量的T淋巴细胞,其中以CD4+T淋巴细胞为主,CD4+T淋巴细胞亚群的失衡与急性冠脉综合征(Acute coronary syndrome,ACS)发生关系密切。易损斑块中大量活化的T淋巴细胞降低斑块的稳定性,使斑块易于破裂。不稳定型心绞痛(Unstable angina pectoris,UAP)的患者及急性心肌梗死患者,心肌微血管内存在血小板血栓,在心肌微循环水平形成微栓塞,导致心肌微梗死。因此,CD4+T淋巴细胞可能间接的参与了ACS患者心肌损伤的过程。
     术后心肌损伤仍然是经皮冠状动脉介入治疗(Percutaneous coronary intervention,PCI)常见的并发症,但其机制目前尚不完全清楚。有研究表明,PCI术前大剂量的他汀可以有效的降低炎症因子水平,保护心肌。因此,炎症和免疫反应也是PCI术后心肌损伤的重要原因之一。还有研究表明,PCI对血管壁的损伤可以导致外周血淋巴细胞的显著激活和氧化应激产物标志物的显著增高,外周血激活的CD4+T淋巴细胞表达的CD18分子可促进白细胞招募并粘附于受损的内皮细胞。因此,炎症反应及以CD4+T淋巴细胞介导的免疫反应直接参与了PCI术后心肌损伤的过程。
     微小核糖核酸(MicroRNA,miRNA)是一类长约18~25个核苷酸的小分子RNA。近年来发现,miRNA也参对与AS发生发展密切相关的炎性细胞如单核/巨噬细胞、淋巴细胞及内皮细胞的调控。
     虽然目前miRNA在T淋巴细胞调控中的研究取得了重大的进展,但仍属于起步阶段,并且在不同的疾病状态和疾病发展的不同阶段,miRNA表达和作用亦不尽相同,与T淋巴细胞活化和功能调控相关的miRNA在UAP及PCI术后心肌损伤中的生物学功能尚未阐明。
     本研究拟通过miRNA基因芯片技术筛选出UAP患者外周血CD4+T淋巴细胞异常表达的miRNA,阐明异常表达的miRNA对CD4+T淋巴细胞活化、分化及功能调控的机制。同时探讨miRNA在PCI术后的变化及与心肌损伤相关性。
     目的:通过检测UAP患者循环血CD4+T淋巴细胞中基因的miRNA表达谱,筛选与正常对照者差异表达的miRNA,寻找对CD4+T淋巴细胞具有调控作用的miRNA,为进一步阐明miRNA在UAP发病机制中的作用提供基础。
     方法:选取入住我院的典型UAP患者3例,以疑似不典型冠心病症状而冠脉造影正常的住院患者3例作为正常对照组,抽取新鲜外周静脉血20ml。利用密度梯度离心法分离出UAP患者和正常对照者循环血中的单个核细胞(Peripheral blood mononuclear cell,PBMC),免疫磁珠法(Magnetic cell sorting system,MACS)进一步分离出CD4+T淋巴细胞。采用流式细胞术(Flow cytometry,FCM)检测所分离CD4+T淋巴细胞的纯度,台酚蓝检测活细胞数。Trizol一步法提取细胞总RNA,取40μg总RNA,用聚乙二醇(Polyethylene glycol,PEG)方法分离纯化miRNA。用分光光度计测定RNA的浓度,甲醛变性胶电泳质检RNA的质量。采用Affymetrix miRNA基因表达谱芯片进行杂交,检测CD4+T淋巴细胞miRNA的表达谱。用Affymetrix GeneChip Scanner 3000基因芯片扫描仪进行图像扫描,Affymetrix GeneChip Command Console? 1.1图像分析软件对图像进行分析,把图像信号转化为数字信号,然后用SAM软件(版本3.02)处理数据,筛选出UAP患者和正常对照者CD4+T淋巴细胞差异表达的miRNA。采用实时荧光定量聚合酶链式反应(Real-time polymerase chain reaction,real time PCR)对部分差异表达的miRNA进行验证。
     结果:miRNA基因芯片筛选结果显示,相对于正常对照者,UAP患者外周血CD4+T淋巴细胞中表达显著上调的miRNA有miR-155, miR-21, miR-424和miR-127-3p,显著下调的有miR-30b和miR-181a。real time PCR进一步验证的结果表明,上述差异表达miRNA的变化趋势及变化倍数与miRNA基因芯片筛选结果一致。
     结论:筛选得到的UAP患者循环血CD4+T淋巴细胞miRNA差异表达谱,可能与参与了UAP的发生发展。
     目的:通过研究微小核糖核酸-155(miRNA-155)对UAP患者外周血CD4+T淋巴细胞的调控作用,从而揭示miRNA-155在UAP发病中的作用机制。
     方法:选取入住我院的UAP患者10例,抽取新鲜外周静脉血。采用密度梯度离心法分离出UAP患者PBMC,MACS法进一步分离出CD4+T淋巴细胞,用无血清RPMI1640培养基调整为2×106/ml,随后分为四组:对照组、miRNA-155模拟体组和阻遏物组,以另一孔转染荧光对照的FAM-siRNA作为荧光对照。对照组加入阴性对照的模拟体(终浓度为50nM),miRNA-155模拟体组中加入的为miRNA-155模拟体(终浓度为50nM),阻遏物组加入的miRNA-155模拟体和miR-155阻遏物(终浓度分别为50nM),同时加入脂质体2000,共转染5h。随后加入植物凝血素刺激CD4+T淋巴细胞活化后,收集细胞及上清。流式细胞术检测CD4+T淋巴细胞Th1和Th2亚群数量,提取CD4+T淋巴细胞总RNA和蛋白,real time PCR检测γ干扰素受体α链(Interferon-gamma receptor alpha chain,IFN-γRα)、T细胞表达的T盒(T box expressed in T cells,T-bet)、GATA结合蛋白3(GATA binding protein 3,GATA-3)mRNA的表达;蛋白免疫印迹法(Western blotting)检测IFN-γRα、T-bet、GATA-3蛋白的表达;酶联免疫法(Enzyme-linked immunosorbent assay,ELISA)检测细胞培养液上清γ干扰素(Interferon-gamma,IFN-γ)、白细胞介素4(Interleukin-4,IL-4)的表达。对IFN-γRα与IFN-γ、IL-4的表达进行直线相关性分析。
     结果:流式细胞检测结果显示,miRNA-155模拟体组的IFN-γ阳性CD4+T淋巴细胞计数较对照组显著增加[(63.19±8.61)% vs (47.17±10.28)%,P<0.01] ,阻遏物组较miRNA-155模拟体组降低[(52.87±10.05)% vs (63.19±8.61)%,P=0.024]。三组间IL-4阳性CD4+T淋巴细胞计数无明显差异(F=0.228,P=0.798)。与对照组比较,miRNA-155模拟体组T-bet mRNA表达显著增加(P<0.01),与miRNA-155组比较,阻遏物组T-bet mRNA表达降低(P<0.01);三组间IFN-γRα、GATA-3的mRNA表达无明显差异(分别F=1.055,P=0.362; F=1.601,P=0.220)。与对照组比较,miRNA-155模拟体组IFN-γRα蛋白表达显著减少,T-bet蛋白表达显著增加(均P<0.01);与miRNA-155模拟体组比较,阻遏物组IFN-γRα蛋白表达增加,T-bet蛋白表达减少(均P<0.01);三组间GATA-3蛋白表达无明显差异(F=0.098, P=0.907)。与对照组比较,miRNA-155模拟体组的IFN-γ显著增高(P<0.01),阻遏物较miRNA-155模拟体组降低(P<0.01);三组间IL-4表达无明显差异(F=0.384,P=0.685)。相关分析表明,IFN-γRα蛋白表达与IFN-γ表达呈显著负相关(r=-0.775,P<0.01),与IL-4表达无相关关系(r=0.041,P=0.832)。
     结论:miRNA-155主要通过影响Th1细胞的分化和功能,参与对CD4+T淋巴细胞的调控,在UAP发病中起重要的作用。miRNA-155的作用可能部分与调控靶基因IFN-γRα的表达有关。
     目的:初步探讨异常表达miRNA-155与UAP患者在PCI术后心肌损伤关系,为进一步阐明miRNA在PCI术后心肌损伤机制中的作用提供理论基础。
     方法:选取2010年1月至12月入住我院并行PCI的UAP患者41例,其中PCI术后肌钙蛋白升高超过正常参考值3倍20例,肌钙蛋白正常者21例,同时以18例疑似不典型冠心病症状而冠脉造影正常的住院患者为正常对照组。Real time PCR检测患者循环血CD4+T淋巴细胞miRNA-155在PCI术前和术后12h的表达水平,western blotting检测术前和术后12h IFN-γRα蛋白的表达,ELISA法测定PCI术前和术后12h血清IFN-γ和IL-4的表达。对miRNA-155的表达水平和IFN-γRα蛋白、血清IFN-γ和IL-4进行相关性分析。
     结果:UAP患者术前miRNA-155、IFN-γ明高于对照组(均P<0.01),IFN-γRα蛋白表达低于对照组(均P<0.01),IL-4表达无差异(均P>0.05)。术前肌钙蛋白阳性组miRNA-155、IFN-γRα蛋白和IFN-γ表达水平与肌钙蛋白阴性组无明显差异(均P>0.05);术后12小时,肌钙蛋白阳性组与肌钙蛋白阴性组的miRNA-155、hsCRP、IFN-γ表达均显著增高(均P<0.05),且肌钙蛋白阳性组较肌钙蛋白阴性组增高更为明显(P<0.05);IFN-γRα蛋白表达显著低于(均P<0.01),肌钙蛋白阳性组较肌钙蛋白阴性组降低更为明显(P<0.01)。两组术前、术后血清IL-4水平无明显差异。术前、术后miRNA-155表达与IFN-γ呈显著正相关(分别r=0.649,P<0.01;r=0.682,P<0.01),与IFN-γRα蛋白表达呈显著负相关(分别r=-0.536,P<0.01;r=-0.592,P<0.01),与IL-4无明显相关关系(分别r=-0.165,P=0.303;r=0.107,P=0.506)。
     结论:miRNA-155参与了UAP患者中Th1细胞活化及细胞因子IFN-γ分泌的调控过程;miRNA-155表达与PCI术后心肌损伤存在明显的相关关系,miRNA-155可能参与了PCI术后心肌损伤的免疫调控过程。
Atherosclerosis is a chronic inflammatory response and autoimmune diseases, and the main pathological basis of coronary heart disease.The previous studies have shown that a large number of T lymphocytes can be found in atherosclerotic plaques, which mainly CD4+T lymphocytes. The imbalance of CD4+T cell subsets closely related with acute coronary syndrome. A large of number activated T lymphocytes in vulnerable plaque resulted in the reduction of plaque stability, which leads to plaque rupture easily. In patients with unstable angina and acute myocardial infarction, platelet thrombus memory has been found in myocardial microvascular and the formation of microembolism in the myocardial microcirculation in, leading to myocardial microinfarction. Thus, The CD4+T lymphocytes may be indirectly involved in the process of myocardial injury in patients with acute coronary syndrome.
     Myocardial injury after percutaneous coronary intervention remains a common complication, but its mechanism is not fully understood. Some studies have shown that preoperative dose of statins can effectively reduce the levels of inflammatory factors and protect myocardium. Research also shows that, The injury of the vessel wall related to the operation can lead to significant activation of peripheral blood lymphocytes and products of oxidative stress markers was significantly higher.The expression of CD18 in activated CD4+T cells of peripheral blood can promote the recruitment of leukocytes and adhere to the damaged endothelial cells. Therefore, the inflammatory response and the CD4 + T cell-mediated immune response may be directly involved in the process of myocardial injury after percutaneous coronary intervention.
     MicroRNA is a class of the small molecule RNA about 18 to 25 nucleotides. The recent studies confirm that miRNA are also involved in the regulation of monocytes/macrophages, lymphocytes and endothelial cells, which was closely related with development of atherosclerosis. Although the regulation of miRNA in T lymphocytes has made significant progress, but is still in its infancy.
     In different disease states and different stages of disease development, the miRNA expression and function varies. The function of miRNA in the regulation of T cell activation in the UAP and myocardial injury after PCI in is still unknown.
     In the present studies, the miRNA gene chip technology was adopted to screen abnormal expression of the miRNA in CD4+T lymphocytesh in patients with UAP. To observe the effect of abnormal miRNA expression on the CD4+T cell activation, differentiation. The changes of miRNA after PCI and the correlation with myocardial injury were also explored.
     Objective: To screen differential microRNA (miRNA) expression profiles of CD4+T lymphocyte from the patients with unstable angina pectoris (UAP) and the healthy controls by microarray analysis technique. To elucidate the mechanism responsible for modulation of CD4+T lymphocyte and provide insights into the effects of miRNA on UAP.
     Methods: Three patients with UAP were enrolled in the study, and three patients with normal coronary artery angiogram were served as a control group. Blood samples were taken from peripheral vein and the CD4+T lymphocytes were isolated from mononuclear cells prepared with Ficoll-Hypaque density-gradients centrifugation from human peripheral blood by magnetic cell sorting system (MACS). The purity of CD4+ T lymphocytes was measured by flow cytometry analysis. The viable count was detected by the rejection experiment of trypanblau. Total RNA was abstracted from CD4+T lymphocyte with Trizol reagent. MiRNA was isolated and enriched of by use of Polyethylene Glycol from 40μg total RNA. The miRNA extracted from CD4+T lymphocytes was hybridized and miRNA expressions profiles of CD4+T lymphocyte were screened with the Affymetrix GeneChip miRNA array. The image signal was scanned by Affymetrix GeneChip Scanner 3000 and analysised by Affymetrix GeneChip Command Console? 1.1 software. Then the image signal was transformed into digital information, which was analysised with SAM software. The differentially expressed miRNA were identified between the two groups. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to confirm the result of selected genes from microarray analysis.
     Results: The results showed that the expression of miR-155, miR-21, miR-424 and miR-127-3p were over 1.5 folds up-regulated, and the expression of miR-30b and miR-181a were over 0.5 folds down-regulated in UAP group compared to the control group. The qRT-PCR results were in accordance with those obtained using microarray analysis.
     Conclusion: The differentially expressed miRNA of CD4+T lymphocyte may participate in the the occuring and developing of UAP.
     KEY WORDS: Unstable angina pectoris;Lymphocyte;microRNA;Gene chip;Real-time polymerase chain reaction
     Objective: To investigate the effect of abnormal miRNA-155 expression on the differentiations and functions CD4+T lymphocyte in patients with unstable angina pectoris.
     Methods: Ten patients with UAP were enrolled in the study. Blood samples were taken from peripheral vein. The CD4+T lymphocyte were isolated from mononuclear cells prepared with Ficoll-Hypaque density-gradients centrifugation from human peripheral blood by magnetic cell sorting system (MACS). The CD4+T cells (2×106 cells/ml) were seeded in culture plates of 6 wells. Each well contained 2ml RPMI-1640 medium without 10% fetal bovine serum (FBS). There are four group CD4+T lymphocytes in the experiment: control group (transfected with 50nM N.C using Lipofectamine 2000), miRNA-155 group (transfected with 50 nM miRNA-155 using Lipofectamine 2000), miRNA-155 inhibitor group (transfected with 50 nM miRNA-155 and miRNA-155 inhibitor using Lipofectamine 2000), and FAM-siRNA group (transfected with FAM-siRNA). After stimulated with phytohemagglutinin, the CD4+T lymphocytes and culture supernatant were collected for the following experiments. The frequencies of Th1 and Th2 cells were measured by flow cytometry analysis (FACS). The total RNA and protein were extracted from CD4+T lymphocytes using Trizol and cell lysis buffer for western blotting, respectively. The level of IFN-γRα、T-bet、GATA-3 mRNA expression were measured by qRT-PCR. The level of IFN-γRα、T-bet、GATA-3 protein expression were examined using western blotting. The productions of IFN-γand IL-4 in culture superatants of CD4+T lymphocytes were detected by enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was conducted to examine the association between IFN-γRαand IFN-γ, IL-4.
     Results: The FACS showed that miRNA-155 could promote CD4+T lymphocytes to Th1 cells and the Th1 frequencies were also significantly increased in miRNA-155 group compared with the control group and miRNA-155 inhibitor group[(63.19±8.61)% vs (47.17±10.28)%,P<0.01;(63.19±8.61)% vs (52.87±10.05)%,P=0.024,respectively]. There was no significant difference between the three groups in the frequencies of Th2 cells (F=0.228,P=0.798). In comparison with the control group, there was significant increase in the level of T-bet mRNA expression in miRNA-155 group (P<0.01). The level of T-bet mRNA expression in miRNA-155 inhibitor group was significantly lower than that in miRNA-155 group (P<0.01). No significant differences were found between the three groups in the level of IFN-γRαand GATA-3 mRNA expression (F=1.055, P=0.362; F=1.601, P=0.220, respectively). The level of IFN-γRαprotein expression in miRNA-155 group was significantly higher than that in miRNA-155 group and miRNA-155 inhibitor group (all P<0.01). There was no significant difference between the three groups in the level of GATA-3 protein expression(F=0.098, P=0.907).The culture supernatant concentration of IFN-γin miRNA-155 group was significantly increased than that in the control group and miRNA-155 inhibitor group (all P<0.01). No significant difference was observed between the three groups in the culture supernatant concentration of IL-4(F=0.384,P=0.685). There was significant negatibe correlation between the protein expression of IFN-γRαand the level of IFN-γ. No significant correlation were found between IFN-γRαand IL-4.
     Conclusion: It is evident that miRNA-155 can promote Th2 cells differentiations, and thus improving the function, which partly attributed to inhibit the expression of IFN-γRαprotein and may play an important role in the pathogenesis of unstable angina.
     Objective: To study the relationship of abnormal expressed miRNA-155 of CD4+T lymphocyte and myocardial injury after percutaneous coronary intervention in patients with unstable angina. To provide insights into the effects of miRNA-155 on myocardial injury in patients undergoing PCI.
     Methods: A total of 41 individuals with UA, who presented to the cardiology department of the First Affiliated Hospital of Guangxi Medical University were enrolled from January 2010 to December 2010. The patients were divided into two groups based on their troponin I (TnI) levels; elevated TnI group (TnI>0.15ng/ml, 20 cases) and normal TnI group (TnI≤0.15ng/ml, 21cases). Eighteen normal control subjects who were confirmed by coronary angiography were enrolled in the study. The level of miRNA-155 expression was measured by qRT-PCR before PCI and 12h after PCI. The level of IFN-γRαprotein expression were examined using western blotting and the level of serum IFN-γand IL-4 were detected by ELISA before PCI and 12h after PCI. Correlation analysis was made between miRNA-155 and the level of IFN-γRαprotein,serum IFN-γand IL-4.
     Results: Results: Compared with the control group, the expression of miRNA-155 and IFN-γwere significantly increased (all P<0.01), and the level of IFN-γRαwas markly decreased in the elevated TnI group and the normal TnI group before PCI (all P<0.01). There was no significant different in the level of IL-4 between the three groups before PCI (P>0.05). There was no significant different in the expression of miRNA-155、IFN-γRαand IFN-γbetween the elevated TnI group and the normal TnI group before PCI (all P>0.01). The expressions of miRNA-155, hsCRP, IFN-γwere significant increased, and the level of IFN-γRαprotein was decreased in the elevated TnI group and the normal TnI group at 12h after PCI (all P<0.05). The changes were more obvious in the elevated TnI group than the normal TnI group (all P<0.05). There was no significant different in the level of IL-4 in the elevated TnI group and the normal TnI group before and after PCI in. The expressions of miRNA-155 were significantly positive with IFN-γ(r=0.649 , P<0.01 ; r=0.682 , P<0.01, respectively), and significantly negative with IFN-γRαbefore and after PCI(r=-0.536 , P<0.01 ; r=-0.592 , P<0.01, respectively). There was no correlation between miRNA-155 and IL-4 before and after PCI (r=-0.165, P=0.303;r=0.107,P=0.506, respectively).
     Conclusion: The evidence showed that abnormal expressed miRNA-155 of CD4+T lymphocyte participated in the regulation process of Th2 cells differentiations, and function. There was correlation between abnormal expressed miRNA-155 and myocardial injury after PCI. MiRNA-155 may involve in the immunoregulation process of myocardial injury after PCI.
引文
[1] Ross R. Atherosclerosis--an inflammatory disease [J]. N Engl J Med, 1999, 340(2): 115-126.
    [2] Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword [J]. Nat Rev Immunol, 2006, 6(7): 508-519.
    [3] Shimada K, Park JK, Daida H. T helper 1/T helper 2 balance and HMG-CoA reductase inhibitors in acute coronary syndrome: statins as immunomodulatory agents? [J]. Eur Heart J, 2006, 27(24): 2916-2918.
    [4] Frostegard J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines [J]. Atherosclerosis, 1999, 145(1): 33-43.
    [5] Uyemura K, Demer LL, Castle SC, et al. Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis [J]. J Clin Invest, 1996, 97(9): 2130-2138.
    [6] Methe H, Brunner S, Wiegand D, et al. Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes [J]. J Am Coll Cardiol, 2005, 45(12): 1939-1945.
    [7] Fernandez-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture [J]. J Am Coll Cardiol, 1994, 23(7): 1562-1569.
    [8] Davies MJ, Thomas AC, Knapman PA, et al. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death [J]. Circulation, 1986, 73(3): 418-427.
    [9] Frink RJ, Rooney PA Jr, Trowbridge JO, et al. Coronary thrombosis and platelet/fibrin microemboli in death associated with acute myocardial infarction [J]. Br Heart J, 1988, 59(2): 196-200.
    [10] Cavallini C, Savonitto S, Violini R, et al. Impact of the elevation of biochemical markers of myocardial damage on long-term mortality after percutaneous coronary intervention: results of the CK-MB and PCI study [J]. Eur Heart J, 2005, 26(15): 1494-1498.
    [11] Roe MT, Mahaffey KW, Kilaru R, et al. Creatine kinase-MB elevation after percutaneous coronary intervention predicts adverse outcomes in patients with acute coronary syndromes [J]. Eur Heart J, 2004, 25(4): 313-321.
    [12] Chan AW, Bhatt DL, Chew DP, et al. Relation of inflammation and benefit of statins after percutaneous coronary interventions [J]. Circulation, 2003, 107(13): 1750-1756.
    [13] Patti G, Pasceri V, Colonna G, et al. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDA-ACS randomized trial [J]. J Am Coll Cardiol, 2007, 49(12): 1272-1278.
    [14] Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction [J]. J Am Coll Cardiol, 2000, 36(4): 1202-1209.
    [15] Li L, Li DH, Qu N, et al. The role of ERK1/2 signaling pathway in coronary microembolization-induced rat myocardial inflammation and injury [J]. Cardiology, 2010, 117(3): 207-215.
    [16] Li L, Zhao X, Lu Y, et al. Altered expression of pro- andanti-inflammatory cytokines is associated with reduced cardiac function in rats following coronary microembolization [J]. Mol Cell Biochem, 2010, 342(1-2): 183-190.
    [17]李浪,陆永光,赵献明,等.美托洛尔对大鼠冠状动脉微栓塞心肌中炎性细胞因子表达及心功能的影响[J].中华老年心脑血管病杂志, 2009, 11(6): 448-452.
    [18] Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation [J]. Immunity, 2009, 30(5): 646-655.
    [19] Sardella G, Accapezzato D, Di Roma A, et al. Integrin beta2-chain (CD18) over-expression on CD4+ T cells and monocytes after ischemia/reperfusion in patients undergoing primary percutaneous revascularization [J]. Int J Immunopathol Pharmacol, 2004, 17(2): 165-170.
    [20] Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses [J]. Cell Immunol, 2007, 248(1): 4-11.
    [21] Yang Z, Day YJ, Toufektsian MC, et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes [J]. Circulation, 2006, 114(19): 2056-2064.
    [22] Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease [J]. Circ Res, 2004, 95(9): 858-866.
    [23] Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients [J]. Arthritis Res Ther, 2008, 10(4): R101.
    [24] Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins [J]. Arthritis Rheum, 2009, 60(4): 1065-1075.
    [25] Shivdasani RA. MicroRNAs: regulators of gene expression and celldifferentiation [J]. Blood, 2006, 108(12): 3646-3653.
    [26] Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection [J]. Cell, 2007, 129(1): 147-161.
    [27] Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development [J]. Genes Dev, 2007, 21(5): 578-589.
    [28] Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function [J]. Science, 2007, 316(5824): 608-611.
    [29] Guo M, Mao X, Ji Q, et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome [J]. Immunol Cell Biol, 2010, 88(5): 555-564.
    [30] Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis [J]. Clin Immunol, 2010, 134(1): 33-46.
    [31] Kim VN. Small RNAs: classification, biogenesis, and function [J]. Mol Cells, 2005, 19(1): 1-15.
    [32]陈妍梅,李浪. microRNA与动脉粥样硬化炎症反应[J].中国动脉硬化杂志, 18(8): 662-664.
    [33]陆永光,李浪.微小核糖核酸与冠心病关系的研究进展[J].中国循环杂志, 2010, 25(6): 484-486.
    [34] Shimada K. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis [J]. Circ J, 2009, 73(6): 994-1001.
    [35] Szodoray P, Timar O, Veres K, et al. TH1/TH2 imbalance, measured by circulating and intracytoplasmic inflammatory cytokines--immunological alterations in acute coronary syndrome and stable coronary artery disease[J]. Scand J Immunol, 2006, 64(3): 336-344.
    [36] Cheng X, Yu X, Ding YJ, et al. The Th17/Treg imbalance in patients with acute coronary syndrome [J]. Clin Immunol, 2008, 127(1): 89-97.
    [37] Hu Z, Li D, Hu Y, et al. Changes of CD4+CD25+ regulatory T cells in patients with acute coronary syndrome and the effects of atorvastatin [J]. J Huazhong Univ Sci Technolog Med Sci, 2007, 27(5): 524-527.
    [38] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.
    [39] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75(5): 843-854.
    [40] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans [J]. Cell, 1993, 75(5): 855-862.
    [41] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906.
    [42] Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 2000, 408(6808): 86-89.
    [43] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation [J]. Nat Rev Genet, 2004, 5(7): 522-531.
    [44] Koturbash I, Zemp FJ, Pogribny I, et al. Small molecules with big effects: The role of the microRNAome in cancer and carcinogenesis [J]. Mutat Res, 2010. [Epub ahead of print]
    [45] Majoros WH, Ohler U. Spatial preferences of microRNA targets in 3'untranslated regions [J]. BMC Genomics, 2007, 8: 152.
    [46] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature, 2008, 456(7224): 980-984.
    [47] Lu Y, Zhang Y, Shan H, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection [J]. Cardiovasc Res, 2009, 84(3): 434-441.
    [48] Shan ZX, Lin QX, Fu YH, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction [J]. Biochem Biophys Res Commun, 2009, 381(4): 597-601.
    [49] Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4 [J]. Cardiovasc Res, 2010, 87(3): 431-439.
    [50] Ghosh G, Subramanian IV, Adhikari N, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis [J]. J Clin Invest, 2010, 120(11): 4141-4154.
    [51] Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation [J]. J Exp Med, 2006, 203(11): 2519-2527.
    [52] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science, 2001, 294(5543): 853-858.
    [53] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001, 294(5543): 862-864.
    [54] Lu C, Tej SS, Luo S, et al. Elucidation of the small RNA component of thetranscriptome [J]. Science, 2005, 309(5740): 1567-1569.
    [55] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature, 2005, 437(7057): 376-380.
    [56] Huang TH, Fan B, Rothschild MF, et al. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans [J]. BMC Bioinformatics, 2007, 8: 341.
    [57] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human [J]. nature genetics, 2005, 37: 766-770.
    [58] Babak T, Zhang W, Morris Q, et al. Probing microRNAs with microarrays: tissue specificity and functional inference [J]. RNA, 2004, 10(11): 1813-1819.
    [59] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J]. RNA, 2005, 11(3): 241-247.
    [60] Castoldi M, Schmidt S, Benes V, et al. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes [J]. Nat Protoc, 2008, 3(2): 321-329.
    [61] Thomson JM, Parker J, Perou CM, et al. A custom microarray platform for analysis of microRNA gene expression [J]. Nat Methods, 2004, 1(1): 47-53.
    [62] Unver T, Bakar M, Shearman RC, et al. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application [J]. Mol Genet Genomics, 2010, 283(4): 397-413.
    [63] Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics [J]. Nucleic Acids Res, 2008, 36(Database issue): D154-158.
    [64] Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR [J]. Nucleic Acids Res, 2005, 33(20): e179.
    [65] Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs [J]. Plant Methods, 2007, 3: 12.
    [66] Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available [J]. Methods, 2010, 50(4): 244-249.
    [67] Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? [J]. Expert Rev Mol Diagn, 2009, 9(2): 187-197.
    [68] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses [J]. Proc Natl Acad Sci U S A, 2006, 103(33): 12481-12486.
    [69] Pillai V, Ortega SB, Wang CK, et al. Transient regulatory T-cells: a state attained by all activated human T-cells [J]. Clin Immunol, 2007, 123(1): 18-29.
    [70] O'Connell RM, Kahn D, Gibson WS, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development [J]. Immunity, 2010, 33(4): 607-619.
    [71] Stahl HF, Fauti T, Ullrich N, et al. miR-155 inhibition sensitizes CD4+ Thcells for TREG mediated suppression [J]. PLoS One, 2009, 4(9): e7158.
    [72] Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1 [J]. J Immunol, 2010, 184(12): 6773-6781.
    [73] Liu G, Min H, Yue S, et al. Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development [J]. PLoS One, 2008, 3(10): e3592.
    [74] Lykken EA, Li QJ. microRNAs at the regulatory frontier: an investigation into how microRNAs impact the development and effector functions of CD4 T cells [J]. Immunol Res, 2011, 49(1-3): 87-96.
    [75] Forrest AR, Kanamori-Katayama M, Tomaru Y, et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation [J]. Leukemia, 2010, 24(2): 460-466.
    [76] Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation [J]. Proc Natl Acad Sci U S A, 2007, 104(50): 19849-19854.
    [77] Hansson GK, Hermansson A. The immune system in atherosclerosis [J]. Nat Immunol, 2011, 12(3): 204-212.
    [78] Guo M, Mao X, Ji Q, et al. Inhibition of IFN regulatory factor-1 down-regulate Th1 cell function in patients with acute coronary syndrome [J]. J Clin Immunol, 2010, 30(2): 241-252.
    [79] Muljo SA, Ansel KM, Kanellopoulou C, et al. Aberrant T cell differentiation in the absence of Dicer [J]. J Exp Med, 2005, 202(2):261-269.
    [80] Bopp T, Dehzad N, Reuter S, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression [J]. J Immunol, 2009, 182(7): 4017-4024.
    [81] Huang B, Zhao J, Lei Z, et al. miR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA [J]. EMBO Rep, 2009, 10(2): 180-185.
    [82] Rouas R, Fayyad-Kazan H, El Zein N, et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression [J]. Eur J Immunol, 2009, 39(6): 1608-1618.
    [83] Hoekstra M, van der Lans CA, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease [J]. Biochem Biophys Res Commun, 2010, 394(3): 792-797.
    [84] Chen T, Li Z, Jing T, et al. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells [J]. FEBS Lett, 2011, 585(3): 567-573.
    [85] Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4 [J]. FEBS Lett, 2011, 585(6): 854-860.
    [86] Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells [J]. Eur J Immunol, 2010, 40(1): 225-231.
    [87] Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*) [J]. Annu Rev Immunol, 2010, 28: 445-489.
    [88] Killar L, MacDonald G, West J, et al. Cloned, Ia-restricted T cells that do not produce interleukin 4(IL 4)/B cell stimulatory factor 1(BSF-1) fail tohelp antigen-specific B cells [J]. J Immunol, 1987, 138(6): 1674-1679.
    [89] Bach EA, Szabo SJ, Dighe AS, et al. Ligand-induced autoregulation of IFN-gamma receptor beta chain expression in T helper cell subsets [J]. Science, 1995, 270(5239): 1215-1218.
    [90] Pernis A, Gupta S, Gollob KJ, et al. Lack of interferon gamma receptor beta chain and the prevention of interferon gamma signaling in TH1 cells [J]. Science, 1995, 269(5221): 245-247.
    [91] Tau GZ, von der Weid T, Lu B, et al. Interferon gamma signaling alters the function of T helper type 1 cells [J]. J Exp Med, 2000, 192(7): 977-986.
    [92] Skrenta H, Yang Y, Pestka S, et al. Ligand-independent down-regulation of IFN-gamma receptor 1 following TCR engagement [J]. J Immunol, 2000, 164(7): 3506-3511.
    [93] Afkarian M, Sedy JR, Yang J, et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells [J]. Nat Immunol, 2002, 3(6): 549-557.
    [94] Lighvani AA, Frucht DM, Jankovic D, et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells [J]. Proc Natl Acad Sci U S A, 2001, 98(26): 15137-15142.
    [95] Riedmann LT, Schwentner R. miRNA, siRNA, piRNA and argonautes: news in small matters [J]. RNA Biol, 2010, 7(2): 133-139.
    [96] Abdelmeguid AE, Whitlow PL, Sapp SK, et al. Long-term outcome of transient, uncomplicated in-laboratory coronary artery closure [J]. Circulation, 1995, 91(11): 2733-2741.
    [97] Feldman DN, Minutello RM, Bergman G, et al. Relation of troponin I levels following nonemergent percutaneous coronary intervention to short- and long-term outcomes [J]. Am J Cardiol, 2009, 104(9): 1210-1215.
    [98] Nallamothu BK, Chetcuti S, Mukherjee D, et al. Prognostic implication of troponin I elevation after percutaneous coronary intervention [J]. Am J Cardiol, 2003, 91(10): 1272-1274.
    [99] Natarajan MK, Kreatsoulas C, Velianou JL, et al. Incidence, predictors, and clinical significance of troponin-I elevation without creatine kinase elevation following percutaneous coronary interventions [J]. Am J Cardiol, 2004, 93(6): 750-753.
    [100] Nienhuis MB, Ottervanger JP, Bilo HJ, et al. Prognostic value of troponin after elective percutaneous coronary intervention: A meta-analysis [J]. Catheter Cardiovasc Interv, 2008, 71(3): 318-324.
    [101] Prasad A, Gersh BJ, Bertrand ME, et al. Prognostic significance of periprocedural versus spontaneously occurring myocardial infarction after percutaneous coronary intervention in patients with acute coronary syndromes: an analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial [J]. J Am Coll Cardiol, 2009, 54(5): 477-486.
    [102] Prasad A, Rihal CS, Lennon RJ, et al. Significance of periprocedural myonecrosis on outcomes after percutaneous coronary intervention: an analysis of preintervention and postintervention troponin T levels in 5487 patients [J]. Circ Cardiovasc Interv, 2008, 1(1): 10-19.
    [103] Wang TY, Peterson ED, Dai D, et al. Patterns of cardiac marker surveillance after elective percutaneous coronary intervention and implications for the use of periprocedural myocardial infarction as a quality metric: a report from the National Cardiovascular Data Registry (NCDR) [J]. J Am Coll Cardiol, 2008, 51(21): 2068-2074.
    [104] Herrmann J. Peri-procedural myocardial injury: 2005 update [J]. EurHeart J, 2005, 26(23): 2493-2519.
    [105] Srinivasan M, Rihal C, Holmes DR, et al. Adjunctive thrombectomy and distal protection in primary percutaneous coronary intervention: impact on microvascular perfusion and outcomes [J]. Circulation, 2009, 119(9): 1311-1319.
    [106] Hong YJ, Mintz GS, Kim SW, et al. Impact of plaque composition on cardiac troponin elevation after percutaneous coronary intervention: an ultrasound analysis [J]. JACC Cardiovasc Imaging, 2009, 2(4): 458-468.
    [107] Uetani T, Amano T, Ando H, et al. The correlation between lipid volume in the target lesion, measured by integrated backscatter intravascular ultrasound, and post-procedural myocardial infarction in patients with elective stent implantation [J]. Eur Heart J, 2008, 29(14): 1714-1720.
    [108] Li L, Qu N, Li DH, et al. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factor-alpha mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway [J]. Chin Med J (Engl), 2011, 124(1): 100-105.
    [109] Lu Y, Li L, Zhao X, et al. Beta blocker metoprolol protects against contractile dysfunction in rats after coronary microembolization by regulating expression of myocardial inflammatory cytokines [J]. Life Sci, 2011. [Epub ahead of print]
    [110]吴琼,翟原,焦守恕,等. CD4+T细胞在大鼠心肌缺血再灌注损伤中的作用[J].中国实验动物学报2009, 17(1): 65-70.
    [111]程翔,廖玉华,李彬,等.急性心肌梗死大鼠淋巴细胞体外增殖及杀伤效应的观察[J].中国病理生理杂志, 2005, 21(9): 1848-1850.
    [112] Neumann FJ, Ott I, Gawaz M, et al. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction [J]. Circulation,1995, 92(4): 748-755.
    [113] Blum A, Sclarovsky S, Rehavia E, et al. Levels of T-lymphocyte subpopulations, interleukin-1 beta, and soluble interleukin-2 receptor in acute myocardial infarction [J]. Am Heart J, 1994, 127(5): 1226-1230.
    [114] Kanda T, Inoue M, Kotajima N, et al. Circulating interleukin-6 and interleukin-6 receptors in patients with acute and recent myocardial infarction [J]. Cardiology, 2000, 93(3): 191-196.
    [1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75(5): 843-854.
    [2] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans [J]. Cell, 1993, 75(5): 855-862.
    [3] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906.
    [4] Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 2000, 408(6808): 86-89.
    [5] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science, 2001, 294(5543): 853-858.
    [6] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001, 294(5543): 862-864.
    [7] Lu C, Tej SS, Luo S, et al. Elucidation of the small RNA component of the transcriptome [J]. Science, 2005, 309(5740): 1567-1569.
    [8] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature, 2005, 437(7057): 376-380.
    [9] Huang TH, Fan B, Rothschild MF, et al. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursorscans [J]. BMC Bioinformatics, 2007, 8:341.
    [10] Lai EC, Tomancak P, Williams RW, et al. Computational identification of Drosophila microRNA genes [J]. Genome Biol, 2003, 4(7): R42.
    [11] Nam JW, Shin KR, Han J, et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure [J]. Nucleic Acids Res, 2005, 33(11): 3570-3581.
    [12] Borel C, Gagnebin M, Gehrig C, et al. Mapping of small RNAs in the human ENCODE regions [J]. Am J Hum Genet, 2008, 82(4): 971-981.
    [13] Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? [J]. Nat Rev Genet, 2008, 9(2): 102-114.
    [14] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation [J]. Nat Rev Genet, 2004, 5(7): 522-531.
    [15] Kim VN. Small RNAs: classification, biogenesis, and function [J]. Mol Cells, 2005, 19(1): 1-15.
    [16] Koturbash I, Zemp FJ, Pogribny I, et al. Small molecules with big effects: The role of the microRNAome in cancer and carcinogenesis [J]. Mutat Res, 2010. [Epub ahead of print]
    [17] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J]. Nature, 2005, 436(7048): 214-220.
    [18] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.
    [19] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J]. RNA, 2005, 11(3): 241-247.
    [20] Rodriguez A, Griffiths-Jones S, Ashurst JL, et al. Identification of mammalian microRNA host genes and transcription units [J]. Genome Res, 2004, 14(10A): 1902-1910.
    [21] Nervi C, Fazi F, Rosa A, et al. Emerging role for microRNAs in acute promyelocytic leukemia [J]. Curr Top Microbiol Immunol, 2007, 313:73-84.
    [22] Kim VN. MicroRNA biogenesis: coordinated cropping and dicing [J]. Nat Rev Mol Cell Biol, 2005, 6(5): 376-385.
    [23] Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis [J]. Curr Biol, 2004, 14(23): 2162-2167.
    [24] Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature, 2003, 425(6956): 415-419.
    [25] Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization [J]. EMBO J, 2002, 21(17): 4663-4670.
    [26] Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export [J]. Trends Cell Biol, 2004, 14(4): 156-159.
    [27] Peters L, Meister G. Argonaute proteins: mediators of RNA silencing [J]. Mol Cell, 2007, 26(5): 611-623.
    [28] Majoros WH, Ohler U. Spatial preferences of microRNA targets in 3' untranslated regions [J]. BMC Genomics, 2007, 8:152.
    [29] Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse [J]. Curr Biol, 2002, 12(9): 735-739.
    [30] van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA [J]. Science, 2007,316(5824): 575-579.
    [31] Ajay SS, Athey BD, Lee I. Unified translation repression mechanism for microRNAs and upstream AUGs [J]. BMC Genomics, 2010, 11:155.
    [32] Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J]. Cell, 2005, 122(4): 553-563.
    [33] Wakiyama M, Yokoyama S. MicroRNA-mediated mRNA deadenylation and repression of protein synthesis in a mammalian cell-free system [J]. Prog Mol Subcell Biol, 2010, 50:85-97.
    [34] Hammond SM. RNAi, microRNAs, and human disease [J]. Cancer Chemother Pharmacol, 2006, 58(Suppl 1): s63-68.
    [35] Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? [J]. Am J Pathol, 2007, 170(6): 1831-1840.
    [36] Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease [J]. Physiol Genomics, 2007, 31(3): 367-373.
    [37] Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy [J]. Circ Res, 2007, 100(3): 416-424.
    [38] Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart: functional correlates [J]. J Mol Cell Cardiol, 2008, 45(2): 185-192.
    [39] Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy [J]. J Mol Cell Cardiol, 2007, 42(6): 1137-1141.
    [40] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature, 2008, 456(7224): 980-984.
    [41] Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response tomurine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue [J]. Cardiovasc Res, 2009, 82(1): 21-29.
    [42] Bouzeghrane F, Reinhardt DP, Reudelhuber TL, et al. Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis [J]. Am J Physiol Heart Circ Physiol, 2005, 289(3): H982-991.
    [43] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis [J]. Proc Natl Acad Sci U S A, 2008, 105(35): 13027-13032.
    [44] Lin Z, Murtaza I, Wang K, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy [J]. Proc Natl Acad Sci U S A, 2009, 106(29): 12103-12108.
    [45] van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure [J]. Proc Natl Acad Sci U S A, 2006, 103(48): 18255-18260.
    [46] Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy [J]. Nat Med, 2007, 13(5): 613-618.
    [47] Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice [J]. J Clin Invest, 2009, 119(9): 2772-2786.
    [48] Topkara VK, Mann DL. Role of MicroRNAs in Cardiac Remodeling and Heart Failure [J]. Cardiovasc Drugs Ther, 2011, 25(2):171-182.
    [49] Wang DZ. MicroRNAs in cardiac development and remodeling [J]. Pediatr Cardiol, 2010, 31(3): 357-362.
    [50] Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007, 13(4): 486-491.
    [51] Lu Y, Zhang Y, Shan H, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection [J]. Cardiovasc Res, 2009, 84(3): 434-441.
    [52] Bostjancic E, Zidar N, Stajner D, et al. MicroRNA miR-1 is Up-regulated in Remote Myocardium in Patients with Myocardial Infarction [J]. Folia Biol (Praha), 2010, 56(1): 27-31.
    [53] Zhang Y, Xiao J, Lin H, et al. Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current [J]. Cell Physiol Biochem, 2007, 19(5-6): 225-238.
    [54] Zhang Y, Xiao J, Wang H, et al. Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits [J]. Am J Physiol Heart Circ Physiol, 2006, 291(3): H1446-1455.
    [55] Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts [J]. J Biol Chem, 2007, 282(17): 12363-12367.
    [56] Shi B, Guo Y, Wang J, et al. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction [J]. BMC Cardiovasc Disord, 2010, 10(1): 11.
    [57] Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury [J]. Clin Chem, 2009, 55(11): 1944-1949.
    [58] Bostjancic E, Zidar N, Glavac D. MicroRNA microarray expression profiling in human myocardial infarction [J]. Dis Markers, 2009, 27(6): 255-268.
    [59] Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 Are Dysregulated in Human Myocardial Infarction [J]. Cardiology, 2009, 115(3): 163-169.
    [60] Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction [J]. Biochem Biophys Res Commun, 2010, 391(1): 73-77.
    [61] D'Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction [J]. Eur Heart J, 2010, 31(22):2765-2773.
    [62] Meder B, Keller A, Vogel B, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction [J]. Basic Res Cardiol, 2010, 106(1):13-23.
    [63] Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans [J]. Eur Heart J, 2010, 31(6):659-666.
    [64] Shan ZX, Lin QX, Fu YH, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction [J]. Biochem Biophys Res Commun, 2009, 381(4): 597-601.
    [65] Shan ZX, Lin QX, Deng CY, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes [J]. FEBS Lett, 2010, 584(16): 3592-3600.
    [66] Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20 [J]. Circulation, 2009, 119(17): 2357-2366.
    [67] Cheng Y, Zhu P, Yang J, et al. Ischemic preconditioning-regulated miR-21 protects the heart from ischemia/reperfusion injury via anti-apoptosisthrough its target PDCD4 [J]. Cardiovasc Res, 2010, 87(3):431-439.
    [68] Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction [J]. J Biol Chem, 2009, 284(43): 29514-29525.
    [69] Sayed D, He M, Hong C, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand [J]. J Biol Chem, 2010, 285(26): 20281-20290.
    [70] Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70 [J]. Circ Res, 2009, 104(5): 572-575.
    [71] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals [J]. Nat Rev Mol Cell Biol, 2009, 10(2): 126-139.
    [72] Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death [J]. J Mol Cell Cardiol, 2010, 49(5): 841-850.
    [73] Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning [J]. Cardiovasc Res, 2002, 55(3): 506-519.
    [74] Gres P, Schulz R, Jansen J, et al. Involvement of endogenous prostaglandins in ischemic preconditioning in pigs [J]. Cardiovasc Res, 2002, 55(3): 626-632.
    [75] Penna C, Mancardi D, Tullio F, et al. Postconditioning and intermittent bradykinin induced cardioprotection require cyclooxygenase activation and prostacyclin release during reperfusion [J]. Basic Res Cardiol, 2008, 103(4):368-377.
    [76] Inserte J, Molla B, Aguilar R, et al. Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection Constitutive COX-2 expression and cardioprotection [J]. J Mol Cell Cardiol, 2009, 46(2): 160-168.
    [77] Wang X, Zhang X, Ren XP, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury [J]. Circulation, 2010, 122(13): 1308-1318.
    [78] Wang JX, Jiao JQ, Li Q, et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1 [J]. Nat Med, 2011, 17(1): 71-78.
    [79] He B, Xiao J, Ren AJ, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning [J]. J Biomed Sci, 2011, 18(1): 22.
    [80] Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis [J]. Dev Cell, 2008, 15(2): 261-271.
    [81] Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice [J]. Science, 2009, 324(5935): 1710-1713.
    [82] Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels [J]. Arterioscler Thromb Vasc Biol, 2004, 24(3): 435-444.
    [83] Smith LE, Shen W, Perruzzi C, et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor [J]. Nat Med, 1999, 5(12): 1390-1395.
    [84] Wang XH, Qian RZ, Zhang W, et al. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats [J]. Clin Exp Pharmacol Physiol, 2009, 36(2): 181-188.
    [85] Hu S, Huang M, Li Z, et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease [J]. Circulation, 2010, 122(11 Suppl): S124-131.
    [86] Fasanaro P, D'Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3 [J]. J Biol Chem, 2008, 283(23): 15878-15883.
    [87] Song H, Zhang Z, Wang L. Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes [J]. Apoptosis, 2008, 13(3): 383-393.
    [88] Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1 [J]. Semin Cancer Biol, 2009, 19(1): 12-16.
    [89] Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE [J]. Sci STKE, 2005, 2005(306): re12.
    [90] Ghosh G, Subramanian IV, Adhikari N, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis [J]. J Clin Invest, 2010, 120(11):4141-4154.
    [91] Minami Y, Satoh M, Maesawa C, et al. Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease [J]. Eur J Clin Invest, 2009, 39(5): 359-367.
    [92] Shimada K. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis [J].Circ J, 2009, 73(6): 994-1001.
    [93] Methe H, Brunner S, Wiegand D, et al. Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes [J]. J Am Coll Cardiol, 2005, 45(12): 1939-1945.
    [94] Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans [J]. Clin Chim Acta, 2011, 412(1-2): 66-70.
    [95] Muljo SA, Ansel KM, Kanellopoulou C, et al. Aberrant T cell differentiation in the absence of Dicer [J]. J Exp Med, 2005, 202(2): 261-269.
    [96] Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation [J]. J Exp Med, 2006, 203(11): 2519-2527.
    [97] Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation [J]. Blood, 2006, 108(12): 3646-3653.
    [98] Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection [J]. Cell, 2007, 129(1): 147-161.
    [99] Bopp T, Dehzad N, Reuter S, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression [J]. J Immunol, 2009, 182(7): 4017-4024.
    [100] Huang B, Zhao J, Lei Z, et al. miR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA [J]. EMBO Rep, 2009, 10(2): 180-185.
    [101] Rouas R, Fayyad-Kazan H, El Zein N, et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression [J]. Eur J Immunol, 2009, 39(6): 1608-1618.
    [102] Hezova R, Slaby O, Faltejskova P, et al. microRNA-342, microRNA-191and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients [J]. Cell Immunol, 2010, 260(2): 70-74.
    [103] Lindberg RL, Hoffmann F, Mehling M, et al. Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients [J]. Eur J Immunol, 2010, 40(3): 888-898.
    [104] Xue Q, Guo ZY, Li W, et al. Human activated CD4(+) T lymphocytes increase IL-2 expression by downregulating microRNA-181c [J]. Mol Immunol, 2011, 48(4): 592-599.
    [105] Han SF, Li XY, Liu KW, et al. [Imbalance of T helper 1 cells/T helper 2 cells accelerated T-cell-mediated endothelium injury in patients with acute coronary syndromes] [J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2008, 36(12): 1070-1073.
    [106] Guo M, Mao X, Ji Q, et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome [J]. Immunol Cell Biol, 2010, 88(5):555-564.
    [107] Cheng X, Yu X, Ding YJ, et al. The Th17/Treg imbalance in patients with acute coronary syndrome [J]. Clin Immunol, 2008, 127(1): 89-97.
    [108] Ji QW, Guo M, Zheng JS, et al. Downregulation of T helper cell type 3 in patients with acute coronary syndrome [J]. Arch Med Res, 2009, 40(4): 285-293.
    [109] Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis [J]. Nat Immunol, 2009, 10(12): 1252-1259.
    [110] Linterman MA, Vinuesa CG. Signals that influence T follicular helper cell differentiation and function [J]. Semin Immunopathol, 2010, 32(2): 183-196.
    [111] Wei B, Pei G. microRNAs: critical regulators in Th17 cells and players in diseases [J]. Cell Mol Immunol, 2010, 7(3): 175-181.
    [112] Hoekstra M, van der Lans CA, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease [J]. Biochem Biophys Res Commun, 2010, 394(3): 792-797.
    [113] Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages [J]. Cardiovasc Res, 2009, 83(1): 131-139.
    [114] Huang RS, Hu GQ, Lin B, et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages [J]. J Investig Med, 2010, 58(8): 961-967.
    [115] Chen T, Li Z, Jing T, et al. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells [J]. FEBS Lett, 2011, 585(3): 567-573.
    [116] Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4 [J]. FEBS Lett, 2011, 585(6): 854-860.
    [117] Chen T, Li Z, Tu J, et al. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells [J]. FEBS Lett, 2011, 585(4): 657-663.
    [118] Fang Y, Shi C, Manduchi E, et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro [J]. Proc Natl Acad Sci U S A, 2010, 107(30): 13450-13455.
    [119] Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence [J]. Biochem Biophys Res Commun, 2010, 398(4): 735-740.
    [120] Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1 [J]. Circulation, 2009, 120(15): 1524-1532.
    [121] Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation [J]. Circ Res, 2007, 100(11): 1579-1588.
    [122] Quintavalle M, Elia L, Condorelli G, et al. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro [J]. J Cell Biol, 2010, 189(1): 13-22.
    [123] Chen KC, Wang YS, Hu CY, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases [J]. FASEB J, 2011, 25(5):1718-1728.
    [124] Leeper NJ, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function [J]. J Cell Physiol, 2011, 226(4): 1035-1043.
    [125] Yu ML, Wang JF, Wang GK, et al. Vascular Smooth Muscle Cell Proliferation Is Influenced by let-7d MicroRNA and Its Interaction With KRAS [J]. Circ J, 2011, 75(3): 703-709.
    [126] Cheng TO. Cardiovascular effects of Danshen [J]. Int J Cardiol, 2007, 121(1): 9-22.
    [127] Adams JD, Wang R, Yang J, et al. Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions [J]. ChinMed, 2006, 1:3.
    [128] Gao J, Yang G, Pi R, et al. Tanshinone IIA protects neonatal rat cardiomyocytes from adriamycin-induced apoptosis [J]. Transl Res, 2008, 151(2): 79-87.
    [129] Yang L, Zou X, Liang Q, et al. Sodium tanshinone IIA sulfonate depresses angiotensin II-induced cardiomyocyte hypertrophy through MEK/ERK pathway [J]. Exp Mol Med, 2007, 39(1): 65-73.
    [130] Yang R, Liu A, Ma X, et al. Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation [J]. J Cardiovasc Pharmacol, 2008, 51(4): 396-401.
    [131] Shan H, Li X, Pan Z, et al. Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1 [J]. Br J Pharmacol, 2009, 158(5): 1227-1235.
    [132] Rane S, He M, Sayed D, et al. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p [J]. Cell Signal, 2010, 22(7): 1054-1062.
    [133] Ye Y, Hu Z, Lin Y, et al. Down-regulation of microRNA-29 by antisense inhibitors and a PPAR-{gamma} agonist protects against myocardial ischemia-reperfusion injury [J]. Cardiovasc Res, 2010, 87(3):535-544.
    [134] Pasterkamp G, Versteeg D, de Kleijn DP. Immune regulatory cells: circulating biomarker factories in cardiovascular disease [J]. Clin Sci (Lond), 2008, 115(4): 129-131.
    [135] Satoh M, Ishikawa Y, Minami Y, et al. Role of Toll like receptor signaling pathway in ischemic coronary artery disease [J]. Front Biosci, 2008, 13: 6708-6715.
    [136] Takahashi Y, Satoh M, Minami Y, et al. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels [J]. Clin Sci (Lond), 2010, 119(9): 395-405.