世界主要分布区番石榴果实蝇种群遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番石榴果实蝇Bactrocera (Bactrocera) correcta (Bezzi)是为害番石榴、柑橘类、芒果和辣椒等多种热带、亚热带瓜果的重要害虫,分布在亚洲地区。随着国际贸易及人员往来的发展,番石榴果实蝇容易随寄主水果作远距离传播,对进口国的农业生产构成极大的威胁。本研究采用线粒体COI基因序列分析技术及微卫星DNA标记技术相结合的方法,研究主要分布区内番石榴果实蝇的种群遗传结构,揭示番石榴果实蝇的扩散路线、趋势及中国云南地区番石榴果实蝇的入侵来源,为植物检疫及生物入侵防控部门提供决策支持。主要结论如下:
     1)本研究以线粒体COl基因序列为分子标记,对来自中国(云南)、泰国、老挝、缅甸、越南、斯里兰卡及印度7个国家20个地理种群的793头番石榴果实蝇样品进行了种群遗传结构研究。结果显示:主要分布区内番石榴果实蝇种群存在显著的遗传结构,种群间不存在距离隔离现象,且单倍型多样性随着采样位点经度的增加而减小,表明主要分布区内番石榴果实蝇很有可能具有由西向东的扩散趋势。该虫在主要分布区内可能有两条扩散路线:一是在季风的作用下从南亚地区向东扩散到云南西部地区并在该地区定殖、积累形成一定种群数量后,逐渐传入缅甸曼德勒地区,形成南亚→中国云南西部→缅甸曼德勒的扩散路线;二是从泰国及老挝中部地区,通过自然传播或人为传播途径,传入泰国北部、老挝北部及云南南部,然后再通过云南南部的景洪向北扩散到云南内陆及云南中部地区,再由该地区扩散到云南东部及越南地区,形成泰国及老挝中部→泰国北部、老挝北部及云南南部→云南中部→云南东部及越南的扩散路线。
     2)本研究选用了磁珠富集法来首次开发番石榴果实蝇微卫星引物,创建了其微卫星(AC)15文库,结果发现磁珠富集率高达52.31%。利用TP-M13-SSR技术对74头自然种群样品进行多态性检测后发现,所涉及的12个位点中共有117个等位基因;各位点的总等位基因数范围在6-14间,多态信息含量在0.41-0.79间。在所涉及的12个位点中有10个位点处于哈迪温伯格平衡,无偏离连锁不平衡现象,表明所开发的12个SSR位点具有较高的多态性,能够作为可靠的分子遗传标记。
     3)本研究利用以上自主开发的12个SSR位点,研究了来自以上5个国家(除印度和斯里兰卡)18个地理种群的781头番石榴果实蝇样品的种群遗传结构。结果显示:番石榴果实蝇种群中存在显著的遗传结构,不存在距离隔离现象,且所分析的18个种群间迁移率普遍较高;云南西部德宏州的芒市及南部西双版纳州的景洪地区很有可能是番石榴果实蝇在中国最早的入侵地区,云南东部及越南地区番石榴果实蝇种群发生时间最晚,云南中部很有可能是该地区番石榴果实蝇的主要来源。
The guava fruit fly, Bactrocera (Bactrocera) correcta (Bezzi)(Diptera:Tephritidae) is one of the most important pests of many kinds of tropical and subtropical fruits and vegetables, such as guavas, citruses mangoes and chili peppers. It is mainly distributed in Asia. With the growth of international trade and human activities, this fly can easily follow the transport of its host plants and perform a long-distance dispersal, posed a threat to agricultural production of importing countries. With the aim of investigating population genetic structure, invasion routes and expansion trend of B. correcta in the main distribution areas, and to reveal the sources of invasion of this fly in Yunnan province of China, We have analysed the combinative data of mitochondrial COI sequences and microsatellite markers, and got the following conclusions:
     1) We used mtDNA COI sequences as genetic markers to analyse population genetic structure of793B. correcta individuals colleted from20sites in7countries, including China (Yunnan), Thailand, Laos, Myanmar, Vietnam, Sri lanka and India. Our study suggests that the overall genetic structure of this fly in main distribution areas was significant. There has no sign of Isolation-by-distance. Haplotype diversity decreased with the increasing of longitude of collection sites, it showed that this fly has expanded from west to east with a limited geographical scale. Two main invasion routes of B. correcta are inferred:(1) As the results of monsoon in Bengal, this fly performed eastward dispersal from South Asia to Western Yunnan of China, then established its population in that area and gradually spread to Mandalay of Myanmar, that formed the spread route as South Asia→Western Yunnan→Mandalay (Myanmar);(2) As the results of natural dispersal or human activities, this fly performed northward dispersal from Central Thailand and Laos regions to Southern Yunnan, Northern Thailand and Laos regions, and then introduced into Yunnan province through Jinghong region in Southern Yunnan. Finally, this fly gradually northward expansed to Central Yunnan and eastward expansed to Eastern Yunnan and Vietnam, respectively. That formed the spread route as Central Thailand and Laos→Northern Thailand, Northern Laos and Southern Yunnan→Central Yunnan→Eastern Yunnan and Vietnam.
     2) We firstly used a biotin-streptavidin capture method to isolate12microsatellite markers of B. correcta from a (AC)15microsatellite library. The enrichment efficiency was52.31%. The polymorphism of these microsatellite loci was tested in74individuals collected from two natural populations using TP-M13-SSR technique. Based on our research,117allele were found in all12loci, the number of allele per locus varied from6-14, the polymorphic information contents ranged from0.41-0.79.10loci were conformed to HWE. No significant departures from linkage disequilibrium were found between each pairs of loci. These12microsatellite markers demonstrated high levels of polymorphism. It can be used as reliable markers for the studies of population genetic structure in this fly.
     3) We used all above microsatellite loci to analyse population genetic structure of781B. corrceta individuals collected from above18sites in5countries (except for Sri Lanka and India). Our study suggests that the overall genetic structure of this fly in18sites was significant. There has no sign of Isolation-by-distance. The migration rates between all18populations were generally high. Based on our study, B. correcta might be invaded into Yunnan province through Mangshi in Western Yunnan and Jinghong in Southern Yunnan. B. correcta populations in Eastern Yunnan and Vietnam region occurred lately, the populations in Central Yunnan might be the sources of invasion in this region.
引文
1. Aketarawong N, Bonizzoni M, Malacrida A R, et al. Seventeen novel microsatellite markers from an enriched library of the pest species Bactrocera dorsalis sensu stricto. Molecular Ecology Notes,2006,6:1138-1140
    2. Aketarawong N, Bonizzoni M, Thanaphum S, et al. Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Molecular Ecology,2007,16:3522-3532
    3. Alaoui A, Imoulan A, Alaoui-Talibi Z E. Genetic structure of Mediterranean fruit fly (Ceratitis capitata) populations from Moroccan endemic forest of Argania spinosa. International Journal of Agriculture and Biology,2010,12(2):291-298
    4. Alberti A C, Confalonieri V A, Zandomeni R O, et al. Phylogeographic studies on natural populations of the South American fruit fly, Anastrepha fraterculus (Diptera:Tephritidae). Genetica,2008,132:1-8
    5. Allendorf F W.Isolation, gene flow and genetic differentiation among populations. In:Genetics and Conservation. Ed. By Schonewald-Cox C, Chambers S, MacBryde B, Thomas L, Benjamin/Cummings, Menlo Park, California,1983,51-65
    6. Allwood A J, Chinajariyawong A, Kritsaneepaiboon S, et al. Host plant records for fruit flies (Dipetra:Tephritidae) in Southeast Asia. The Raffles Bulletin of Zoology,1999 (supplement 7): 1-92
    7. Alvare-Buglle E R. Population genetic structure of Coorpia obtusifolia a tropical pioneer tree species. Evolution,1993,48(2):437-453
    8. Augustinos A A, Mamuris Z, Stratikopoulos E E, et al. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica,2005, 125:231-241
    9. Augustinos A A, Stratikopoulos E E, Zacharopoulou A, et al. Polymorphic microsatellite markers in the olive fly, Bactrocera oleae. Molecular Ecology Notes,2002,2:278-280
    10. Baliraine F N, Bonizzoni M, Osir E O, et al. Comparative analysis of microsatellite loci in four fruit fly species of the genus Ceratitis (Diptera:Tephritidae). Bulletin of Entomological Research, 2003,93(1):1-10
    11. Baliraine F N, Bonizzoni M, Guglielmino C R, et al. Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera:Tephritidae). Molecular Ecology,2004,13(3):683-695
    12. Bandelt H J, Forster P, Rohl A. Median-Joining networks for inferring intraspecific phylogenies. Molecular Biology Evolution,1999,191:37-48
    13. Barr N B. Pathway analysis of Ceratitis capitata (Diptera:Tephritidae) using mitochondrial DNA. Journal of Economic Entomology,2009,102(1):401-411
    14. Barr N B, McPheron B A. Molecular phylogenetics of the genus Ceratitis (Diptera:Tephritidae). Molecular Phylogenetics and Evolution,2006,38(1):216-230
    15. Baruffi L, Damiani G, Guglielmino C R, et al. Polymorpism within and between populations of Ceratitis capitata:comparison between RAPD and multilocus enzyme electrophoresis data. Heredity,1995,74:425-437
    16. Beerli P. Comparison of bayesian and maximum likelihood inference of population genetics parameters. Bioinformatics,2006,3:341-345
    17. Bell C J, Ecker J R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics,1994,19:137-144
    18. Berlocher S H. An electrophoretic key for distinguishing species of the genus Rhagoletis (Dipetra:Tephritidae) as larvae, pupae or adults. Annals of the Entomological Society of America,1980,73:131-137
    19. Beroiz B, Ortego F, Callejas C, et al. Genetic structure of Spanish populations of Ceratitis capitata revealed by RAPD and ISSR markers:implications for resistance management. Spanish Journal of Agricultural Research,2012,10(3):815-825
    20. Bezzi M. On the fruit-flies of the Genus Dacus Occuring in India, Burma and Ceylon. Bulletin of Entomological Research,1916,7:99-121
    21. Bonizonni M, Malacrida A R, Guglielmino C R, et al. Micorsatellite polymorphism in the Mediterranean fruit fly, Ceratitis capitata. Insect Molecular Biology,2000,9(3):251-261
    22. Bonizzoni M, Zhang L, Guglielmino C R, et al. Microsatellite analysis of medfly bioinfestations in California. Molecular Ecology,2001,10(10):2515-2524
    23. Bonizzoni M, Katsoyannos B I, Marquerie R, et al. Microsatellite analysis reveals remating by wild Mediterranean fruit fly females, Ceratitis capitata. Molecular Ecology,2002,11(10): 1915-1921
    24. Bonizzoni M, Guglielmino C R, Smallridge C J, et al. On the origins of medfly invasion and expansion in Australia. Molecular Ecology,2004,13(12):3845-3855
    25. Boy kin L M, Shatters R G, Hall D G, et al. Analysis of host preference and geographical distribution of Anastrepha suspense (Diptera:Tephritidae) using phylogenetic analysis of mitochondrial cytochrome oxidase Ⅰ DNA sequences data. Bulletin of Entomological Research, 2006,96(5):457-469
    26. Boykin L M, Shatters R G, Hall D G, et al. Genetic variation of Anastrepha suspense (Diptera: Tephritidae) in Florida and the Caribbean using microsatellite DNA markers. Journal of Economic Entomology,2010,103(6):2214-2222
    27. Brown J, Hardwick L J, Wright A F. A simple method for rapid isolation of microsatellites from yeast artificial chromosomes. Molecular and Cellular Probes,1995,9:53-57
    28. Bruce S W.群体学数据分析:群体遗传学离散型数据分析法(徐云碧译).北京:农业出版社,1996,211-328
    29. Buahom N, Du Y, Wu Y, et al. Polymorphic microsatellite markers in the guava fruit fly, Bactrocera correcta (Diptera:Tephritidae). Applied Entomology and Zoology,2013,48: 409-412
    30. Callejas C, Dolores M. Allozymic variability in Spanish populations of Ceratitis capitata. Fruits, 2004,59:181-190
    31. Chakraborty R, Danker-Hopfe H. Analysis of population structure:a comparative study of different estimators of Wright's fixation indices. In:Handbook of statistics. Amsterdam:Elsevier. 1991,203-254
    32. Clarke A R, Allwood A, Chinajariyayong A, et al. Seasonal abundance and host use patterns of seven Bactrocera Macquart species (Diptera:Tephritidae) in Thailand and Penensular Malaysia. The Raffles Bulletin of Zoology,2001,49(2):207-220
    33. Cornuet J M, Luikart G. description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics.1996,144:2001-2014
    34. Corsini G, Manubeans A, Lladser M, et al. AFLP analysis of the fruit fly Ceratitis capitata. Agricultural Biotechnology,1999,21(3):72-73
    35. Crandall K A, Templeton A R. Empirical tests of some predictions from coalescent theory with applications to interspecific phylogeny reconstruction. Genetics,1993,134:959-969.
    36. Crow J F, Kimura M. An introduction to population genetics theory. New York:Harper and Row, 1970
    37. Daehler C C. Variation in self-fertility, the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evolutionary Ecology,1998,12(5):553-568
    38. Dai S M, Lin C C, Chang C. Polymorphic microsatellite DNA markers from the Oriental fruit fly Bactrocera dorsalis (Hendel). Molecular Ecology Notes,2004,4:629-631
    39. Dogac E, Kandemir I, Taskin V. The genetic polymorphisms and colonization process of olive fly populations in Turkey. Plos One,2013,8(2):e56067
    40. Donnelly P, Tavare S. The ages of alleles and a coalescent. Advance in Applied Probability,1986, 18:1-19
    41. Drew R A I, Raghu S. The fruit fly fauna (Diptera:Tephritidae:Dacinae) of the rainforest habitat of the western Ghats, India. The Raffles Bulletin of Zoology,2002,50(2):327-352
    42. Duyck P F, David P, Quilici S. A review of relationship between interspecific competition and invasions in fruit flies (Diptera:Tephritidae). Ecology Entomology,2004,29:511-520
    43. Eckert C G, Samis K E, Lougheed S C. Genetic variation across species geographical ranges: The central-merginal hypothesis and beyond. Molecular Ecology,2008,17:1170-1188
    44. Excoffier L, Laval G, Schneider S. Arlequin (Version3.0):an integrated software package for population genetic data analysis. Evolutionary Bioinformatics Online,2005,1:47-50
    45. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology,2005,14:2611-2620
    46. Folmer O, Black M, Hoeh W, et al. DNA permiers for amplification of mitoehondrial cytochrome C oxidase subunit I from diverse metazoan invertebrate. Molecular Marine Biology and Biotechnology,1994,3:294-299.
    47. Foote R H, Blanc F L, Norrbom A L. Handbook of the fruit flies (Diptera:Tephritidae) of America north of Mexico. USA:Comstock,1993
    48. Frankham R. Genetics and extinction. Biological Conservation,2005,126 (2):131-140
    49. Gao G Q, He G H, Li Y R. Microsatellite enrichment from AFLP fragments by magnetic beads. Acta Botanica Sinica,2003,45(11):1266-1269
    50. Gasparich G E, Silva J G, Han H Y, et al. Population genetic structure of mediterrenean fruit fly (Diptera:Tephritidae) and implications for worldwide colonization patterns. Annals of the Emtomological Society of America,1997,90(6):790-797
    51. Gasperi G, Guglielmino C R, Malacrida A R, et al. Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wie d) (medfly). Heredity,1991,67(3):347-356
    52. Goudet J. FSTAT (Version 2.9.3). Institute of Ecology, Biology Building, University of Lausanne, Lausanne Available at http://www2.unil.ch/popgen/softwares/fstat.htm,2002
    53. Gupta P K, Balyan H S, Sharma P C, et al. Microsatellite in plants:a new class of molecular markers. Current Science,1996,70:45-54
    54. Hamilton M B. Population genetics. Oxford:Wiley-Blackwell,2009
    55. Hartl D L, Clark A G. Principles of population genetics (fourth edition). Massachusettes:Sinauer Associates,2007
    56. Hedrick A V. Cricket with extravagant mating songs compensate for predation risk with extra caution. Proceedings of the Royal Society of London. Series B:Biological Sciences,2000,267 (1444):671-675
    57. Hu j, Zhang J L, Nardi F, et al. Population genetic structure of the melon fly, Bactrocera cucurbitae (Diptera:Tephritidae), from China and Southeast Asia. Genetica,2008,134:319-324
    58. Huang Z H, Liu N F, Zhou T L, et al. Effects of environmental factors on the population genetic structure in Chukar partridge (Alectoris chukar). Journal of Arid Environments,2005,62(3): 427-434
    59. Hudson R R. Gene genealogies and the coalescent process. In D. Futuyama and J. Antonovics, eds. Oxford surveys in evolutionary biology. Oxford:Oxford University Press,1990
    60. Jamnongluk W, Baimai V, Kittayapong P. Molecular phylogeny of tephitid fruit flies in the Bactrocera tau complex using the mitochondrial COI sequences. Genome,2003,46:112-118
    61. Jalaluddin S M. Bioecology and management of guava fruit fly Bactrocera correcta (Bezzi) in anonymous:[Ph.D. dissertation].Coimbatore:Tamil Nadu Agricultural University,1996
    62. Jalaluddin S M, Natarajan K, Sadakathulla S, et al. Discovery of guava fruit fly Bactrocera correcta (Bezzi). Entomon,1999,24(2):195-196
    63. Jalaluddin S M, Sadakathulla S. Development and survival of Bactrocera correcta (Bezzi) (Diptera:Tephritidae) on selected guava cultivars. Pest Management in Horticulture Ecosystems, 1999,5(1):24-27
    64. Jirasurat M. Fruit flies in Thailand. Bangkok:Department of Agriculture press,2001
    65. Kakouli-Duarte Y, Casey D G, Burnell A M. Development of a diagnosis DNA probe for the fruit flies Ceratitis capitata and Ceratitis rosa (Diptera:Tephritidae) using amplified fragment-length polymorphism. Journal of Economic Entomology,2001,94(4):989-997
    66. Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 2007,16(5):1099-1106
    67. Kandpal R P, Kandpal G, Weissman S M. Construction of libraries enriched for sequence repeats and jumping clones and hybridization selection for region specific markers. Proceedings of the National Academy of Sciences of the United States of America,1994,91:88-92
    68. Keyluck C J. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos,2005,109:203-207
    69. Khamis F M, Karam N, Ekesi S, et al. Uncovering the tracks of a recent and rapid invasion:the case of the fruit fly pest, Bactrocera invadens (Diptera:Tephritidae) in Africa. Molecular Ecology,2009,18:4798-4810
    70. Khamis F M, Karam N, Guglielmino C R, et al. Isolation and Characterization of microsatellite markers in the newly discovered invasive fruit fly pest in Africa, Bactrocera invadens (Dipetera: Tephritidae). Molecular Ecology Resources,2008,8,1509-1511
    71. Kimura M, Weiss G. The stepping stone model of population structure and the decease of genetic correlations with distance. Genetics,1964,49:561-576
    72. Koizumi I, Yamamoto S, Maekawa K. Decomposed pairwise regression analysis of genetic and geographic distances reveals a metapopulation structure of stream-dwelling Varden charr. Molecular Ecology,2006,15:3175-3189
    73. Lanzavecchia S B, Cladera J L, Faccio P, et al. Origin and Distribution of Ceratitis capitata Mitochondrial DNA Haplotypes in Argentina. Annals of the Entomological Society of America, 2008,101:627-638
    74. Legendre P, Legendre L. Numerical Ecology:Second English Edition. Amsterdam:Elsevier, 1998
    75. Lesica P, Allerdorf F W. When are peripheral populations valuable for conservation?. Conservation Biology,1995,9:753-760
    76. Lewontin R C, Dunn L C. The evolutionary dynamics of polymorphism in the house mouse. Genetics,1960,45 (6):705
    77. Lewontin R C, Kojima K. The evolutionary dynamics of complex polymorphisms. Evolution, 1960,14:458-472
    78. Li W H. Molecular Evolution. Sunderland:Sinauer Associates,1997
    79. Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics,2009,25(11):1451-1452
    80. Li Y L, Wu Y, Chen H, et al. Population structure and colonization of Bactrocera dorsalis (Diptera:Tephritidae) in China inferred from mtDNA COI sequences. Journal of Applied Entomology,2012,136(4):241-251
    81. Liu J H, Shi W, Ye H. Population genetics analysis of the origin of the Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera:Tephritidae), in northern Yunnan province, China. Entomological Science,2007,10:11-19
    82. Liu X F, Jin Y, Ye H. Recent spread and climatic ecological niche of the invasive guava fruit fly, Bactrocera correcta, in mainland China. Journal of Pest Science,2013,86:449-458
    83. Liu X F, Ye H. Effect of temperature on development and survival of Bactrocera correcta (Diptera:Tephritidae). Scientific Research and Essay,2009,4(5):467-472
    84. Ludena B, Bayas R, Pintaud J C. Phylogenetic relationships of Andean-Ecuadorian populations of Anastrepha fraterculus (Wiedemann 1830) (Diptera:Tephritidae) inferred from COI and COII gene sequences. Annales-Societe Entomologique de France,2010,46(3-4):344-350
    85. Malacrida A R, Maritoni F, Torti C, et al. Genetic aspects of the worldwide colonization process of Ceratitis capitata. Heredity,1998,89(6):501-507
    86. Marshall T C, Slate J, Kruuk L E, et al. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology,1998,7(5):639-655
    87. Matallanas B, Lantero E, Saad M M, et al. Genetic polymorphism at the cytochrome oxidase I gene in Mediterranean populations of Bactrocera oleae (Diptera:Tephritidae). Journal of Applied Enotomoly,2013,137(8):624-630
    88. Maxwell S A, Thistlewood H M A, Keyghobadi N. Population genetic structure of the Western cherry fruit fly Rhagoletis indifferens (Diptera:Tephritidae) in British Columbia, Canada. Agricultural and Forest Entomology,2014,16:33-44
    89. McPheron B A. Genetic structure of apple maggot fly Diptera Tephritidae populations. Annals of the Entomological Society of America,1990,833:568-577
    90. Meeyen K, Nanork Sopaladawan P, Pramual P. Population structure, population history and DNA barcoding of fruit fly Bactrocera latifrons (Hendel) (Diptera:Tephritidae). Entomological Science,2013, doi:10.1111/ens.12049
    91. Meixner M D, McPheron B A, Silva J G, et al. The Mediterranean fruit fly in California: evidence for multiple introductions and perisistent populations based on microsatellite and mitochondrial DNA variability. Molecular Ecology,2002,11(5):891-899
    92. Merrell D J. Ecological genetics. London:Longman,1981
    93. Nakahara S, Muraji M. Phylogenetic analysis of Bactrocera fruit flies (Diptera:Tephritidae) based on nucleotide sequences of the mitochondrial COI and COⅡ gene. Research Bulletin of the Plant Protection Service japan,2008,44:1-12
    94. Nagylaki T. Fixation indices in subdivided populations. Genetics,1998,148:1325-1332
    95. Nardi F, Carapelli A, Dallai R, et al. Population structure and colonization history of the olive fly, Bactrocera oleae. Molecular Ecology,2005,14:2729-2738
    96. Nei M. Genetic distances between populations. American Naturalist,1972,106:283-291
    97. Nei M. Molecular population genetics and evolution. New York:American Elsavier publishing company,1975
    98. Nei M. Molecular Evolutionary Genetics. New York:Columbia University Press,1987
    99. Orankanok W, Chinvinijkul S, Thanaphum S,et al. Area-wide integrated control of oriental fruit fly Bactrocera dorsalis and guava fruit fly Bactrocera correcta in Thailand. In:Sterile insect technique, principles and practice in area-wide integrated pest management. Ed. by Dyck VA, Hendrichs J, Robinson AS, Springer, Dordrecht, The Netherlands,2007,517-526
    100. Oukil S, Bues R, Toubon J F, et al Allozyme polymorphism in populations of Ceratitis capitata from Algeria, the Northwestern Mediterranean coast and Reunion Island. Fruits,2002,57(3): 183-191
    101. Peakall R O D, Smouse P E. Genealex 6:genetic analysis in excel, population genetic software for teaching and research. Molecular Ecology Notes,2006,6(1):288-295
    102. Piry S, Alapetite A, Cornuet J M, et al. GENECLASS 2:a software for genetic assignment and first-generation migrant detection. Journal of Heredity,2004,95:536-539
    103. Piry S, Luikard G, Cornuet J M. BOTTLENECK:a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity,1999, 90:502-503
    104. Posada D, Crandall K A. Evaluation of methods for detecting recombination from DNA sequencea:Computer simulations. Proceeding of the national Academy of Sciences of the United States of America.98(24):13757-13762
    105. Prabhakar C S, Mehta P K, Sood P, et al. Pop ulation genetic structure of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera:Tephritidae) based on mitochondrial cytochrome oxidase (COI) gene sequences. Genetics,2012,140:83-91
    106. Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959
    107. Rannala B, Moutain J L. Detecting immigration by using multilocus genotypes. Proceedings of the national academy of sciences of the United States of America,1997,94:9197-9201
    108. Rassmann K, Schlotterer C, Tautz D. Isolation of simple-sequences loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis,1991,12(2-3):113-118
    109. Raymond M, Rousset F. GENEPOP (Version 1.2):Population genetics software for exact tests and ecumenicism. Journal of Heredity,1995,86(3):248-249
    110. Roelke M E, Martenson J S, O' Brien S J. The consequences of demographic reduction and genetic depletion in the endangered Florida Panther. Current Biology,1993,3:340-350
    111. Rouset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distances. Genetics,1997,145:1219-1228
    112. Ruiz-Arce R, Barr N B, Owen C L, et al. Phylogeography of Ansatrepha oblique with mtDNA sequencing. Journal of Economic Entomology,2012,105(6):2147-2160
    113. Ryman N, Utter F, Hindar K. Introgression, supportive breeding and genetic conservation population management for survival and recovery. New York:Columbia University press,1995
    114. Saccheri I, Kuussaari M, Kankare M, et al. Inbreeding, extinction in a bufferfly metapopulation. Nature,1998.392:491-494
    115. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4 (4):406-425
    116. Saizburger W, Baric S, Sturmbauer C. Speciation via introgressive hybridization in East African Cichlids. Molecular Ecology,2002,11:619-625
    117. Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology,2000,18:233-234
    118. Sequra M D, Calleias C, Fernandez M P, et al. New contributions toward the understanding of the phylogenetic relationship among economically important fruit flies (Diptera:Tephritidae). Bulletin of Entomological Research,2006,96(3):279-288
    119. Shankar D, Vinayachandran P N, Unnikrishnan A S. The monsoon currents in the north Indian Ocean. Progress in Oceanography,2002,52:63-120
    120. Shearman D C A, Gilchrist A S, Crisafulli D, et al. Microsatellite amrkers for the pest fruit fly, Bactrocera papaya (Diptera:Tephritidae) and other Bactroecra species. Molecular Ecology Notes,2006,6:4-7
    121. Shi W, Kerdelhue C, Ye H. Population genetics of the Oriental fruit fly, Bactrocera dorsalis (Diptera:Tephritidae), in Yunnan (China) based on mitochondrial DNA sequences. Environmental Entomology,2005,34(4):977-983
    122. Shi W, Kerdelhue C, Ye H. Population genetic structure of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera:Tephritidae) from Yunnan province (China) and nearby sites zcross the border. Genetica,2010,138:377-385
    123. Shi W, Kerdelhue C, Ye H. Genetic structure and inferences of potential source areas for Bactrocera dorsalis (Hendel) based on mitochondrial and microsatellite markers. Plos One,2012, 7(5):e37083
    124. Slatkin M, Hudson R R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics,1991,129(2):555-562
    125. Smith J J, Powell T H Q, Teixeira L, et al. Genetic structure of cherry fruit fly (Rhagoletis cingulate) populations across managed, unmanaged and natural habitat. Entomologia Experimentalis et Applicata,2014,150:157-165
    126. Smith J J, Bush G L. Phylogeny of the genus Rhagoletis (Diptera:Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase Ⅱ. Molecular Phylogenetics and Evolution, 1997,7(1):33-43
    127. Smith-Caldas M R B, McPheron B A, Silva J G, et al. Phylogenetic relationships among species of the fraterculus group (Anastrepha:Diptera:Tephritidae) inferred from DNA sequences of Mitochondrial Cytochrome Oxidase I. Neotropical Entomology,2001,30(4):565-573
    128. Song S D, Ma J, Hughes J M. Polymorphic microsatellite DNA markers in Bactrocera cacuminata (Hering) (Diptera:Tephritidae). Molecular Ecology Notes,2006,6:47-49
    129. Stone G N, Atkinson R J, Brown G, et al. The population genetic consequences of range expansion:A review of pattern and process, and the value of oak gall wasps as a model system. Biodiversity Science,2002,10(1):80-97
    130. Tamura K, Peterson D, Peterson N, et al. MEGA 5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution,2011,28(10):2731-2739
    131. Tsutsui N D, Suarez A V, Holway D A, et al. Reduced genetic variation, the success of an invasive species. Proceedings of the National Academy of Sciences,2000,97(11):5948-5953
    132. Wan X W, Liu Y H, Zhang B. Ianvasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region:two main invasion routes. Plos One,2012,7(5):e36176
    133. Wan X W, Nardi F, Zhang B, et al. The oriental fruit fly, Bactrocera dorsalis, in China:origin and gradual inland range expansion associated with population growth. Plos One,2011,6(10): e25238
    134. White I M, Elson-Harris M M. Fruit flies of economic significance:their identification and bionomics. Wallingford:CAB international,1992
    135. Wright S. Isolation by distance. Genetics,1943,28:114-138
    136. Wu Y, Li Y L, Ruiz-Arce R, et al. Microsatellite markers reveal population structure and low gene flow among collections of Bactrocera cucurbitae (Diptera:Tephritidae) in Asia. Journal of Economic Entomology,2011,104(3):1065-1074
    137. Wu Y, Li Z H, Wu J J. Polymorphic microsatellite markers in the melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera:Tephritidae). Molecular Ecology Resources,2009,9: 1404-1406
    138. Wu Y, McPheron B A, Wu J J, et al. Genetic relationship of the melon fly, Bactrocera cucurbitae (Diptera:Tephritidae) inferred from mitochondrial DNA. Insect Science,2012,19: 195-204
    139. Vanhala T, Tuiskula Haavitos M, Elo K, et al. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poultry Science,1998,77 (6): 783-790
    140. Van Oosterhout C, Hutchinson W F, Wills D P M, et al. Micro-Checker:software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes,2004,4: 535-538
    141. Virgilio M, Delatte H, Backeljau T, et al. Macrogeographic population structuring in the cosmopolitan agricultural pest Bactrocera cucurbitae (Diptera:Tephritidae). Molecular Ecology, 2010,19:2713-2724
    142. Ye W H, Li J, Cao H L, et al. Genetic uniformity of Alternanthera philoxeroides inSouth China. Weed Research,2003,43:297-302
    143. Yeh F C, Yang R C, Boyle T. Popgene version 1.31, free software. University of Alberta,1999
    144. Zhao J T, Frommer M, Sved J A, et al. Genetic and molecular markers of the queensland fruit fly, Bactrocera tryoni. Journal of Heredity,2003,94(5):416-420
    145. Zhu Y F, Hu J, Han R, et al. Fingerprinting and identification of closely related wheat (Triticum aestivumL.) cultivars using ISSR and fluorescence-labled TP-M13-SSR markers. Crop Science, 2011,5(7):846-850
    146.白玉.DNA分子标记技术及其应用.安徽农业科学,2007,35(24):7422-7424
    147.包文斌.中国家鸡和红色原鸡遗传多样性及亲缘关系分析:[博士学位论文].江苏:扬州大学,2007
    148.包文武,陈国宏,束靖婷,等.孔雀微卫星引物筛选及其遗传多样性分析.遗传,2006,28(10):1242-1246
    149.曹玲珍.我国北部欧洲葵花螟Homoeosoma nebulella组要地理种群遗传特性的研究:[博 士学位论文].北京:中国农业大学,2010
    150.陈乃中,吴佳教.澳大利亚实蝇非疫区的组建与维护.植物保护,2005,31(3):79-82
    151.陈鹏,叶辉.云南西部实蝇的多样性.生态学报,2009,29(6):2953-2961
    152.陈鹏,叶辉.云南瑞丽桔小实蝇成虫种群数量变动及其影响因子分析.生态学报,2006,26(9):2801-2809
    153.陈鹏,叶辉,母其爱.基于荧光标记的怒江流域桔小实蝇的迁移扩散.生态学报,2007,27(6):2648-2476
    154.陈善元,张亚平.家养动物起源研究的遗传学方法及其应用.科学通报,51(21):2469-2475
    155.邓裕亮,李正跃,蒋小龙,等.缅甸第四特区实蝇类害虫调查.植物检疫,2005,19(5):316-218
    156.邓裕亮,李志红,白永华,等.老挝中北部地区果实蝇属(Bactrocera)害虫种类初步调查.植物检疫,2010,24(1):52-53
    157.邓欣,陈信波,龙松华,等.用磁珠富集法分离亚麻基因组微卫星分子标记.作物学报,2008,34(12):2099-2105
    158.丁立红.磁珠富集法开发菜豆SSR引物:[硕士学位论文].武汉:华中农业大学,2013
    159.窦秦川,刘晓飞,姚万福,等.番石榴实蝇成虫对低温的耐受研究.西南农业学报,2011,24(5):1771-1774
    160.段晓梅,刘伟.西双版纳景洪市城市植物多样性保护规划研究.安徽农业科学,2010,38(17):9333-9335
    161.高源,田路明,刘凤之,等.TP-M13-SSR技术在梨遗传多样性研究中的应用.果树学报,2011,28(3):394-399
    162.桂富荣.紫茎泽兰的遗传多样性及其种群结构分析:[博士学位论文].北京:中国农业科学院,2006
    163.郭平仲.群体遗传学导论.北京:农业出版社,1993
    164.国伟.麦长管蚜地理种群时空动态的分子特征分析:[博士学位论文].北京:中国农业大学,2005
    165.黄族豪,刘迺发.种群遗传学研究进展.安徽农业科学,2008,36(31):13490-13491
    166.蒋小龙,任丽卿,汪兴鉴.云南边境检疫性实蝇监测体系的建立.植物检疫,2002,16(2):103-105
    167.康芬芬,李志红,杨定,等.利用微卫星标记初步分析橘小实蝇4个地理种群的遗传多态性. 昆虫知识,2006,43(3):371-374
    168.康芬芬.基于微卫星标记的橘小实蝇种群遗传结构和扩散规律研究:[博士学位论文].北京:中国农业大学,2007
    169.李继云.云南省边境贸易与地区经济增长关系的研究.管理学报,2013,26(1):28-37
    170.李琳.富集文库法开发谷子的微卫星分子标记:[硕士学位论文].河北:河北师范大学,2008
    171.李强,万建民.SSR hunter,一个本地化的SSR位点搜索软件的开发.遗传,2005,27(5):808-810
    172.李文芬,余道坚,颜亨梅,等.地中海实蝇及其近缘种基因芯片检测研究.昆虫学报,2008,51(1):61-67
    173.李文强,黄土良,牛玉璐,等.DNA分子标记技术在中草药鉴别中的应用.河北师范大学学报,2005,29(6):617-622
    174.李玉盘,高凯.一种改进的NJ方法及其应用.北京工业大学学报,2009,35(2):283-288
    175.李旭,李凤莲,刘恺,等.中国伊洛瓦底江和怒江褶劁属鱼类的形态差异及分类地位.动物学研究,2008,29(1):83-88
    176.李云龙.基于线粒体COl和ND6基因的橘小实蝇种群遗传关系研究:[博士学位论文].北京:中国农业大学,2009
    177.李云龙,李志红,吴佳教,等.基于线粒体ND6基因的桔小实蝇种群遗传关系.中国生物防治,2009,25(增2):42-50
    178.李志红,姜帆,马兴莉,等.实蝇科害虫入侵防控技术研究进展.植物检疫,2013a,27(2):1-10
    179.李志红,Buahom N,胡俊韬,等.实蝇科害虫入侵来源与入侵机制研究进展.植物检疫,2013b,27(3):1-12
    180.梁广勤,徐伟.番石榴实蝇Dac us (strumeta) correctus (Bezzi)及其生活习性的观察.江西农业大学学报,1985,25(4):51-55
    181.梁广勤,杨国海,梁帆,等.亚太地区寡毛实蝇.广州:广州科技出版社,1996
    182.刘佳妮,桂富荣,李正跃.SSR分子标记技术在入侵昆虫学研究中的运用.植物保护,2008,34(3):7-11
    183.刘佳琪,邓裕亮,李志红,等.番石榴果实蝇分子生物学研究进展.植物保护,2009,35(2):11-14
    184.刘佳琪.基于mtDNA番石榴果实蝇种群遗传关系研究:[硕士学位论文].北京:中国农业 大学,2010
    185.刘建宏,叶辉.云南元江干热河谷桔小实蝇种群动态及其影响因子分析.昆虫学报,2005,48(5):706-711
    186.刘晓飞,王大明,叶辉.番石榴实蝇研究概况.热带农业科技,2005,28(4):30-33
    187.刘晓飞,叶辉.云南番石榴实蝇研究进展.中国生物防治,2009,25(增):86-90
    188.刘志斋,王天宇,黎裕.TP-M13-SSR技术及其在玉米遗传多样性研究中的应用.玉米科学,2007,15(6):10-15
    189.鲁翠云,孙效文,曹洁,等.磁珠富集法筛选白鲢的微卫星分子标记.农业生物技术学报,2005,13(6):772-776
    190.陆宁海,郑文明,王建峰,等.陇南地区小麦条锈菌群体遗传多样性SSR分析.中国农业科学,2009,42(8):2763-2770
    191.吕德康,张克映.云南南部热量指标随海拔高度的变化规律及垂直-水平气候(热量)带的划分.地理学报,1982,37(4):407-419
    192.吕文刚,邓裕亮,李志红,等.番石榴果实蝇在我国的潜在地理分布.植物保护学报,2010,37(6):529-534
    193.马兴莉,刘海军,李志红,等.我国口岸截获东盟实蝇疫情分析.植物检疫,2012,26(5):82-87
    194.毛永江.中国牛亚科家畜六个群体遗传多样性与遗传分化及其统计方法的研究:[博士学位论文].江苏:扬州大学,2006
    195.倪文龙,陈洪俊,李志红,等.土壤含水量和浸水对番石榴果实蝇蛹羽化率的影响.植物检疫,2011,25(5):1-3
    196.倪文龙.番石榴果实蝇适生性分析及防空措施初步研究:[硕士学位论文].北京:中国农业大学,2011
    197.牛俊巍,李红然,段恋,等.利用TP-M13-SSR技术分析我国两个地方猪种的遗传多样性.动物分类学报,2013,38(2):413-420
    198.沈富军,Phill W,张志和,等.Dynal磁珠富集大熊猫微卫星标记.遗传学报,2005,32(5):457-462
    199.施伟,叶辉.云南桔小实蝇五个地理种群的遗传分化研究.昆虫学报,2004,47(3):384-388
    200.苏宏华,江丰,杨益众.核基因和线粒体基因在叶螨分子系统学上的应用.中国农学通报,2011,27(30):192-196
    201.孙儒永.动物生态学原理第三版.北京:北京师范大学出版社,2001
    202.孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记.水产学报,2005,29(4):482-486
    203.太红坤,李正跃,罗红英,等.颜色和糖醋液对番石榴实蝇引诱效果.安徽农业科学,2009,37(14):6481-6481
    204.孙娜,郭晓华,张媛.AFLP技术在昆虫分子系统发育研究中的应用.沈阳大学学报,2009,21(4):72-74
    205.孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记.水产学报,2005,29(4):482-486
    206.万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策.生物多样性,2002,10(1):119-125
    207.万方浩,郑小波,郭建英,等.重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005
    208.万宣伍,刘映红,张彬,等.基于微卫星分子标记的重庆地区橘小实蝇遗传分化研究.中国农业科学,2010,43(13):2688-2696
    209.工备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究.昆虫知识,2002,39(2):88-92
    210.工登.布氏田鼠(Lasiopodomys brandtii)微卫星位点的克隆及不同地里在种群遗传差异研究:[博士学位论文].北京:中国农业大学,2007
    211.工云生,黄宏文,王瑛.植物分子群体遗传学研究动态.遗传,2007,29(10):1191-1198
    212.汪兴鉴,赵明珠.中国寡鬃实蝇属记述:双翅目,实蝇科.动物分类学报,1989,14(2):209-219
    213.韦昌华,陆永跃,曾玲.高温对番石榴实蝇不同虫态的致死效应研究.华南农业大学学报,2012,33(3):346-350
    214.韦昌华,曾玲.土壤含水量对番石榴实蝇蛹羽化的影响.广东农业科学,2011,9:65-67
    215.吴佳教,梁凡,胡学难,等.我国南方常见的6种寡毛实蝇PCR-RFLP快速鉴定研究.汀西农业大学学报,2004,26(5):770-774
    216.吴佳教,梁帆,梁广勤.实蝇类重要害虫鉴定图册.广州:广东科技出版社,2009
    217.伍祎,李志红,康芬芬,等.微卫星DNA标记及其在检疫性实蝇种群遗传学中的研究应用.植物保护,2007,33(4):1-6
    218.伍祎.亚洲主要分布区瓜实蝇种群遗传结构的研究:[博士学位论文].北京:中国农业大学, 2011
    219.徐浪,余道坚,张润杰,等.桔小实蝇线粒体基因组全序列及其分析.昆虫学报,2007,50(8):755-761
    220.徐浪,余道坚,李秋枫,等.基于MAXENT模型的番石榴实蝇在中国的适生区研究.2010年进出境植物检疫学术研讨会论文集,2010:70-74
    221.徐承远,张文驹,卢宝荣,等.生物入侵机制研究进展.生物多样性,2001,9(4):430-438
    222.杨国海,梁广勤,林双,等.4种寡毛实蝇属(Dacus)幼虫酯酶同工酶的研究.江西农业大学学报,1992,14(1):82-85
    223.杨倩倩,李志红,伍祎,等.线粒体COI基因在昆虫DNA条形码中的研究与应用.应用昆虫学报,2012,49(6):1687-1695
    224.邢开德.云南省文山州水果生产现状与对策.中国农业推广,2009,25(1):21-23
    225.云南省档案局社会利用服务处.中国缅甸边境贸易档案资料选辑.云南档案,2013,6:10-12
    226.张红梅,潘亚勤,魏迪功,等.山西省常见四种实蝇的RAPD研究初报(双翅目:实蝇科).昆虫分类学报,2004,26(1):59-63
    227.张静.浙江省主要鸭种资源遗传多样性研究:[硕士学位论文].南京:南京农业大学,2010
    228.张永科,杜宇,陈斌,等.番石榴果实蝇鉴定技术及防空研究进展.植物检疫,2012,26(5):34-39
    229.张智英,赵波,张亮,等.番石榴实蝇寄主选择性实验.应用昆虫学报,2011,48(2):359-363
    230.中华人民共和国农业部.国际植物保护公约简介,2013,http://www.moa.gov.cn/ztzl/gjzwbhgy/lxg/201309/t20130911_3602880.htm
    231.赵菊鹏,梁帆,梁广勤,等.番石榴果实蝇与桃实蝇的形态区别.昆虫知识,2007,44(6):904-905
    232.周文良,庄丽娟.云南与东盟农产品贸易的现状及对策研究.商业研究,2009,3:185-188
    233.朱振华,叶辉,张智英.云南四个瓜实蝇地理种群的遗传关系分析.应用昆虫学报,2005,16(10):1889-1892
    234.祖元刚,孙梅,康乐.生态适应与生态进化的分子机制.北京:高等教育出版社,2000