木材干燥智能控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材干燥是木材加工过程中的重要环节,木材干燥质量的优劣直接影响木材的出材率和木制品的加工质量。面对木材资源严重短缺的情况,保证干燥质量、降低能耗、缩短干燥周期、减少环境污染、提高生产率、增加优质干燥材数量已成为现阶段木材干燥技术发展的要求。
     木材干燥在木材加工企业中通常是能耗最大的工序,我国木材干燥行业中,常规干燥设备仍占主导地位,约占干燥设备市场的80%。这些常规干燥设备热效率低,干燥热效率仅为30~40%。同时,现有大量的木材干燥设备还处于手动、半自动控制状态。虽然有一些干燥设备实现了全自动控制,但其控制系统和控制设备的可靠性、稳定性、控制精度与发达国家相比还有一定的差距。
     针对常规干燥过程中能耗大、污染严重的问题,论文设计、制造了一种新型节能、环保的木材干燥设备。该设备除实现常规干燥功能外,还具有废气热能回收、废气清洁和自循环功能。将废弃的热能进行重复利用,又对VOC等气体进行清洁处理,真正达到节能、减排的效果,相比常规干燥节能10~15%。
     研发出适用于木材干燥过程控制的控制器,该控制器以ATmega1280微处理器为核心,具有16路数字量输入、16路数字量输出、16路模拟量输入、4路模拟量输出、4路PWM输出、4路RS232串行接口、16M的实验数据存储;针对木材干燥过程中木材含水率的变化特点,进行木材含水率实时采集模块电路设计,测量范围为6~90%,精度为±1%;人机交互系统以单片机为控制核心、液晶显示触摸屏为显示界面,该系统使复杂控制过程变得简单、可靠,替代上位计算机与下位机繁冗昂贵的控制方式,取消了计算机、键盘及鼠标等操作部件,也可以替代设备上的按钮、旋钮、显示仪表及状态指示灯等部件。
     完成木材干燥智能控制系统软件程序设计与实现。其中包括:时间基准和含水率基准的程序设计与实现;干球温度+湿球温度、干球温度+相对湿度、干球温度+平衡含水率三种控制方式的设计与实现;木材干燥专家系统的设计与实现,对常见树种提供最佳解决方案,并能够保存最优干燥配方;木材含水率实时采集模块的程序设计;网络拓扑结构的设计和通信协议的制定,利用RS232串口和RS485总线实现计算机、触摸屏与木材含水率实时采集模块的实时或分时通信。
     研发的新型木材干燥设备及其智能控制设备已在内蒙古农业大学和中国林科院木材工业研究所使用,由于其比传统的常规木材干燥设备干燥质量好,实现了废气热能回收利用和废气清洁过滤,达到了节能、减排的效果,受到使用单位的好评。因此本研究成果对于我国木材干燥行业的技术升级与改造将会起到借鉴与推动作用。
Wood drying is the important section in wood processing, whose quality directly affected the recovery and processing quality of wooden products. Facing the serious shortage of wood resources, drying quality assurance, reduce energy consumption, shorten the drying cycle, reduce environmental pollution, improve productivity, increase the number of high-quality dried wood, whole were necessary to the development of wood drying technology at the present stage.
     Wood drying is the most energy consumption process in wood processing. In domestic industry of wood drying, conventional drying devices still play a leading role, which takes up 80%. These conventional drying devices have a low drying thermal efficiency about 30~40%. At the same time, most devices are still under manual and semi-automatic control status. Even though automatic control is realized in some devices, the reliability, stability and control precision of its control system and equipment have a great gap comparing to developed countries.
     According to high energy consumption and serious pollution, a new energy saving and environmental protective wood drying device was designed and manufactured by author who worked as a key technician. Based on conventional drying function, the waste heat recovery, waste gas cleaner and humidity generator were added. Therefore, the system utilized waste heat energy to do secondary work, and the toxic gases such as VOC were carried out cleaning process. Thus, the effects of energy conservation and emission reduction are reached genuinely. Comparing to the conventional drying, 10~15% amount of energy is saved.
     The controller, suitable for wood drying processing control, used ATmega1280 microcontroller as the core which has 16 digital inputs, 16 digital outputs, 16 analog inputs, 4 analog outputs, 4 PWM outputs, 4 RS232 serial interface vectors and 16M data storage; Based on the varying character of moisture content in wood drying process, real-time moisture content acquisition module was developed which has a measuring range of 6~90% with a precision of±1%; User Interface based on simple MCU control and liquid crystal display touch screen which makes the complex control easier and more reliable.
     At the same time, the program design and implement of wood drying intelligent control system software was completed. The control system with time benchmark and moisture content benchmark,of two kinds wood drying schedule, would achieved three control methods, which were dry bulb temperature + wet bulb temperature, dry bulb temperature + relative humidity, and dry bulb temperature + equal moisture content. The program of the acquisition of wood moisture content module is designed. The wood drying expert system could provide an optimum solution to common tree species and save the best drying formula. Network topology structures and communication protocol were designed. The real-time and time sharing communication with computer, touch screen and the acquisition of wood moisture content module were implemented by RS232 serial port and RS485 bus.
     The new wood drying devices and its intelligent control devices are now using in Inner Mongolia Agriculture University and Research Institute of Wood Industry, Chinese Academy of Forestry. Compared to conventional wood drying devices, they have the advantages such as high drying quality, waste heat energy recovery, zero gas emission and reach the affects of energy conservation and emission reduction. As a result, the research achievement plays reference and pushing effects to domestic technical reform and upgrade of wood drying field.
引文
[1]张璧光.我国木材干燥技术现状与国内外发展趋势[J].北京林业大学学报学报,2002,24(5):262-265.
    [2]张璧光,高建民,伊松林等.我国木材干燥节能减排技术研究现状[J] .华北电力大学学报,2009, 36(3):39-42.
    [3]张璧光,谢拥民.国际干燥技术的最新研究动态与发展趋势[J].木材工业,2008,22(3):5-6.
    [4]顾炼百,杜国兴.中国木材干燥工业的现状与展望[J] .南京林业大学学报(自然科学版),2001, 25(6):1-5.
    [5] Mujumdar A S. Handbook of Industrial Drying[M].CRC Press ,Boca Raton ,FL,USA ,2007.
    [6] Mujumdar A S,Wu Z H.Thermal Drying Technologies : NewDevelopment s and Future R&D Potential [C].Proceedings of the 5th Asia-Pacific Drying Conference,Hong Kong,2007:1-8.
    [7]郑万友,张丽福,姜海波.木材干燥设备的创新途径与发展[J].林业机械与木工设备,2006,34(2): 8-9.
    [8]陈国华,常建民.木材干燥远程控制技术现状及发展[J].木材工业,2006,30(2):26-28.
    [9]常建民,王东林,高建民.木材干燥全自动控制系统的研制[J] .北京林业大学学报,2003,25(2): 72-75.
    [10]李明宝.基于AT89C55木材干燥工业现场参数自动测试系统[J].中国仪器仪表,2005,(2):89-91.
    [11]薛巨峰,张佳薇,许海燕.基于DSP的木材干燥窑多路参数测试系统的研制[J].林业机械与木工设备,2006,34(7):23-25.
    [12]姚磊,黄林,张保健等.基于ARM的间接炉气式木材干燥窑监控系统设计[J] .农机化研究,2009, (7):121-123.
    [13]曹军,张佳薇.智能化木材干燥窑的数据采集系统[J] .自动化仪表,2004,25(1):27-29.
    [14]甘英俊,周宏平.木材干燥智能化控制系统的研究[J] .林业科技开发,2003,17(6):43-45.
    [15]周屹,李萍.模糊控制器在木材干燥工艺中的设计研究[J] .林业机械与木工设备,2007,35(4): 30-32.
    [16]邵千钧,徐群芳,王伟龙等.木材干燥过程控制策略与方法的研究[J] .浙江林学院学报,2003, 20(3):307-310.
    [17]周永东.木材含水率测量方法及影响因素分析[J].木材工业,2000,14(9):29-30.
    [18]白雪冰,张佳薇,赵真非.智能化木材含水率自动测试系统的开发[J].木材工业,2006,20(5):35-37.
    [19]潘金龙,韩玉杰,周宏斌等.远程控制木材干燥技术C/S和B/S模式的比较应用[J].林业机械与木工设备,2007,35(6):46-48.
    [20]宋黎明,雷勇.木材干燥窑集散控制系统[J] .林业机械与木工设备,2001,29(1):12-14.
    [21]羿宏雷,马岭.分布式木材干燥窑控制系统[J].林业机械与木工设备,2004,32(12)54-55.
    [22] West L.Expert system applications in the forest products industry[J]. Forest Products Journal,1989, 37(9):40-44.
    [23] Malasri S. Wood deck selector:an expert system shell application[J].Civil Engineering Education, 1988,10(1):28-39.
    [24] Joseph G,Massey J G..The utility of expert systems to the forest products industry[J]. Forest Products Journal ,1989,3 (11P12): 37-40.
    [25] Warren M B ,Wagner F G, Ladd D S,et al.Expert system development and use in particleboard manufacturing[J].Forest Products Journal,1993,43(1):47-50.
    [26] Zeng Y,Randhawa S,Funck J.Expert system for softwood lumber grading[J]. Computers & Industrial Engineering,1996,31(1P2):463-466.
    [27] Sandak J,Tanaka C. Online adaptive control of bandsaw feed speed using a fuzzy-neural system[J].Forest Products Journal ,2003,53(6):36-43.
    [28]韦宁.木材干燥计算机控制系统的开发与应用[J].桂林电子工学院学报,2004,24(4):34-38.
    [29]何远伦,常建民.基于Web技术的专家系统在木材干燥中的应用[J].林业科学,2009,45(7): 175-177.
    [30]葛洪军,李洪智,王志明.分布式木材干燥计算机控制系统[J].工业控制与应用,1998,22(3): 45-50.
    [31]程春红,张深基,杨子华.现场总线的工厂分布式显示控制系统[J].陕西工学院学报,2004,(3): 17-20.
    [32]徐利梅,童明椒.现场总线及其在楼宇自控系统中的应用[J].智能建筑与城市信息,2003,20(7): 15-17.
    [33]周罡,郑建彬.基于RS-232的在线签名数据采集系统[J].单片机与嵌入式系统应用,2006,(9): 68-70.
    [34]马潮.高档8位单片机ATmege128原理与开发应用指南(上) [M].北京:北京航空航天大学出版社, 2004,12-45.
    [35]金春林,邱慧芳,张皆喜.AVR系列单片机C语言编程与应用实例[M].北京:清华大学出版社,2003,20-30.
    [36]沈文,Eagle lee,詹卫前..AVR单片机C语言开发入门指导[M].北京:清华大学出版社,2003, 11-36.
    [37]耿德根.AVR高速嵌入式单片机原理与应用[M].北京:北京航空航天大学出版社,2001,10-30
    [38]丁化成,耿德根,李君凯.AVR单片机应用设计[M].北京:北京航空航天大学出版社,2002,8-20
    [39] Atmel Corp.ATmega640/ATmega1280/ ATmega2560 Datasheet,2005:1-6.
    [40] Atmel Corp. ATmega16/ATmega16L Datasheet,2006:1-24.
    [41] Texas instruments .TPS7333QD Low-Dropout voltage regulators with integrated delayed reset function Datasheet,1999:1-10.
    [42] sse-diode.IN4148 Datasheet.http://www.sse-diode.com.
    [43]秦健.一种基于PWM的电压输出DAC电路设计[J].现代电子技术,2004,(14):81-83.
    [44] Texas instruments.LM158/LM158A/LM258/LM258A/LM358/LM358A/LM2904/LM2904V Data information,2004:1-20.
    [45]高同辉,张斌.光电隔离抗干扰技术及应用[J].科技信息,2007,(7):79,111.
    [46] TOSHIBA.TLP521-4 Datasheet,2000,8:1-8.
    [47] Texas instruments.ULN2803 Datasheet,2004,8:1-10.
    [48] Maxim. MAX3222/MAX3232/MAX3237/MAX3241 Information,2003,11:1-16.
    [49] Spansion.S25FL064A Datasheet,2007,6:1-36.
    [50] Spansion. S25FL128P Datasheet,2008,8:1-48.
    [51] Samsung. K9F5608X0D Flash memory Datasheet,2005,12:1-35.
    [52] Texas instruments .74CBTD Datasheet,2003:1-16.
    [53]吉雷.Protel从入门到精通[M].西安:西安电子科技大学出版社,2002,12-45.
    [54]清源计算机工作室.Protel 99 SE电路设计与仿真[M].北京:机械工业出版社,2002,98-100.
    [55] Analog devices. AD581 Summary,2007:1-20.
    [56] Analog devices. AD549 Summary,2004:1-20.
    [57] Burr-brown.ADS7805 Datasheet,1996,8:1-16.
    [58] Burr-brown. ADS7825 Datasheet,1997,10:1-16.
    [59] Maxim.MAX4831E/MAX483E/MAX485E/MAX487E-MAX491E,1996,7:1-16
    [60]宋兵跃,吴军辉,黄斌.单片机的高效串行通信研究[J].单片机与嵌入式系统应用,2010,(1):27-29.
    [61]张军彭,宣戈.嵌入式系统硬件抗干扰技术[J].微计算机信息,2006,22(5-2):16-18.
    [62]邱琳,游雨云.单片机系统抗干扰措施[J].技术与研发,2008,(1):47-49.
    [63]刘文,张建军.基于嵌入式控制技术的抗干扰设计思想[J] .现代电子技术,2004,13(180):52-54, 61.
    [64]张星梅.基于ATmega128的试验压机智能控制系统的研究.中国林业科学研究院硕士学位论文, 2008,70-72.
    [65]北京迪文科技有限公司[M].智能显示终端.2007,83-106.
    [66]李大勇.小灵通话费信息触摸屏查询系统的设计与实现[J].数据库与信息管理,2007,(4):4-5.
    [67]张垚,邵惠鹤.基于嵌入式控制器的液晶显示模块的设计与开发[M] .微型电脑应用,2004.
    [68]王云景,赵红旗,方勇军. 4通道1 6位A/D转换器ADS7825在称量中的应用[J].仪表技术, 2006,(6):39-41.
    [69]张原峰,高彦,王彦文.ADS7825模数转换芯片及其在高速数据采集系统中的应用[J].计算机测量与控制,2002,10(6):403-407.
    [70]王霞,李刚.具有串行和并行输出接口的模数转换器—ADS7825[J].国外电子元器件,1999,(1): 13-15.
    [71]张自友,唐前军.MCU系统软件抗干扰技术[J] .科技信息,2007,(24):67,103.
    [72]伍伟杰.嵌入式系统软件可靠性和抗干扰技术[J] .电子产品可靠性与环境试验,2006,(4):60-64.
    [73]李继平.嵌入式故障诊断专家系统开发平台的实现[J].南京信息工程大学:自然科学版,2009,1 (2):151-155.
    [74]任斌斌.电气故障诊断专家系统在航空中的应用[J].科技资讯,2009,(26):113.
    [75]杨善林.智能决策方法与智能决策支持系统[M].北京:科学出版社,2005.
    [76]黄牧,田勇.组合智能决策支持系统研究及其应用[J].系统工程理论与实践,2007,(4):114-119.
    [77]任明伦,杨善林,朱卫东.智能决策支持系统:研究现状与挑战[J].系统工程,2002,17(5):430-490.
    [78]李红良.智能决策支持系统的发展现状及应用展望[J].重庆工学院学报(自然科学),2009,23(10): 143-144.
    [79]高洪深.决策支持系统(DSS):理论方法案例[M].北京:清华大学出版社,2000.
    [80]韦文代,劳眷,梁宏温.木材干燥专家系统的建立[J].林业科技,2004,29(3):49-51.
    [81]周玉成,程放.木材工业自动化技术应用现状及展望[J].木材工业,2006,20(2):59-62
    [82]周玉成,程放,李晓群.非线性系统鲁棒渐进跟踪[J].木材工业,2003,17(5):11-13
    [83]周玉成,程放,肖天际等.一类含不确定因素的非线性系统鲁棒跟踪[J].林业科学,2003,39(2): 130-136
    [84]金以慧.过程控制[M].北京:清华大学出版社,1993.
    [85]万迪华,汤斌,李志文.ADO数据访问技术及其在VB中的实现[J].计算机与现代化,2001,(5): 59-60.
    [86]王海龙,毕丽莉.用VB6.0开发工业控制软件[J].石油化工自动化,2002,69(4):75-78.
    [87]江泽慧,姜笑梅,周玉成等.杉木微观结构与其品质特性关系模型的一类神经网络建模方法[J].林业科学,2005,41(4):133-139.
    [88]朱政贤.木材干燥(第2版)[M].北京:中国林业出版社,1989.
    [89]葛洪军,李洪智,王志明.分布式木材干燥计算机控制系统[J].工业控制与应用,1998,22(3): 45-50.
    [90]邱增处,于瑛,李增超等.木材干燥微机控制现状及发展[J].西北林学院学报,2001,16(2): 93-96.
    [91]刘勇,赵子先.工业过程控制先进技术发展概论[J].中国科技信息,2005,(2):112-113
    [92]谢松云,董大群.工业计算机控制系统的应用现状和发展方向[J].测控技术,1999,18(8):13-16.
    [93]段明祥.工业控制计算机产业现状与发展策略[J].工业控制计算机,2001,(9):4-8.
    [94]陶永华.PID控制原理和自整定策略[J].工业仪表与自动化装置,1994,(4):60-64.
    [95]李澄非,王洪猛,殷华文.PID在过程控制中的应用[J].电气时代,2003,(6):42-44.
    [96] Xue-song WANG,Yu-hu CHENG, Wei SUN. A Proposal of Adaptive PID Controller Based on Reinforcement Learning[J].Journal of China University of Mining and Technology,Volume 17, Issue 1, March 2007, Pages 40-44.
    [97]匙璟青.基于串口通信的可视化设计与实现.中国林业科学研究院硕士学位论文,2009,32-33.
    [98] Yu-cheng Zhou,Cheng Fang,Yong-ping Chen. Almost Disturbance Decoupling of Linear Singular Systems[J]. SCIENTIA SILVAE SINICAE,2004 ,40 (5):157-163.
    [99] Yu-cheng Zhou,Cheng Fang,Yuan An. Controllability of Linear Feedback Control Systems with Communication Constrains[J]. SCIENTIA SILVAE SINICAE ,2003,39 (6 ):131-135.
    [100]周玉成,程放,范留芬等.离散时间奇异系统的可测扰动解耦[J].控制与决策,2004,19(7): 787-790.
    [101] Zhou Yucheng,Wang Hongwei,Jing Yuanwei.Observer-based robust controller design for active queue management[C] . IFAC Proceedings Volumes (IFAC-Papers Online), 2008, 17(1) ,1355-1350.
    [102] Yucheng Zhou,Jiahe Xu,Yuanwei Jing. The unscented Kalman filtering in extended noise environments[C].Proceedings of the 2009 International Conference on Communication Software and Networks, ICCSN 2009: 1865-1870.
    [103]安源.中国林业科学研究院硕士学位论文,2006,25-42.
    [104]安源,姜笑梅,周玉成.数字化标本馆触摸式查询系统的实现[J].木材工业,2006,20(3):44-46, 49.
    [105]周玉成,程放,安源等.具有通讯约束的线性状态反馈控制系统的可控性[J].林业科学,2003, 39(6):131-135.
    [106]匙璟青,张星梅,安源等.基于RS-232的触摸屏技术在实验压机上的应用[J],木材加工机械, 2008,19(4):11-15.
    [107]张星梅,安源,匙璟青等.基于Atmega128的试验压机控制器设计[J].木材工业,2008,22(1): 36-38.
    [108]赵望达,鲁五一.PID控制器及其智能化方法探讨[J].化工自动化及仪表,1999,26(6):45-48.
    [109]葛洪军,李洪智,王志明.分布式木材干燥计算机控制系统[J ].工业控制与应用,2003,22 (3): 45-50.
    [110] Jun Cao,Xiumei Zhang,Yaqiu Liu. Fuzzy Control of Medium Density Fiberboard Hot-Pressing[J]. Second IEEE Conference on Industrial Electronics and Applications,2007,2045~2048.
    [111] Atmel Corp. AT24C1024 Advance Information.2002,8:1-19.
    [112] Texas instruments.TMS320x281x,280x DSP Serial Communication Interface (SCI)Reference Guide, 2004,11:1-52.
    [113] Texas instruments. TMS320F2812 Digital Signal Processors Data Manual,2007,7:1-173.
    [114] Texas instruments. TPS3820,TPS3823,TPS3828 Datasheet,2002:1-14.
    [115]杜春雷. ARM体系结构与编程[M].北京:清华大学出版社,2003.
    [116] Atmel Corp.AVR Application Notes.http://www.atmel.com.
    [117] Atmel Corp.AVR Studio User Manual.http://www.atmel.com.
    [118] ImageCraft Creation Inc.ICCAVR User Manual.http://www.imagecraft.com.
    [119] HP InfoTech S.R.L.CVAVR User Manual.http://www.mcselsec.com.
    [120] MCS Electronics.BASCOM-AVR USER MANUAL.http://www.mcselec.com.
    [121]周俊杰.嵌入式C编程与Atmel AVR[M].北京:清华大学出版社,2003.
    [122]张克彦.AVR单片机实际应用程序设计[M].北京:北京航空航天大学出版社,2004.
    [123] W.Richard Stevens.Unix环境高级编程[M].北京:机械工业出版社,2000.
    [124] Kurt Wall.GNU/Linux编程指南[M].张辉,译.北京:清华大学出版社,2002.
    [125] W.Richard Stevens.UNIX网络编程[M].杨继,译.北京:清华大学出版社,2006.
    [126] Rubini A.Linux设备驱动程序(第二版)[M].魏永明,译.北京:中国电力出版社,2002.
    [127]张崙.32位嵌入式系统硬件设计与调试[M].北京:机械工业出版社,2005.
    [128]程路.Protel99 SE多层电路板设计与制作[M].北京:人民邮电出版社,2007.
    [129]张璧光.木材科学与技术研究进展[M].北京:中国环境科学出版社,2004.