姜黄素缓释口服给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姜黄素是用途广泛的天然活性物质,具有多种生物活性。姜黄素的水溶性极低而脂溶性良好,是典型的II型药物。药物的口服吸收极差,体内代谢迅速,导致其口服生物利用度极低,限制了其临床应用。本论文采用水不溶性材料作为载体控制药物的释放速率,并利用固体高度分散技术降低药物的结晶度以改善其溶解度/溶出度,最终改善姜黄素的口服生物利用度。
     建立了姜黄素HPLC体外/内含量测定方法。硅胶柱层析纯化市售姜黄,得到纯度为99.04%的姜黄素产品。理化性质研究表明药物的水溶性极低,脂溶性良好;药物对光照和pH敏感,粉末光照10天含量降低30.57%,溶液光照6h含量降至原来的20%;在20oC-40oC时,溶液在pH2-6内保持稳定。
     以醋酸纤维素为载体,丙酮为溶剂,溶剂法制备处方。药物能够被完全包裹于醋酸纤维素所形成的光滑致密的薄膜中并且能够均匀分散,颗粒具有良好的流动性。药物与载体之间形成了分子间氢键。药材比为1:10(w/w),10%(w/w)甘露醇为致孔剂的处方12h内药物累积释放量为94.92%,为一级释放模型,药物为无定形态;药材比为1:1(w/w),10%PEG6000(w/w)为致孔剂的处方12h内药物累积释放量为82.52%,为零级释放模型,药物为微晶态。两个处方均显著改善了药物的可润湿性、溶解度和溶出度。
     以壳聚糖为载体,三聚磷酸钠为交联剂,离子凝胶化法制备处方。处方的粒径随着制备体系中pH的升高而增大,同时表面则变得更为粗糙。药材比1:1(w/w),交联剂的浓度为0.3%(w/v)的处方的载药量为33.50±1.15%,包封率为85.20±0.92%,收率为71.33±2.15%,平均粒径为58.50μm,粒径分布为33.71-87.90μm。处方显著改善了药物的可润湿性、溶解度和溶出度。
     对给药系统的稳定性考察结果表明,药物的稳定性特别是光照稳定性得到了显著的改善;处方在6个月内能够保持外观、粒径、流动性(休止角)、含量和溶出度的稳定性。
     处方的载药量与其他给药系统相比得到了显著的提高。体内药代动力学研究结果表明,药物的C_(max)显著增加,t_(max)显著延长,K_(el)和K_a则显著降低,AUC显著增加。处方具有良好的体内外相关性。处方在体内具有明确的缓释药物的能力,能够显著的改善药物的口服生物利用度,降低给药剂量和给药频率,是用于改善姜黄素口服吸收的最有应用前景的给药系统之一。
Curcumin, one of the most widely used natural active constituents with greatvariety of beneficial biological and pharmacological activities, is a typical Class IIdrug with a very short biologic half-life, and was used as the model drug. The aim ofthis paper was to develop sustained-release solid dispersion systems by employingwater-insoluble carrier for release control, solubility/dissolution enhancement andoral bioavailability improvement of curcumin.
     High-performance liquid chromatography was established in quantitativedetermination of the drug in vitro/vivo. Curcumin was determined to be insoluble inwater with high liposolubility and sensitive with light and pH. The purity of theconventional products of curcumin was improved to be99.04%through columnchromatography.
     Solid dispersions were prepared with cellulose acetate by the solvent evaporationtechnique. Two formulations were chosen for the following studies: Curcumin:cellulose acetate=1:10(w/w,10%mannitol); Curcumin: cellulose acetate=1:1(w/w,10%PEG6000). Solid state characterization techniques revealed thecrystallinity decrease nature of curcumin in solid dispersions. Solubility/dissolutionand wettability of curcumin were enhanced in the formulations in comparison withpure drug. Sustained-release profiles or controlled-release profoles of curcumin fromthe solid dispersions were ideally achieved in vitro up to12h.
     Microparticles wre prepared with chitosan and sodium tripolyphosphate byionotropic gelation method. The optimal formulation was as follow:curcumin/chitosan=1:1(w/w,0.3%sodium tripolyphosphate). The microparticlespossessed an average diameter of58.50μm, drug loading of33.50%, encapsulationefficiency of85.20%, and yield of71.33%. Solubility/dissolution and wettability ofcurcumin were enhanced in the formulations in comparison with pure drug.Sustained-release profiles of curcumin from the solid dispersions were ideallycontrolled in vitro up to12h.
     The sustained-release solid dispersion systems improved the drug stabilityespecially the light stability significantly. The appearance, particle size, flowability,content and dissolution of the formulations changed slightly in6months.
     The prepared drug delivery system achieved higher drug loading efficiency than the other ones. The formulations provided improved pharmacokinetic parameter inrats as compared with pure drug with good in vivo-in vitro correlations. The resultsobtained from this paper suggests that the developed sustained-release soliddispersion systems successfully enhanced solubility and sustained release of thepoorly water-soluble drug curcumin, and eventually, improved its oral bioavailabilityeffectively.
引文
[1]张继芬,阿魏酸载脂质体壳聚糖微球口服给药系统的研究:[博士学位论文],重庆;西南大学,2011
    [2]周建平,药物新制剂与新剂型研发趋势及应用,兽药导刊,2011,10:42~43
    [3] Joshi HN, Drug development and imperfect design, International Journal ofPharmaceutics,2007,343:1~3
    [4]许建辰,口腔崩解给药系统的研究:[博士学位论文],天津;天津大学,2008
    [5] Visser MR, Baert L, Klooster G, et al., Inulin solid dispersion technology toimprove the absorption of the BCS Class IV drug TMC240, European Journal ofPharmaceutics and Biopharmaceutics,2010,74:233~238
    [6]操锋,平其能,陈军,口服前药研究:机遇与挑战,药学学报,2008,43(3):343~349
    [7] Gomze OI, Strategies to improve oral drug bioavailability, Expert Opinion onDrug Delivery,2005,2:419~433
    [8] Leuner C, Dressman J, Improving drug solubility for oral delivery using soliddispersions, European Journal of Pharmaceutics and Biopharmaceutics,2000,50:47~60
    [9] Huang JJ, Wigent RJ, Bentzley CM, et al., Nifedipine solid dispersion inmicroparticles of ammonio methacrylate copolymer and ethylcellulose binary blendfor controlled drug delivery: effect of drug loading on release kinetics, InternationalJournal of Pharmaceutics,2006,319:44~54
    [10] Wan SX, Sun YQ, Qi XX, et al., Improved bioavailability of poorlywater-soluble drug curcumin in cellulose acetate solid dispersion, AAPSPharmSciTech,2012,13(1):159~166
    [11] Kornblum SS, Hirschorn JO, Dissolution of poorly water soluble drugs I Somephysical parameter related to method of micronization and tablet manufacture of aquinazolinone compound, Journal of Pharmaceutical Sciences,1970,59:606~609
    [12] Sekiguchi K, Obi N, Studies on absorption of eutectic mixtures I A comparisonof the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazolein man, Chemical&Pharmaceutical Bulletin,1961,9:866~872
    [13] Chiou WL, Riegelman S, Preparation and discussion characterization of severalfast-release solid dispersion of griseofulvin, Journal of Pharmaceutical Sciences,1969,58:1505~1510
    [14] Tanaka N, Imai K, Okimoto K, et al., Development of novel sustained-releasesystem, disintegration-controlled matrix tablet (DCMT) with solid dispersiongranules of nilvadipine, Journal of Controlled Release,2005,108:386~395
    [15] Barkai A, Pathak YV, Benita S, Polyacrylate (Eudragit Retard) microspheres fororal controlled release of nifedipind I Formulation design and process optimization,Drug Development and Industrial Pharmacy,1990,16:2057~2075
    [16] Benita S, Barkai A, Pathak YV, Effect of drug loading extent on the in vitrorelease kinetic behavior of nifedipine from polyacrylate microspheres, Journal ofControlled Release,1990,12:213
    [17] Yang MS, Cui FD, You BG, et al., A novel pH-dependent gradient-releasedelivery system for nitrendipine II Investigations of the factors affecting the releasebehaviors of the system, International Journal of Pharmaceutics,2004,286:99~109
    [18] Bodmeier R, Chen H, Tyle P, et al., Spontaneous formation of drug-containingacrylic nanoparticles, Journal of Microencapsulation,1991,8:161~170
    [19] Guyot M, Fawaz F, Nifedipine loaded-polymeric microspheres: preparation andphysical characterization, International Journal of Pharmaceutics,1998,175:61~74
    [20] Kim YI, Flukinger L, Hoffman M, et al., The antihypertensive affect of orallyadministrated nifedipine-loaded nanoparticles in spontaneously hypertensive rats,British Journal of Pharmacology,1997,120:399~404
    [21] Cui J, Yu B, Zhao Y, et al., Enhancement of oral absorption of curcumin byself-microemulsifying drug delivery systems, International Journal of Pharmaceutics,2009,371:148~155
    [22] Shaikh J, Ankola DD, Beniwal V, et al., Nanoparticle encapsulation improvesoral bioavailability of curcumin by at least9-fold when compared to curcuminadministered with piperine as absorption enhancer, European Journal ofPharmaceutical Sciences,2009,37:223~230
    [23] Ozeki T, Yuasa H, Kanaya Y, Application of the solid dispersion method to thecontrolled release of medicine: IX Difference in the release of flurbiprofen from soliddispersions with poly (ethylene oxide) and hydroxypropylcellulose and the interactionbetween medicine and polymers, International Journal of Pharmaceutics,1997,155:209~217
    [24] Leuner C, Dressman J, Improving drug solubility for oral delivery using soliddispersions, European Journal of Pharmaceutical Sciences,2000,50:47~60
    [25] Wan SX, Sun YQ, Sun L, et al., Chitosan microparticles for oral bioavailabilityimprovement of the hydrophobic drug curcumin, Pharmazie, DOI:10.1208/s12249-011-9732-9
    [26]陆彬,药物新剂型与新技术,北京:人民卫生出版社,1998,135~144
    [27]仲明远,姜黄固体分散体及其复方胶囊剂的研究:[硕士学位论文],上海;第二军医大学,2006
    [28] Anant P, Anshuman AA, Bhimrao K, et al., Characterization of curcumin-PVPsolid dispersion obtained by spray drying, International Journal of Pharmaceutics,2004,271:281~286
    [29] Joshi HN, Tejwani RW, Davidovich M, et al., Bioavailability enhancement of apoorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate80mixture, International Journal of Pharmaceutics,2004,269:251~258
    [30] Patel M, Tekade A, Gattani S, et al., Solubility enhancement of lovastatin bymodified locust bean gum using solid dispersion techniques, AAPS PharmSciTech,2008,9(4):1262~1269
    [31] Hernandez JI, Ghaly ES, Malave A, et al., Controlled-release matrix ofacetaminophen-ethylcellulose solid dispersion, Drug Development and IndustrialPharmacy,1994,20(7):1253~1265
    [32] Shaikh NA, Abidi SE, Block LH, Evaluation of ethylcellulose as a matrix forprolonged release formulations II Sparingly water-soluble drugs: ibuprofen andindomethacin, Drug Development and Industrial Pharmacy,1987,13(14):2495~2518
    [33]陆彬,药物新剂型与新技术,北京:人民卫生出版社,1998,9~25
    [34] Iqbal Z, Babar A, Muhammad A, Controlled-release naproxen using micronizedethyl cellulose by wet-granulation and solid dispersion method, Drug Developmentand Industrial Pharmacy,2002,28(2):129~134
    [35] Zhou HY, Chen XG, Liu CS, et al., Release characteristics of three model drugsfrom chitosan/cellulose acetate multimicrospheres, Biochemical Engineering Journal,2006,31:228~233
    [36]陆彬,药物新剂型与新技术,北京:人民卫生出版社,1998,406
    [37] Lindstedt B, Ragnarsson G, Hjartstam J, Osmotic pumping as a releasemechanism for membrane-coated drug formulations, International Journal ofPharmaceutics,1989,56:261~268
    [38] Jiang TM, Tan FP, Du JL, et al., Preparation and in vitro release of glipizideloaded controlled release microspheres, Journal of Tsinghua University (Sci&Tech),2004,44(6):732~735
    [39] Blanco MD, Gomez C, Olmo RM, et al., Chitosan microspheres in PLG films asdevices for cytarabine release, International Journal of Pharmaceutics,2000,202:29~39
    [40] Lim LY, Wan LSC, Thai PY, Chitosan microspheres prepared by emulsificationand ionotropic gelation, Drug Development and Industrial Pharmacy,1997,23:981~985
    [41] Mi FL, Shyu SS, Chen CT, et al., Poruos chitosan microsphere for controllingthe antigen release of Newcastle disease vaccine: preparation of antigen-adsorbedmicrosphere and in vitro release, Biomaterials,1999,20:1603~1612
    [42] Ko JA, Park HJ, Hwang SJ, et al., Preparation and characterization of chitosanmicroparticle intended for controlled drug delivery, International Journal ofPharmaceutics,2002,249:165~174
    [43] Mi FL, Sung HW, Shyu SS, Release of indomethacin from a novel chitosanmicrosphere prepared by naturally occurring crosslinker: examination of crosslinkingand polycation-anionic drug interaction, Journal of Applied Polymer Science,2001,81:1700~1711
    [44] Shu XZ, Zhu KJ, Song W, Novel pH-sensitive citrate cross-linked chitosan filmfor drug controlled release, International Journal of Pharmaceutics,2001,212:19~28
    [45] Shiraishi S, Imai T, Otagiri M, Controlled release of indomethacin bychitosan-polyelectrolyte complex: optimization and in vivo/in vitro evaluation,Journal of Controlled Release,1993,25:217~225
    [46] Shu XZ, Zhu KJ, A novel approach to prepare tripolyphosphate/chitosancomplex beads for controlled drug delivery, International Journal of Pharmaceutics,2000,201:51~58
    [47] Shu XZ, Zhu KJ, Chitosan/gelatin microspheres prepared by modifiedemulsification and ionotropic gelation, Journal of Microencapsulation,2001,18:237~245
    [48] Ma LH, Liu CS, Preparation of chitosan microspheres by ionotropic gelationunder a high voltage electrostatic field for protein delivery, Colloids and Surfaces B:Biointerfaces,2010,75(2):448~453
    [49] Modi A, Tayade P, Enhancement of dissolution profiles by solid dispersion(kneading) Technique, AAPS PharmSciTech,2006,7(3): E1~E6
    [50] Ahuja N, Katare OP, Singh B, Studies on dissolution enhancement andmathematical modeling of drug release of a poorly water-soluble drug usingwater-soluble carriers, European Journal of Pharmaceutics and Biopharmaceutics,2007,65:26~38
    [51] Liu CX, Bai RB, Preparation of chitosan/cellulose acetate blend hollow fibers foradsorptive performance, Journal of Membrane Science,2005,267:68~77
    [52]国家药典委员会,中华人民共和国药典,2005版,二部,北京:化学工业出版社,2005,附录73
    [53] Ajay G, Ajaikumar BK, Bharate BA, Curcumin as “curecumin”: From kitchen toclinic, Biochemical Pharmacology,2007,9563~9585
    [54] Jeremy JJ, Hasan M, Curcumin for chemoprevention of colon cancer, CancerLetters,2007,255:170~181
    [55] Limtrakul P, Lipigomagoson S, Namwong O, et al., Inhibitory effect of dietarycurcumin on skin carcinogenesis in mice, Cancer Letters,1997,116:197~203
    [56] Kyoko NG, Koji Y, Seikou N, et al., Antitumaor agents258Syntheses andevaluation of dietary antioxidant-taxoid conjugates as novel cytotoxic agents,Bioorganic&Medicinal Chemistry Letters,2007,17:5204~5209
    [57] Shankar S, Chen QH, Sarva K, et al., Curcumin enhances the apoptosis–inducing potential of TRAIL in prostate cancer cells: molecular mechanisms ofapoptosis, migration and angiogenesis, Journal of Molecular Signaling,2007,2:10
    [58]许建华,赵蓉,吴国士,等,姜黄素的抗肿瘤作用,中药药理与临床,1998,14(3):15~17
    [59]梁华茂,姜洁,孔北华,等,Y-干扰素对姜黄素抑制人卵巢癌细胞株3A0增殖的影响,山东大学学报(医学版),2002,40(4):307~309
    [60] Moragoda L, Jaszewski R, Majumdar A, Curcumin induced modulation of cellcycle and apoptosis in gastric and colon cancer cells, Anticancer Research,2001,21(2A):873~878
    [61] Lao CD, Ruffin MT, Normolle D, et al., Dose escalation of a curcuminoidformulation, BMC Complementary and Alternative Medicine,2006,6:10
    [62] Cheng AL, Hsu CH, Lin JK, et al., Phase I clinical trial of curcumin, achemopreventive agent, in patients with high-risk or pre-malignant lesions,Anticancer Research,2001,21(4B):2895~2900
    [63] Lao CD, Demierre MF, Sondak VK, Targeting events in melanomacarcinogenesis for the prevention of melanoma, Expert Review of AnticancerTherapy,2006,6(11):1559~1568
    [64] Shoba G, Joy D, Joseph T, et al., Influence of piperine on the pharmacokineticsof curcumin in animals and human volunteers, Planta Medica,1998,64(4):353~356
    [65] Wang YJ, Pan MH, Cheng AL, et al., Stability of curcumin in buffer solutionsand characterization of its degradation products, Journal of Pharmaceutical andBiomedical Analysis,1997,15(12):1867~1876
    [66] Oetari S, Sudibyo M, Commandeur JN, et al., Effects of curcumin oncytochrome P450and glutathione-S-transferase activities in rat liver, BiochemicalPharmacology,1996,51:39~45
    [67] Pan MH, Huang TM, Lin JK, Biotransformation of curcumin through reductionand glucruonidation in mice, Drug Metabolism Disposition,1999,27(4):486~494
    [68] Ravindranath V, Chandrasekhara N, Metabolism of curcumin-studies with [3H]curcumin, Toxicology,1981,22(4):337~344
    [69] Perkins S, Verschoyle RD, Hill K, et al., Chemopreventive efficacy andpharmacokinetics of curcumin in the min/+mouse, a model of familial adenomatouspolyposis, Cancer Epidemiology Biomarkers&Prevention,2002,11(6):535~540
    [70] Yang KY, Lin LC, Tesng TY, et al., Oral bioavailability of curcumin in rat andthe herbal analysis from Curcuma longa by LC-MS/MS, Journal of ChromatographyB-Analytical Technologies in the Biomedical and Life Sciences,2007,853(1-2):183~189
    [71] Ravindranath V, Chandrasekhara N, Absorption and tissue distribution ofcurcumin in rats, Toxicology,1980,16(3):259~265
    [72] Ireson C, Orr S, Jones DJ, et al., Characterization of metabolites of thechemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo,and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2production, Cancer Research,2001,61(3):1058
    [73]胡昌良,应用共沉淀法增加难溶性药物的生物利用度,国外医学.药学分册,1982(4):232~236
    [74]平其能,现代药剂学,北京:中国医药科技出版社,1998,13~26
    [75]汤丽娟,魏树理,处方前研究的意义及方法,中国医药工业杂志,1989,20(3):133~136
    [76]王贤纯,姜黄色素及其提制方法,生物学杂志,2000,17(1):36~37
    [77]万舒欣,口服姜黄素新剂型的研制:[硕士学位论文],天津;天津大学,2009
    [78]韩刚,刘正猛,王晓燕,等,姜黄不同提取部位对姜黄素的稳定作用,中国中药杂志,2007,32(10):915~917
    [79]国家药典委员会,中华人民共和国药典,2005版,二部,北京:化学工业出版社,2005,附录176
    [80]国家药典委员会,中华人民共和国药典,2005版,二部,北京:化学工业出版社,2005,凡例
    [81]徐冬地,硝苯地平择时-控释骨架片的研制:[硕士学位论文],天津;天津大学,2007
    [82]李发美,分析化学,北京:人民卫生出版社,2004,356~367
    [83]陈毓亨,我国姜黄属植物的研究,中药材,1986,4:20~24
    [84]程光明,姜黄素的提取纯化、脂质体的制备和组织分布的研究:[硕士学位论文],湖北;湖北中医学院,2008
    [85] Suwantong O, Opanasopit P, Ruktanonchai U, et al., Electrospun celluloseacetate fiber mats containing curcumin and release characteristic of the herbalsubstance, Polymer,2007,48:7546~7557
    [86] Pan CJ, Tang JJ, Weng YJ, et al., Preparation, characterization andanticoagulation of curcumin-eluting controlled biodegradable coating stents, Journalof Controlled Release,2006,116:42~49
    [87] Tiyaboonchai W, Tungpradit W, Plianbangchang P, Formulation andcharacterization of curcuminoids loaded solid lipid nanoparticles, InternationalJournal of Pharmaceutics,2007,337:299~306
    [88] Pan CJ, Tang JJ, Weng YJ, et al., Preparation and in vitro release profiles ofdrug-eluting controlled biodegradable polymer coating stens, Colloids and Surfaces B:Biointerfaces,2009,73:199~206
    [89] Frank A, Subbu SV, Santosh KR, et al., In vitro study of release mechanisms ofpaclitaxel and rapamycin from drug-incorporated biodegradable stent matrices,Journal of Controlled release,2004,98:67~74
    [90] Youn YS, Jung JY, Oh SH, et al., Improved intestinal delivery of salmoncalcitonin by Lys18-amine specific PEGylation: stability, permeability,pharmacokinetic behavior and in vivo hypocalcemic efficacy, Journal of ControlledRelease,2006,114:334~342
    [91] Sugawara M, Kadomura S, He X, et al., The use of an in vitro dissolution andabsorption system to evaluate oral absorption of two weak bases in pH-independentcontrolled-release formulations, European Journal of Pharmaceutical Sciences,2005,26:1~8
    [92] Vasconcelos T, Sarmento B, Costa P, Solid dispersions as strategy to improveoral bioavailability of poor water soluble drugs, Drug Discovery Today,2007,12(23/24):1068~1075
    [93] Ahuja N, Katare OP, Singh B, Studies on dissolution enhancement andmathematical modeling of drug release of a poorly water-soluble drug usingwater-soluble carriers, European Journal of Pharmaceutics and Biopharmaceutics,2007,65:26~38
    [94] Lipinski C, Poor aqueous solubility–an industry wide problem in drug delivery,American Pharmaceutical Review,2002,5:82~85
    [95] Hu J, Johnston KP, Williams RO, Rapid dissolving high potency danazolpowders produced by spray freezing into liquid process, International Journal ofPharmaceutics,2004,271:145~154
    [96] Amidon GL, Lennerna H, Shah VP, et al., A theoretical basis for abiopharmaceutic drug classification: the correlation of in vitro drug productdissolution and in vivo bioavailability, Pharmaceutical Research,1995,12:413~420
    [97] Leuner C, Dressman J, Improving drug solubility for oral delivery using soliddispersions, European Journal of Pharmaceutics and Biopharmaceutics,2000,50:47~60
    [98] Sekiguchi K, Obi N, Studies on absorption of eutectic mixture I A comparison ofthe behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole inman, Chemical&Pharmaceutical Bulletin,1961,9:866~872
    [99] Karavas E, Ktistis G, Xenakis A, et al., Effect of hydrogen bonding interactionson the release mechanism of felodipine from nanodispersions withpolyvinylpyrrolidone, European Journal of Pharmaceutics and Biopharmaceutics,2006,63:103~114
    [100] Cheboyina S, Wyandt CM, Wax-based sustained release matrix pellets preparedby a novel freeze pelletization technique Ⅱ in vitro drug release studies and releasemechanisms, International Journal of Pharmaceutics,2008,359:167~173
    [101]Barzegar JM, Maleki N, Garjani A, et al., Enhancement of dissolution rate andanti-inflammatory effects of piroxicam using solvent deposition technique, DrugDevelopment and Industrial Pharmacy,2002,28:681~686
    [102] Waghmare A, Pore Y, Kuchekar B, Development and characterization ofzaleplon solid dispersion systems: a technical note, AAPS PharmSciTech,2008,9(2):536~543
    [103] Hancock BC, Parks M, What is true solubility advantage for amorphouspharmaceuticals, Pharmaceutical Research,2000,17:397~404
    [104] Rane Y, Mashru R, Sankalia M, Effect of hydrophilic swellable polymers ondissolution enhancement of carbamazepine solid dispersions studied using responsesurface methodology, AAPS PharmSciTech,2007,8(2): E1~E11
    [105] Gohel MC, Panchal MK, Novel use of similarity factor f2and Sd for thedevelopment of diltiazem HCl modified-release tablets using a32factorial design,Drug Development and Industrial Pharmacy,2000,28:77~87
    [106] Mashru RC, Sutariya VB, Sankalia MG, et al., Development and evaluation offast dissolving film of salbutamol sulphate, Drug Development and IndustrialPharmacy,2005,31:25~34
    [107] Ohara T, Kitamura S, Kitagawa T, et al., Dissolution mechanism of poorlywater-soluble drug from extended release solid dispersion system with ethylcelluloseand hydroxypropylmethylcellulose, International Journal of Pharmaceutics,2005,302:95~102
    [108] Liu LX, Wang XC, Improved dissolution of oleanolic acid with ternary soliddispersions, AAPS PharmSciTech,2007,8(4): E1~E5
    [109] Young CR, Dietzsch C, Cerea M, et al., Physicochemical characterization andmechanisms of release of theophylline from melt-extruded dosage forms based on amethacrylic acid copolymer, International Journal of Pharmaceutics,2005,301:112~120
    [110] Yallapu MM, Jaggi M, Chauhan SC, β-cyclodextrin-curcumin self-assemblyenhances curcumin delivery in prostate cancer cells, Colloids and Surfaces B:Biointerfaces,2010,79:113~125
    [111] Sinha S, Ali M, Baboota S, et al., Solid dispersion as an approach forbioavailability enhancement of poorly water-soluble drug ritonavir, AAPSPharmSciTech,2011,11(2):518~527
    [112]赵仁宏,贺圣文,王守训,等,多指标的正交设计及分析方法的合理应用,数理医药学杂志,2003,16(5):423~425
    [113]危华玲,蒙大平,郭炎荣,苦丁茶含片的处方优化,时珍国医国药,2006,17(11):2171~2173
    [114]韩可勤,杨静化,刘晓东,药学应用概率统计,南京:东南大学出版社,2000,123~131
    [115]国家药典委员会,中华人民共和国药典,2005版,二部,北京:化学工业出版社,2005,附录181
    [116] Rojtanatanya S, Pongjanyakul T, Propranolo-magnesium aluminum silicatecomplex dispersions and particles: characterization and factors influencing drugrelease, International Journal of Pharmaceutics,2010,383:106~115
    [117] Maiti K, Mukherjee K, Gantait A, et al., Curcumin-phospholipid complex:preparation, therapeutic, evaluation and pharmacokinetic study in rats, InternationalJournal of Pharmaceutics,2007,330:155~163
    [118] Anand P, Kunnumakkara AB, Newman RA, et al., Bioavailability of curcumin:problems and promises, Molecular Pharmaceutics,2007,4(6):807~818
    [119] Takahashi M, Uechi S, Takara K, et al., Evaluation of an oral carrier system inrats: bioavailability and antioxidant properties of liposome-encapsulated curcumin,Journal of Agricultural and Food Chemistry,2009,57:9141~9146
    [120] Takka S, Sakr A, Goldberg A, Development and validation of an in vitro-in vivocorrelation for buspirone hydrochloride extended release tablets, Journal ofControlled Release,2003,88:147~157