东北泥炭记录的全新世火山喷发事件及其古气候响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自人类在地球上诞生以来,人类活动逐渐成为环境变化过程中的一个影响因子,而且这种影响力变得越来越大。尤其是工业革命以来,世界工业化迅速发展,世界人口急剧增长,人类对资源、环境过度地开发利用引起了一系列环境问题,如全球变暖、土地沙漠化加剧、环境污染、生态环境失衡、森林草原面积减少、物种大量灭绝、水土流失严重、水资源匮乏、自然灾害发生的频率、程度加大等等,这一系列重大问题威胁着人类的生存环境。人类出于对自身生存和发展的需要,对全球环境、气候的未来变化普遍关注,迫切希望预知未来全球变化趋势,要想预知未来的全球变化,必须对过去的气候与环境状况进行深入的了解。随着分析测试技术的不断更新和完善,新的发现和理论不断涌现,使得古气候与古环境演化研究迅速发展成为国际地学界学术气氛最为活跃的领域,并在全世界受到广泛的重视。20世纪80年代起,国际学术界开展了一系列的全球变化研究:包括国际地圈一生物圈计划(IGBP)、全球变化人文计划(IHDP)、世界气候研究计划(WCRP)和生物多样性计划(DIVERSTITAS),目的是揭示全球变化规律,预测未来全球变化趋势。
     全新世(11500年前至现在)是第四纪二分的第二个世,也是最年轻的地质时期。全新世的气候变化与人类社会的发展有密切的关系:人类社会文明的一切发生、发展、繁荣、进步都出现在此时期,因此,全新世气候变化作为古气候的重点对人类研究全球变化具有重要的指导意义。火山活动作为全球气候变化的驱动因素之一,虽是一种短暂而剧烈的地质现象,但对于气候的变化与人类的生存环境却可以产生深远影响。强烈的火山爆发活动,可以摧毁城市、掩埋村庄,甚至引起区域或者全球性气候变化。因此,获取一种完整记录全新世气候变化与火山喷发等环境事件等信息的连续沉积档案材料进行研究是相当关键的。
     泥炭是作为一种天然的沼泽地产物,主要形成于第四纪,尤其是全新世这一重要时期。其形成和积累的主要影响因素为气候,其次受地质、地貌、水文等方面的控制。泥炭形成过程中包含了大量的古气候、古环境演化信息,因此,可以作为一种重要的恢复过去全球变化的研究材料,在全球变化的研究中有着重要的地位和意义。
     本文以富含古气候信息与火山喷发等环境事件的中国东北地区泥炭沉积物为研究对象,从多气候代用指标的角度出发,讨论了哈尼地区全新世气候变化并与其他区域气候变化进行对比,论证了哈尼泥炭气候代用指标与气候突变事件的响应。同时,提取出哈尼与金川泥炭剖面中的火山灰,识别了相应的火山喷发事件,探讨了火山喷发与气候变化的关系,将火山喷发事件和气候演化信息进行对比,解读并恢复全新世火山喷发对气候变化的影响,即火山活动的气候效应研究提供了新的途径和方法。其主要内容与研究成果如下:
     1.本文首先阐述了泥炭与泥炭地的含义“泥炭是植物遗体在饱含水的沼泽环境中和厌氧微生物不完全分解条件下,经生物化学作用而形成的具有不同分解程度,松软,富含水的有机质堆积物”,而“泥炭地即为泥炭的产地”;然后分析了全球以及我国泥炭地的分布状况,探讨了泥炭与环境的关系;总结了国内外以泥炭作为气候代用指标在全新世气候变化研究进展;提出了泥炭不仅能作为气候事件的档案馆,对火山喷发等事件也有良好的记录。
     2.选择了以中国东北作为研究区域,将长白山哈尼地区的堰塞湖泥炭地以及金川地区的玛珥湖泥炭地作为研究对象,详细叙述了研究区域的地质、地貌、水文、气候等状况,总结了论文的研究方法与技术。
     3.建立了哈尼与金川地区泥炭剖面14C年代学框架:在金川和哈尼泥炭地野外采样现场对采到的泥炭剖面依据其颜色以及岩性进行了详细的描述,并建立岩性层位控制点,通过对控制点的泥炭中的植物纤维素进行AMS14C测年获取了哈尼泥炭剖面的年代学框架,9米长的哈尼泥炭剖面持续沉积了11930±172a,金川泥炭地剖面10米泥炭柱年代为6922aB.P。采川CALIB4.3软件对年龄进行校正,并计算山哈尼泥炭剖面校正年龄与深度的关系:y=16.78x-619.4,R2=0.992;金川泥炭剖面校正年龄与深度的关系:y=9.132x,R2=0.934。运用内插值的方法计算出哈尼泥炭地泥炭沉积速率最大沉积速率为1.75cm/yr,最小的沉积速率为0.07cm/yr;金川泥炭剖面的沉积速率最大为0.663cm/yr,最小沉积速率为0.07cm/yr。
     4.分别从哈尼与金川泥炭剖面中识别并提取了火山灰,总结并研究了前人从沉积物中提取的火山灰方法。选择了酸化法提取哈尼泥炭地中火山灰,选择了稀碱法提取了金川泥炭地的火山灰。通过偏光显微镜对火山玻璃进行了识别、使用环境扫描电镜对火山灰的形态进行了分析:扫描电镜下火山灰表面布满气孔构造,呈多棱角的碎屑状,并相互重叠嵌紧。用电子探针技术对火山灰主量元素进行测定,发现火山灰主要为岩屑,主要类别为粗面岩,显示出火山喷发物为中性,火山处于中期发育,在喷发过程中将早期的基性岩体一并带出。
     5.测定了哈尼泥炭地的吸光度与透光度数据以吸光度表征泥炭腐殖化度;结合前人数据,论述了δ13C和δ18O数据所指示的古气候意义,分析了哈尼泥炭腐殖化度的古气候意义——哈尼泥炭腐殖化度反映了温度-湿度组合的信息,哈尼泥炭腐殖化度大表征气候温暖湿润,泥炭腐殖化度小指示了气候寒冷干燥。
     6.通过泥炭腐殖化度时间序列曲线、泥炭纤维素δ13C和δ180时间序列曲线,多指标重建了哈尼地区全新世气候演化,其主要分为六个主要阶段:12000aB.P-11200aB.P气候干冷阶段;11500-9800aB.P温暖湿润阶段;9800-9000aB.气候急剧降温干冷阶段;9000-4800aB.P气候暖湿阶段;4800-1800aB.P干冷暖湿波动阶段:1800~0aB.P干冷气候阶段。
     7.研究了哈尼泥炭地对全新世气候8.2ka事件与4.2ka事件的响应:哈尼泥炭中δ18O时间序列显示:在约8.3ka B.P期间,曲线上出现一个较宽的δ18O波谷。进一步研究发现,在约8.2ka B.P附近还有多个密集的δ18O下降点,指示了一个小的δ18O下降峰存在。对比δ13c时间序列,在约8.1~8.3ka B.P期间,哈尼δ13C出现三个峰值,8.3ka出现一个最大的峰值,表明气候比较干燥。在泥炭腐殖化度曲线上表现为7.8ka~8.3ka之间的一个稍有起伏的宽阔波谷,说明该时期长时间的干冷。本研究通过多指标对比,进一步证明了哈尼泥炭地气候代用指标对8.2ka气候突变事件的响应。对4.2ka事件的响应表现在:δ13C序列的强烈变化,δ13C的值在4.20~4.8ka之间突然变大,指示气候变得干燥;δ180在4.0~5.0ka之间表现出反复持续变化升降组合,在4.3ka左右急速下降,表现最为强烈,表明气候比较寒冷;哈尼泥炭腐殖化度数值在此期间波动异常,有两个低谷出现,并持续300a左右。
     8.区域对比哈尼泥炭地在全新世早中晚三期气候变化:以不同区域的气候档案从以下几个阶段探讨了全新世气候变化:12.8~11.2kaB.P,新仙女木期(9.7~11.Oka B.P14C年龄);11.2~8.0kaB.P,全新世早期(7.0-9.7ka B.P14C年龄);8.0~3.0kaB.P,中全新世(2.8~7.0ka B.P14C年龄);3.0~0ka B.P,晚全新世(0~2.8kaB.P14C年龄)认为哈尼泥炭地作为古气候档案不仅记录了本地区的气候变化,同时对全球气候变化也有响应,能为全球气候变化研究提供泥炭学方面的证据。
     9.总结了全新世火山在世界与中国的分布特征,介绍了中国东北地区全新世火山状况,描述了火山喷发物的类型;回顾了火山气候学的发展:火山气候学的研究方法为统计研究和数值模拟研究,火山活动与气候变化的关系研究主要体现在三个方面:基础资料的搜集与分析、火山气溶胶的辐射影响、火山活动对气候的影响;通过资料收集建立了全新世东亚地区VEI等级4以上的火山喷发序列和东北地区火山喷发序列,用VEI指数大于3的全新世全球火山喷发数据,制作了百年尺度、五百年尺度以及千年尺度的火山喷发次数与VEI累计曲线,认为其可以反映全新世火山喷发活动的趋势,尤其表现在4000~4300a B.P这个阶段,对全新世气候变化存在一定的响应。
     10.使用年龄深-度模型通过火山灰沉积层位,结合植物纤维素’4C年代,判断哈尼泥炭地6.0~6.25m火山灰来自8352±76a B.P~9604±80a B.P (AMS14C年龄)火山喷发事件,金川泥炭地2.52-2.55m火山灰来自2300~2315a B.P (AMS14C年龄)火山喷发事件。通过火山灰主成分的测定判断了火山灰来源,哈尼泥炭地火山灰来自吉林长白山天池火山,金川泥炭地火山灰来自龙岗火山群金龙顶子火山;发现火山灰所代表的泥炭沉积层的在古气候变化阶段都是气候干冷,表明了火山喷发事件与气候变化响应;使用火山喷发序列事件与泥炭中的多种气候代用指标曲线对比,发现邻近或大型火山喷发活动对应了泥炭气候代用曲线中的较低(高)值,指示温度和湿度都变小,结果表明,全新世泥炭地保存着广泛的火山喷发事件,而这些火山爆发活动对气候产生的影响为:区域温度和湿度减小,气候变得干冷。总之,在泥炭沉积中提取火山喷发事件,并与泥炭气候指标对比,研究火山喷发事件与区域气候变化的关系,探讨火山喷发的气候效应是一个可行的方法。
Since the inception of mankind on Earth, human activity has gradually become an impact factor in the process of environmental change, and this influence becomes larger and larger. Especially since the Industrial Revolution, The world industrialization level is in rapid development as well as the growth of the world population. With human's excessive development and utilization on resources and environment, it has caused a series of environmental problems such as global warming; desertification intensified environmental pollution; ecological environmental imbalance; reduction of the forest-steppe, species extinction; soil erosion; water scarcity; the frequency and degree of natural disasters increased and so on. All these issues threaten human's survival environment hardly. In the need of human's survival and development, they pay much attention on the change of future global environment or climate and eager to predict the future trend of them. In order to predict future's global change better, it's important to have a deep understanding on the past climate and environmental conditions. With the constantly updated and improved of analytical techniques, new discoveries and theories emerge in large numbers which make the studying on paleoclimatic and paleoenvironmental evolution to be the most active areas of international geo-scientists academic atmosphere and have received wide attention all over the world. Since the1980s, the international academic community had carried out a series of global change researches such as:the International Geosphere-Biosphere Plan IGBP, International Human Dimensions Programme on Global Environmental Change IHDP, the World Climate Research Programme WCRP and the DIVERSTITAS, whose purpose is to reveale the global variation and forecast future global trends.
     The Holocene (from11500years ago to the present) is the second epoch of Quaternary which is the youngest geological epoch. The change of Holocene climate is closely related to the development of human society, all the prosperity, development, advances, prosperous and strong of human civilization are occurred in the Holocene. So it has an important guiding significance for people to treat the Holocene climate as the key research object to human studying of the climate change. Volcanic activity is one of the driving forces in global climate change; it has a profound impact on the human living environment and climate change in spite of the fact that it's a short but intense geological phenomenon. A Strong volcanic eruption could destroy the city, buried the village, and even lead to regional or global climate change. Therefore, it a key point to obtain a kind of environmental events archival material for studying which has a complete record of the Holocene climate change and volcanic eruption event. Peat is formed in the Quaternary, especially in the Holocene. Its formation and accumulation mainly is controlled by climate, then by the geology, geomorphology, hydrology and other factors. The process of peat formation contains a large number of evolution information of palaeoclimate and paleoenvironment; therefore, as an important research material to recover past global changes, peat plays an important role in the study of global changes.
     This article took the peat sediment in Northeast China as the research object, which contains palaeoclimatical information, volcanic eruptions and other environmental events. The article discussed the Holocene climate change in Hani peatland and compared it with other regions' diverse climate proxies, and proved the response relationship between the climate proxies of Hani peat and abrupt climate change events. Meanwhile, we extracted the volcanic ash from Hani and Jinchuan peat profiles, identified relevant volcanic eruption events, explored the relationship between volcanic eruptions and climate changes, compared the volcanic eruption events and information of climate evolution, interpreted and recovered the impact of climate change from Holocene volcanic eruptions, that is, the research of volcanic activity's climate effects provides some new ways and methods.The major research contents and conclusions of the paper are listed as follows:
     1.This paper firstly describes the meaning of peat and peatland:peat is organic sediment formed by the plant remains through biochemical action having different degree of decomposition, soft and full of water, the process is under the environment that full of water and anaerobic katolysis; the peatland means habitat of peat. Secondly, this paper analysis the distribution of the peatlands both home and abroad; investigate the relationship between peat and environment; summarize the progress of Holocene climate changes use peat as climate proxies, provide the evidence that peat not only can be used as the archives of climate events, but also provite favourable record through volcanic eruptions.
     2.In this paper, we chose Northeast China as survey region, select the dammed lake peatland in Hani regions and Maar lake type peatland in Jinchuan as the object of study, describe the study area in geology, geomorphology, hydrology, climate and other conditions detailedly, and summarize the methods and techniques ofresearch.
     3.In this paper, we establish14C chronology framework through Hani and Jinchuan peat profile:describe the collected peat profile detailedly based on its color and lithologic characters at the sampling lacation of Jinchuan and Hani peatland, and establish lithologic horizon's control points, get the Hani peat profile geochronologic framework through the AMS14C dating of peat plant cellulose in control points,the9meters long Hani peatland constantly deposited for11930±172years, the age of10meter peat column in Jinchuan peatland profile is6922aB.P.Using the CALIB4.3software regulate the peat's age, and calculate the relationship between the Hani peat profile correction age and the depth:y=16.78x-619.4, R2=0.992; and the relationship between the Jinchuan peat profile correction age and the depth:y=9.132x, R2=0.934.Use the interpolation method to calculate peat deposition rate of Hani peatland, maximum deposition rate is1.75cm/yr, while the minimum deposition rate is0.07cm/yr; the deposition rate of Jingchuan peat profile is0.663cm/yr as maximum value, the minimum is0.07cm/yr。
     4. Volcanic ash was identified and extracted from Hani and Jinchuan peat profile respectively, and the methods of extracting volcanic ash from sediments that predecessors had done were summarized. To extract volcanic ash, acidification method was selected in Hani peatland, while thin alkali method in Jinchuan peatland. Volcanic glasses were identified through a polarizing microscope, and the environmental scanning electron microscope was used to analysis the morphology of volcanic ash:under the scanning electron microscope, the surface of the volcanic ash is full of stomata structure with multi-edges and fragmental, overlaped and embedded tightly. The main elements of volcanic ash was measured by electron microprobe technique.resulting that volcanic ash is mainly rock debris, type of trachyte with low potassium content, which shows that volcano eruption is neutraland belongs to mid-term development in which process the early basic rock was carried out
     5.The absorbance and transmittance of Hani peatland were measured,together with813C and δ18O. Choose absorbance to characterize peat humification, the significance of813C and δ18O to ancient climate were discussed. Combining with the data previously analysised the significance of Hani peat humification to the ancient climate. High value of peat humification indicates warm climate..It goes opposite for the carbon isotopic variation trend with the peat humification.
     6.On the basis of time series curve of peat humification and the time series curve of δ13C and δ18O of peat cellulose, using multi-index method the Holocene climate evolution of Hani regions was rebuilt, which was mainly divided into six stages:12000aB.P~11200aB.P with the climate of dry and cold,l1500~9800aB.P with the climate of warm and wet,9800~9000aBwith the climate of sharply cooling and dry cleaning,9000~4800kaB.P with the climate of warm,and wet,4800~1800aB.P with the climate of fluctuations between dry and cold with warm and humid;1800~OaB.P with the climate of dry and cold.
     7. The response of Hani peatlandon8.2ka and4.2ka events of Holocene climate were studied; δ18O time series of Hani peat shows thatit appears a wide δ18O trough on the curve during the period of8.3ka B.P. Further study showed a series of decrease point of δ18O at the period of8.3ka B.P, indicating the existing of a small decline of the δ18O peak. Compare with the813C time series, during about8.1-8.3ka BP δ13C of Hani has three peaks and appears a peak value at8.3ka, which indicated a relatively dry climate. It shows a slightly undulating broad trough in the peat humification curve which shows a long term dry and cold climate during7.8ka-8.3ka period. Contrasted by multi-index in this study has further evidence for the response of the Hani peatland climate proxies to8.2ka climate abrupt events. The4.2ka event response shows that δ13C sequence change strongly and the value increased largely between4.2-4.8ka, which indicated the dry climate. The δ18O curve showed lifting combinations of repeated constantly changes between4.0-5.0ka, at the point of4.3ka the most strongly sharp decline performance that the climate is relatively cold; the values of Hani peat humification fluctuate abnormally during this period with two troughs, and continuously about300a.
     8.Comparing the climate changes during the three periods in Holocene of Hani peat in regions. Using different regional climate files to discuss the Holocene climate changes from different stages,12.8-11.2ka B.P, Younger Dryas (9.7-11.0ka B.P14C age);11.2-8.0ka B.P, the Early Holocene (7.0-9.7ka B.P14C age);8.0-3.0ka B.P, the Middle Holocene(2.8-7.0ka B.P14C age);3.0-0ka B.P.The Late Holocene(0-2.8ka B.P14C age) shows that as paleoclimate file, Hani peatland not only record climate changes in the region, but also respond to global climate changes,which provide evidence for the researches of global climate changes.
     9.The distribution characteristics of Holocene volcano in the world and China weresummarized, and the volcanoes condition of northeast China was introduced. This paper reviews the development of volcano climatology, whose method is statistical and numerical simulation. The relationships between volcanic eruption and climate change show in three aspects, which are collection and analysis of basic data, the radioactive effect of volcano aerosol and the climate effect of volcano activity. We have built the time sequence of volcanic eruptions such as (the time sequence of volcanic eruptions in East Asia, VEI>3; the time sequence of volcanoes in Northeast China) and we product the different time scales of the volcano eruption times and VEI cumulative curves. These curves show the trend of Holocene volcano eruption activity, representative of the period4000-4300a B.P.
     10.Combined with the14C dating data of peat cellulose, using the age-depth modeling, volcanic ash layers have been traced, the age of Jinchuan tephra layer can be calculated to2300-2315a B.P (AMS14C age) and the age of Hani tephra layer is8352±76a B.P.-9604±80a B.P.(AMS14C age). We study the geochemical composition of the tephra, speculated that the tephra of Jinchuan peatland came from the Long-gang volcano group Jinlongdingzi volcanic eruption andthe tephra of Hani peatland came from Changbaishan Tianchi volcanic eruption. The tephra in peat layers deposited represents the dry-cold climate condition, which shows that the volcano eruption event response to climate change.Comparing a series of East Asia volcanic eruption events in δ18O and δ13C and the humification degree curves of peatland from Jinchuan and Hani peatland, we found thatthe neighboring or large scale volcanic eruptions precisely responded to the minimum temperature and humidity. The results show that peatland can conserve Holocene widely volcanic eruption events, and these eruptions can cause the regional climate change, temperature and humidity decrease. Therefore, it is a feasible method to extract tephra and recognize volcanic eruption from peat to analyze the relationship between the climate changes and volcanic eruptions.
引文
[1]叶笃正,符淙斌.全球变化的主要科学问题[J].大气科学.1994,18(4):498-512.
    [2]Rosswall T. The International Geosphere-Biosphere Programme:A Study of Global Change(IGBP)[J].Environmental Geology.1992,20(2):77-78.
    [3]Chambers F M, Charman D J. Holocene environmental change:contributions from the peatland archive[J]. The Holocene.2004,14(1):1-6.
    [4]Blackford J J, Chambers F M. Proxy climate record for the last 1000 years from Irish blanket peat and a possible link to solar variability[J]. Earth and Planetary Science Letters.1995,133(1): 145-150.
    [5]Chambers F M, Booth R K, De Vleeschouwer F, et al. Development and refinement of proxy-climate indicators from peats[J]. Quaternary International.2012,268:21-33.
    [6]柴岫.泥炭地学[M].地质出版社,1990.
    [7]赵红艳,王升忠,白燕,等.近10年来我国泥炭地学的研究进展[J].地球科学进展.2002,17(6):849-854.
    [8]Blytt A. Die Theorie der wechselnden kontinentalen und insularen Klimate[M].1881.
    [9]Sernander R. On the evidences of postglacial changes of climate furnished by the peat-mosses of Northern Europe[J]. GFF.1908,30(7):465-473.
    [10]Granlund E. De svenska hogmossarnas geologi:deras bildningsbetingelser, utvecklinghistoria och utbredning jamte sambandet mellan hogmossebildning och forsumpning[D]. Stockholm, 1932.
    [11]Overbeck F. Botanisch-geologische Moorkunde unter besonderer Berucksichtigung der Moore Nordwestdeutschlands als Quellen zur Vegetations-, Klima-und Siedlungsgeschichte[M]. K. Wachholtz,1975.
    [12]Hughes P, Barber K E. Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England[J]. The Holocene.2004,14(1):65-77.
    [13]Swindles G T, Plunkett G, Roe H M. A delayed climatic response to solar forcing at 2800 cal. BP:multiproxy evidence from three Irish peatlands[J]. The Holocene.2007,17(2):177-182.
    [14]Mauquoy D, Yeloff D, Van Geel B, et al. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene[J]. Journal of Quaternary Science.2008,23(8):745-763.
    [15]Mauquoy D, van Geel B, Blaauw M, et al. Evidence from northwest European bogs shows 'Little Ice Age'climatic changes driven by variations in solar activity[J]. The Holocene.2002, 12(1):1-6.
    [16]Sannel A B K, Kuhry P. Holocene peat growth and decay dynamics in sub-arctic peat plateaus, west-central Canada[J]. Boreas.2008,38(1):13-24.
    [17]Heijmans M M P D, Mauquoy D, Geel B, et al. Long-term effects of climate change on vegetation and carbon dynamics in peat bogs[J]. Journal of Vegetation Science.2008,19(3): 307-320.
    [18]Chambers F M, Mauquoy D, Gent A, et al. Palaeoecology of degraded blanket mire in South Wales:data to inform conservation managemen[J]. Biological Conservation.2007,137(2): 197-209.
    [19]Chambers F M, Mauquoy D, Todd P A. Recent rise to dominance of Molinia caerulea in environmentally sensitive areas:new perspectives from palaeoecological data[J]. Journal of Applied Ecology.2001,36(5):719-733.
    [20]Chambers F M, Mauquoy D, Cloutman E W, et al. Recent vegetation history of Drygarn Fawr (Elenydd SSSI), Cambrian Mountains, Wales:implications for conservation management of degraded blanket mires[J]. Biodiversity and Conservation.2007,16(10):2821-2846.
    [21]Kilian M R, Van Geel B, Van Der Plicht J.14C AMS wiggle matching of raised bog deposits and models of peat accumulation[J]. Quaternary Science Reviews.2000,19(10):1011-1033.
    [22]Wang H, Hong Y, Zhu Y, et al. Humification degrees of peat in Qinghai-Xizang Plateau and palaeoclimate change[J]. Chinese Science Bulletin.2004,49(5):514-519.
    [23]Aaby B, Tauber H. Rates of peat formation in relation to degree of humification and local environment, as shown by studies of a raised bog in Deninark[J]. Boreas.1975,4(1):1-17.
    [24]Chambers F M, Barber K. E, Maddy D, et al. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland[J]. The Holocene.1997,7(4):391-399.
    [25]Charman D J, Hendon D, Woodland W A. The identification of testate amoebae (Protozoa: Rhizopoda) in peats[M]. Quaternary Research Association,2000.
    [26]Roos-Barraclough F, Van Der Knaap W O, Van Leeuwen J, et al. A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile[J]. The Holocene.2004,14(1): 7-19.
    [27]Borgmark A. Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis[J]. The Holocene.2005,15(3):387-395.
    [28]Mitchell E A D, Charman D J, Warner B G. Testate amoebae analysis in ecological and paleoecological studies of wetlands:past, present and future[J]. Biodiversity and Conservation. 2008,17(9):2115-2137.
    [29]Markel E R, Booth R K, Qin Y. Testate amoebae and 513C of Sphagnum as surface-moisture proxies in Alaskan peatlands[J]. The Holocene.2010,20(3):463-475.
    [30]Swindles G T, Charman D J, Roe H M, et al. Environmental controls on peatland testate amoebae (Protozoa:Rhizopoda) in the North of Ireland:Implications for Holocene palaeoclimate studies[J]. Journal of Paleolimnology.2009,42(1):123-140.
    [31]Payne R J, Charman D J, Matthews S, et al. Testate amoebae as palaeohydrological proxies in siirmene agacbasi yaylasi peatland (northeast Turkey)[J]. Wetlands.2008,28(2):311-323.
    [32]Lamentowicz M, Mitchell E A D. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology[J]. Microbial Ecology.2005,50(1):48-63.
    [33]Mitchell E, Buttler A J, Warner B G, et al. Ecology of testate amoebae (Protozoa:Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France[J]. Ecoscience.1999,6(4): 565-576.
    [34]Woodland W A, Charman D J, Sims P C. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae[J]. The Holocene.1998,8(3):261-273.
    [35]Booth R K. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America[J]. Journal of Quaternary Science.2008, 23(1):43-57.
    [36]Charman D J, Blundell A. ACCROTELM Members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands[J]. Journal of Quaternary Science.2007,22(3):209-221.
    [37]Schoning K, Charman D J, Wastegoard S. Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data[J]. The Holocene.2005,15(1):111-118.
    [38]Charman D J, Blundell A. ACCROTELM Members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands[J]. Journal of Quaternary Science.2009,22(3):209-221.
    [39]Yeloff D, Mauquoy D. The influence of vegetation composition on peat humification: implications for palaeoclimatic studies[J]. Boreas.2006,35(4):662-673.
    [40]Rajagopalan G, Ramesh R, Sukumar R. Climatic implications of δ13 C and δ18 O ratios from C3 and C4 plants growing in a tropical montane habitat in southern India[J]. Journal of Biosciences. 1999,24(4):491-498.
    [41]Dupont L M, Brenninkmeijer C. Palaeobotanic and isotopic analysis of late Subboreal and early Subatlantic peat from Engbertsdijksveen Ⅶ, The Netherlands[J]. Review of palaeobotany and palynology.1984,41(3):241-271.
    [42]Sukumar R, Ramesh R, Pant R K, et al. A δ13C record of late Quaternary climate change from tropical peats in southern India[J]. Nature.1993,364(6439):703-706.
    [43]Nichols J E, Walcott M, Bradley R, et al. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland[J]. Quaternary Research.2009,72(3):443-451.
    [44]Wang H, Hong Y T, Lin Q. Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau. [J]. Palaeogeography, Palaeoclimatology, Palaeoecology.2010,286(3-4):171-177.
    [45]于学峰,周卫健,刘晓清.青臧高原东部全新世泥炭灰分的粒度特征及其古气候意义[J].沉积学报.2006,24(6):864-869.
    [46]尹茜,朱诚,马春梅.天目山千亩田泥炭腐殖化度记录的中全新世气候变化[J].海洋地质与第四纪地质.2006,26(6):117-122.
    [47]马巧红,钟巍,薛积彬,等.晚更新世晚期以来雷州岛北部泥炭腐殖化度的古气候意义[J].热带地理.2009,28(6):498-503.
    [48]马春梅,朱诚,郑朝贵,等.晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究[J].科学通报.2009,53(S1):26-37.
    [49]Zheng Y, Zhou W, Meyers P A, et al. Lipid biomarkers in the Zoige-Hongyuan peat deposit: Indicators of Holocene climate changes in West China[J]. Organic Geochemistry.2007,38(11): 1927-1940.
    [50]郑艳红,周卫健,谢树成.红原泥炭正构烯烃的分布与古气候意义[J].海洋地质与第四纪地质.2009,28(5):123-128.
    [51]李辉,王升忠,冷雪天.泥炭沼泽有机地球化学研究进展[J].矿物岩石地球化学通报.2004,23(2):172-178.
    [52]Hong Y T, Jiang H B, Liu T S, et al. Response of climate to solar forcing recorded in a 6000-yearb δ18O time-series of Chinese peat cellulose[J]. The Holocene.2000,10(1):1-7.
    [53]林庆华,洪业汤,朱咏煊,等.若尔盖高原泥炭δ13c序列与10000年的气候记录[J].第六届全国环境地球化学学术讨论会论文摘要汇编.2002.
    [54]郑朝贵,朱诚,高华中,等.南京江北地区晚更新世末期以来泥炭层813C记录的古气候变化[J].地理科学.2006,26(3):328-334.
    [55]杨桂芳,黄俊华,谢树成.天目山泥炭有机碳同位素特征及其古环境意义[J].地球学报.2008,29(6):778-782.
    [56]朱芸,陈晔,赵志军.神农架大九湖泥炭藓泥炭α-纤维素δ13C记录的1000-4000a BP间环境变化[J].科学通报.2009,54(20):3108-3116.
    [57]Xie S, Nott C J, Avsejs L A. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J]. Organic Geochemistry.2000,31(10):1053-1057.
    [58]谢树成,易轶,梁斌,等.泥炭分子化石单体碳氢同位素的古气候意义[J].矿物岩石地球化学通报.2003,22(1):8-13.
    [59]Hong Y T, Wang Z G, Jiang H B, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose[J]. Earth and Planetary Science Letters.2001,185(1):111-119.
    [60]Hong B, Liu C Q, Lin Q H, et al. Temperature evolution from the δ18 O record of Hani peat, Northeast China, in the last 14000 years[J]. Science in China Series D:Earth Sciences.2009, 52(7):952-964.
    [61]洪冰,刘丛强,林庆华,等.哈尼泥炭δ180记录的过去14000年温度演变[J].中国科学:D辑.2009(5):626-637.
    [62]Blackford J. Palaeoclimatic records from peat bogs[J]. Trends in ecology & evolution.2000, 15(5):193-198.
    [63]王琫瑜,宋长青,程全国,等.利用花粉-气候响应面恢复察素齐泥炭剖面全新世古气候的尝试[J].植物学报.1998,40(11).
    [64]夏玉梅,汪佩芳.密山杨木3000多年来气候变化的泥炭记录[J].地理研究.2000,19(001):53-59.
    [65]张新荣.东北地区晚全新世泥炭沉积的植硅体气候指示意义研究[D].吉林大学博士学位论文,2006.
    [66]张新荣,胡克,方石,等.东北地区泥炭表层沉积中植硅体分布特征[J].吉林大学学报:地球科学版.2007,37(5):895-900.
    [67]张新荣,胡克,方石,等.东北泥炭表土沉积植硅体-气候因子转换函数建立及应用[J].沉 积学报.2008,26(4):676-682.
    [68]张新荣,胡克,王东坡.东北地区泥炭表土中植硅体的形态特征[J].地理科学.2007,27(6):831-836.
    [69]夏明,张承蕙,马志邦.碳质样品铀系年龄研究——云南腾冲玉壁泥炭的结果[J].1987,增刊(24):1877-1880.
    [70]周卫建,卢雪峰,武振坤,等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年[J].科学通报.2001,46(12):1040-1044.
    [71]于学峰,周卫建.全新世泥炭古气候记录研究进展[J].海洋地质与第四纪地质.2004,24(4):121-126.
    [72]李宜垠,魏芳,周力平.泥炭样品的AMS14 C年龄测定:全样,植物残体和孢粉浓缩物[J].第四纪研究.2007,27(4):499-506.
    [73]孙广友.青藏东北部若尔盖高原全新世泥炭沉积年代学研究[J].沉积学报.2001,19(2):177-181.
    [74]Hong Y T, Hong B, Lin Q.H, Yasuyuki Shibata, Masashi Hirota, Y.X. Zhu,X.T. Leng, Y. Wang, H. Wang, L. Yi. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Nino. Earth and Planetary Science Letters, 2005,231 (3-4):337-346.
    [75]毛绪美,洪业汤,朱咏煊,等.金川泥炭沉积中火山喷发物的发现及其意义[J].矿物学报.2002,22(1):9-14.
    [76]Oldfield F, Richardson N, Appleby P G. Radiometric dating (210Pb,137Cs,241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance[J]. The Holocene. 1995,5(2):141-148.
    [77]Turetsky M R, Manning S W, Wieder R K. Dating recent peat deposits[J]. Wetlands.2004, 24(2):324-356.
    [78]鲍锟山,赵红梅,于晓菲,等.大气环境变化的泥炭地质档案[J].地质论评.2011,57(2):234-242.
    [79]洪业汤,洪冰,林庆华,等.过去5000年西太平洋副热带高压活动的泥炭纤维素碳同位素记录[J].第四纪研究.2003,23(5):485-492.
    [80]莫晓勇.云南宝秀盆地27kaB.P-15kaB.P间泥炭沉积分子同位素地球化学与古气候重建[D].中国科学院研究生院(广州地球化学研究所),2005.
    [81]王琫瑜,孙湘君.内蒙古察素齐泥炭剖面全新世古环境变迁的初步研究[J].科学通报.1997,42(5):514-518.
    [82]谢远云,李长安,王秋良,等.江汉平原9.0ka BP以来的气候演化:来自江陵剖面沉积物记录[J].地理科学.2006,26(2):199-204.
    [83]黄润,朱诚,工升堂.天堂寨泥炭地层的磁化率,Rb/Sr值及其反映的古气候意义[J].地理科学.2007,27(3):385-389.
    [84]钟巍,薛积彬,甄治国,等.雷州半岛北部晚更新世晚期气候环境变化的泥炭沉积记录[J].海洋地质与第四纪地质.2008,27(6):97-104.
    [85]方晶,胡克.辽东半岛大孤山一带沟谷埋藏泥炭的硅藻组合以及古环境和全新世最高海平面[J].第四纪研究.2007,27(5):797-805.
    [86]张新荣,胡克,刘莉莉.吉林敦化地区全新世泥炭沉积中植硅体分析[J].微体古生物学报.2005,22(2):202-06.
    [87]赵红艳,郄瑞卿,白燕,等.敦化大桥泥炭土有机质及其组分研究[J].吉林农业大学学报.2002,24(3):65-67.
    [88]萧家仪,吕海波,周卫健,等.末次盛冰期以来江西大湖孢粉植被与环境演变[J].中国科学:D辑.2007,37(6):789-797.
    [89]于学峰,周卫建,史江峰.度量泥炭腐殖化度的一种简便方法:泥炭灰度[J].海洋地质与第四纪地质.2005,25(1):133-136.
    [90]王志国.吉林金川泥炭纤维素稳定碳同位素组成序列与东北季风区五千多年来的环境变迁[J].矿物岩石地球化学通报.1998,17(1):52-54.
    [91]Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling[J]. Paleoceanography.1998,13(3):215-224.
    [92]隋淑珍,刘嘉麒,郭正府,等.火山灰的提取及测试技术[J].地学前缘.2003,10(1):111-116.
    [93]阪口丰,刘哲明,华国学.泥炭地地学:对环境变化的探讨[M].科学出版社,1983.
    [94]尹善春.泥炭沼泽的演化及其机制[J].煤田地质与勘探.1995,23(006):6-11.
    [95]陈淑云.中国泥炭[M].东北师范大学出版社,1998.
    [96]聂宝符.南沙群岛及其邻近礁区造礁珊瑚与环境变化的关系[M].科学出版社,1997.
    [97]钱方.中国第四纪冰川与环境变化[J].中国地质科学院“九五”科技成果汇编.2001.
    [98]王开发,徐馨.第四纪孢粉学[M].贵州人民出版社,1988.
    [99]吴祥定.树木年轮与气候变化[M].气象出版社,1990.
    [100]张武元,胡春元.地学概论[Z].中国林业出版社,2000.
    [101]Duplessy J, Labeyrie L, Arnold M, et al. Changes in surface salinity of the North Atlantic Ocean during the last deglaciation[J]. Nature.1992,358:485-488.
    [102]Roberts N. The Holocene:an environmental history[M]. B. Blackwell,1989.
    [103]Street F A, Grove A T. Global maps of lake-level fluctuations since 30,000 yr BP[J]. Quaternary research.1979,12(1):83-118.
    [104]Wang P, Wang B, T K. Global monsoon in observations, simulations and geological records.[J]. PAGES News.2009,11(3):313-321.
    [105]Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science.2001,294(5549):2130-2136.
    [106]Mayewski P A, Rohling E E, Curt Stager J, et al. Holocene climate variability[J]. Quaternary Research.2004,62(3):243-255.
    [107]王绍武.全新世气候变化[M].气象出版社,2011.
    [108]徐海.中国全新世气候变化研究进展[J].地质地球化学.2001,29(2):9-16.
    [109]武成智.长白山火山灾害防御与对策[J].城市与减灾.2009(006):9-12.
    [110]洪汉净,于泳,郑秀珍,等.全球火山活动分布特征[J].地学前缘.2003,1:11-16.
    [111]刘嘉麒.中国火山[M].科学出版社,1999.
    [112]樊祺诚,隋建立.五大连池,天池和腾冲火山岩sr,Nd同位素地球化学特征与岩浆演化[J].岩石矿物学杂志.2001,20(3):233-238.
    [113]樊祺诚,孙谦,李霓.镜泊湖全新世火山喷发历史[J].中国矿物岩石地球化学学会第九届 学术年会论文摘要集.2003.
    [114]李川川.长山天池火山的喷发历史[J].科技信息(学术研究).2008,6:115-116.
    [115]樊祺诚,隋建立,刘若新,等.吉林龙岗第四纪火山活动分期[J].岩石学报.2002,18(4).
    [116]么枕生.气候学原理[M].科学出版社,1959.
    [117]Lamb H H. Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences.1970:425-533.
    [118]李靖,张德二.火山活动对气候的影响[J].气象科技.2005,33(3):193-198.
    [119]李晓东,王绍武.火山活动对气候影响的数值模拟研究[J].应用气象学报.1994,5(1):90-97.
    [120]Newhall C G, Self S. The volcanic explosivity index/VEI/-An estimate of explosive magnitude for historical volcanism[J]. Journal of Geophysical Research.1982,87(C2):1231-1238.
    [121]徐群.1980年夏季我国天气气候反常和St, Helens火山爆发的影响[J].气象学报.1986,44(4):426-431.
    [122]Hansen J, Lacis A, Ruedy R, et al. Potential climate impact of Mount Pinatubo eruption[J]. Geophysical Research Letters.1992,19(2):215-218.
    [123]Crowley T J, Quinn T M, Taylor F W, et al. Evidence for a volcanic cooling signal in a 335-year coral record from New Caledonia[J]. Paleoceanography.1997,12(5):633.
    [124]Robock A. The dust cloud of the century[J]. Nature.1983,301:373.
    [125]张先恭,张富国.火山活动与我国旱涝,冷暖的关系[J].气象学报.1985,13(2):196-1207.
    [126]Adams J B, Mann M E, Ammann C M. Proxy evidence for an E1 Nino-like response to volcanic forcing[J]. Nature.2003,426(6964):274-278.
    [127]乔石英.长白山西麓哈尼泥炭沼泽初探[J].地理科学.1993,13(003):279-287.
    [128]刘嘉麒,王文远,郭正府.中国玛珥湖的时空分布与地质特征[J].第四纪研究.2000,20(1):78-86.
    [129]Cavani L, Ciavatta C, Gessa C. Identification of organic matter from peat, leonardite and lignite fertilisers using humification parameters and electrofocusing[J]. Bioresource technology.2003, 86(1):45-52.
    [130]Aaby B. Cyclic climatic variations in climate over the past 5,500 yr reflected in raised bogs[J]. Nature.1976,263:281-284.
    [131]Martin-Neto L, Rosell R, Sposito G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence[J]. Geoderma.1998, 81(3-4):305-311.
    [132]Overbeck F. Botanisch-geologische moorkunde:unter besonderer berucksichtigung der moore nordwestdeutschlands als quellen Zur Vegetations-, klima-und siedlungsgeschichte[M]. Karl Wachholtz Verlag,1975.
    [133]Martin-Neto L, Rosell R, Sposito G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence[J]. Geoderma.1998, 81(3-4):305-311.
    [134]Pilcher J R, Hall V A. Towards a tephrochronology for the Holocene of the north of Ireland[J]. The Holocene.1992,2(3):255-259.
    [135]Persson C. Tephrochronological investigation of peat deposits in Scandinavia and on the Faroe Islands[M]. Sveriges reproduktions AB (distr.),1971.
    [136]Hall V A, Mcvicker S J, Pilcher J R. Tephra-linked landscape history around 2310 BC of some sites in counties Antrim and Down[C]. JSTOR,1994.
    [137]Sternberg L O, Deniro M J, Ting I P. Carbon, hydrogen, and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes[J]. Plant physiology.1984,74(1): 104-107.
    [138]Lin G, Ehleringer J R. Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants[J]. Plant Physiology.1997,114(1):391-394.
    [139]Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12,000 years and paleo-El Nino[J]. EARTH AND PLANETARY SCIENCE LETTERS.2005,231(3-4):337-346.
    [140]赵红艳,冷雪天,王升忠.长白山地泥炭分布,沉积速率与全新世气候变化[J].山地学报.2002,20(5):513-518.
    [141]王华,洪业汤,朱咏煊,等.红原泥炭腐殖化度记录的全新世气候变化[J].地质地球化学.2003,31(2):51-56.
    [142]蔡颖,钟巍,薛积彬,等.干旱区湖泊沉积物腐殖化度的古气候指示意义——以新疆巴里坤湖为例[J].湖泊科学.2009,21(1):69-76.
    [143]胡凡根,李志忠,姜修洋,等.福建屏南天湖山泥炭腐殖化度记录的早全新世以来气候变化[J].亚热带资源与环境学报.2011,6(3):31-39.
    [144]张辉,李志忠,姜修洋,等.福建北部天湖山全新世泥炭古气候记录的初步研究[J].宁夏大学学报:自然科学版.2012,33(1):120-124.
    [145]王华.泥炭的腐殖化度与全新世气候环境[D].中国科学院研究生院博士学位论文,2003.
    [146]Seki O, Meyers, A P, et al. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr[J]. Organic Geochemistry.2009,40(6): 671-677.
    [147]Zhou W, Zheng Y, Meyers P A, et al. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China[J]. Earth and Planetary Science Letters.2010,294(1):37-46.
    [148]U H. A sub-division of the late Pleistocene period on a synchronous basis, intended for global and universal usage[J]. Paleogeography, Paleoclimatology, Paleoecology.1970,7(4):279-296.
    [149]施雅风,孔昭宸,王苏民,等.中国全新世大暖期的气候波动与重要事件[J].中国科学:B辑.1992,12(1):300-301.
    [150]洪业汤,刘东生,姜洪波.太阳辐射驱动气候变化的泥炭氧同位素证[J].中国科学D辑.1999,29(6):527-531.
    [151]顾兆炎,刘荣谟.12000年来青藏高原夏季风变化—色林错沉积物地球化学的证据[J].科学通报.1993,38(001):61-64.
    [152]Gasse F, Arnold M, Fontes J C, et al. A 13,000-year climate record from western Tibet[J]. Nature.1991,353(6346):742-745.
    [153]张彭熹,张保珍,钱桂敏.青海湖全新世以来古环境参数的研究[J].第四纪研究.1994(3):225-238.
    [154]姚檀栋.古里雅冰芯氧同位素地层学[J].第四纪研究.2000,20(2):165-170.
    [155]覃嘉铭,袁道先,程海,等.贵州都匀七星洞石笋剖面晚更新世高分辨率的气候地层学[J].第四纪研究.2004,24(3):318-324.
    [156]张美良,袁道先,林玉石,等.贵州荔波董哥洞3号石笋的同位素年龄及古气候信息[J].沉积学报.2001,19(3):425-432.
    [157]张美良,朱晓燕,程海,等.贵州荔波1200年来石笋高分辨率的古气候环境记录[J].地球学报.2009,30(6):831-840.
    [158]沈吉,杨丽原,羊向东,等.全新世以来云南洱海流域气候变化与人类活动的湖泊沉积记录[J].中国科学:D辑.2004,34(002):130-138.
    [159]周卫建,董光荣.新仙女木期沙漠/黄土过渡带高分辨率泥炭记录一东亚...[J].中国科学:D辑.1996,26(002):118-124.
    [160]陈发虎,王建民.末次间冰期陇西黄土记录与气候不稳定性问题的初步研究①Ξ[J].兰州大学学报(自然科学版).1996,32(4):163-169.
    [161]黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J].现代地质.2007,21(4):624-631.
    [162]袁绍敏,孙湘君.据花粉分析推论东北长白山西麓一万年来植被与环境[J].植物学报.1990,32(7):558-567.
    [163]施雅风,姚檀栋,杨保.近2000a古里雅冰芯10a尺度的气候变化及其与中国东部文献记录的比较[J].中国科学(D辑).1999,29(1):79-86.
    [164]樊祺诚,隋建立.五大连池,天池和腾冲火山岩Sr, Nd同位素地球化学特征与岩浆演化[J].岩石矿物学杂志.2001,20(3):233-238.
    [165]樊祺诚,隋建立,王团华,等.长白山天池火山粗面玄武岩的喷发历史与演化[J].岩石学报.2006,22(6):1449-1457.
    [166]张招崇,李树才.黑龙江镜泊湖地区全新世火山岩^14C测年及其源区特点探讨[J].地质学报.2000,74(3):279-286.
    [167]隋建立,樊祺诚,曹杰.龙岗火山喷发特征与火山岩岩石化学初步研究[J].地质论评.1999,45:319-324.
    [168]于革,刘健.全球12000 a BP以来火山爆发记录及对气候变化影响的评估[J].湖泊科学.2003,15(1):11-20.
    [169]Mao X, Cheng S, Hong Y, et al. The influence of volcanism on paleoclimate in the northeast of China:Insights from Jinchuan peat, Jilin Province, China[J]. Chinese Journal of Geochemistry. 2009,28(2):212-219.