改性天然菱铁矿除砷性能与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高砷地下水的治理技术已成为世界规模的全球性问题,研发经济高效的新型除砷吸附材料迫在眉睫。本文以天然菱铁矿粉末(NS)为基体通过湿法挤压造粒并灼烧改性的方法制备改性天然菱铁矿颗粒,并结合不同改性产物的除砷实验结果,确定最优改性条件为:在固液比为5g NS:1mL去离子水,添加铝溶胶的量为10mg Al/g NS条件下湿法挤压造粒,并在马弗炉中控温350℃灼烧90min。XRD、FTIR、XANES等表征分析结果一致表明,最优改性天然菱铁矿是晶格结构相对于天然矿物发生改变并活性增强的菱铁矿和赤铁矿的二元体。
     以最优改性天然菱铁矿(MGNS)作为除砷吸附剂,通过室内批实验系统地研究其对As(III)和As(V)的吸附性能。结果表明,改性天然菱铁矿突破了天然菱铁矿吸附平衡时间长、吸附容量低的瓶颈,对As(III)、As(V)的吸附平衡时间分别为24h、36h,等温吸附研究得到改性天然菱铁矿除砷的吸附过程为自发进行的吸热反应,25℃时其对As(III)、As(V)的最大饱和吸附量分别可达2.66、2.19mg/g。改性天然菱铁矿对溶液pH值具有良好的缓冲能力,其除砷性能基本不受溶液pH值、溶解氧、背景电解质及共存阴离子、Ca/Mg阳离子及溶解性有机物等典型高砷地下水水化学特征因素的影响,对砷表现出较高的选择吸附性。
     采用小型动态柱实验及现场中试对改性天然菱铁矿的动态除砷效果进行评价。柱实验结果表明,改性天然菱铁矿填充吸附柱对去离子水或自来水配制的As(III)溶液均有较好的去除效果,且不受原水中As(III)初始浓度的影响。当出水穿透浓度为50μg/L的农村地区饮用水标准限值时,填充吸附剂吸附容量均约为1.2mg/g。相比而言,改性天然菱铁矿对As(V)的动态处理效果远不如As(III)。尽管现场中试处理高砷地下水以As(III)为主,但吸附剂及原水水质因素的影响使其处理效果与室内柱实验结果相差较大。TCLP吸附剂浸出性评价结果表明,除砷后改性天然菱铁矿化学性质稳定,可进行安全填埋处置。
     除砷机理研究表明,改性天然菱铁矿去除As(III)的过程是一个吸附并快速Fenton氧化As(III)的过程,而As(V)则是通过与Fe(III)活性产物表面的羟基或-CO3等官能团进行配位体交换,并在吸附剂表面生成双齿双核络合物而去除的。
Arsenic removal from high-As groundwater is of serious concern and hasbecome an important global problem. It is an urgent and challenging issue to developeconomic and efficient materials for As removal from As-contaminated groundwater.This study was carried out to investigate the possibility of using the fine size ofnatural siderite (NS) as the major components in fabricating modified granular naturalsiderite (MGNS) for As removal, which were synthesized by addition of alumina sol,extrusion granulation, and calcinations. The calcinated strips were manually cut intoparticles with length of1.0~2.0cm. The modification greatly improved the adsorptioncapacity of the material. Results of As removal by different modified granularadsorbents showed that the maximum removal efficiency was reached with anadhesive dosage of10mg Al/g NS and calcination temperature of350℃for90minutes. Results of XRD, FTIR, and Fe K-edge XANES analysis showed that sideritewas partially transformed into hematite in the process of modification, and MGNSwas considered as an Fe(II)/(III) hybrid system.
     Modified granular natural siderite was evaluated for adsorption characteristics bymeans of batch tests. Results showed that MGNS had higher adsorption rate andcapacity for As(III)/As(V) in comparison with natural siderite. Arsenic(III) and As(V)adsorption achieved equilibrium at24h and36h, respectively, with adsorptioncapacity estimated from Langmuir isotherm at25℃of2.66mg/g and2.19mg/g,respectively. Thermodynamic studies indicated that As(III)/As(V) adsorption onMGNS was spontaneous, favorable, and endothermic. In addition, MGNS adsorbedAs(III)/As(V) efficiently in a relatively wide pH. Effects of dissolved organic matter,Ca/Mg cations, background electrolyte, and coexisting anions were not significantwithin the concentration ranges observed in high As groundwater.
     Column study of As adsorption on MGNS demonstrated that MGNS-packedcolumn reactor removed As(III) more efficiently than As(V). A mass balancecalculation indicated that total As load in any As(III)-treated columns was around1.2mg/g before the Chinese drinking water standard in rural areas of50μg/L As was broken through. Field pilot test indicated that removal efficiency on MGNS from realhigh-As groundwater was relatively lower compared to As(III)-spiked DI water, eventhough As(III) was the dominant As species in the natural groundwater. The TCLP(toxicity characteristic leaching procedure) results suggest that the spent adsorbentsgenerated in the column filters were inert and could be landfilled.
     Results of studies on As removal mechanism indicated that adsorption andheterogeneous oxidation of As(III) were believed to be the main mechanism of As(III)removal by MGNS, and As(V) should be predominantly adsorbed on MGNS viainner-sphere bidendate binuclear surface complexes, as a result of the ligand exchangereactions between surface OH or CO3groups and solution arsenate anions.
引文
Afkar E., Lisak J., Saltikov C., et al. The respiratory arsenate reductase from Bacillusselenitireducens strain MLS10[J]. Fems Microbiology Letters,2003,226(1):107-112.
    Acharyya S. K., Chakraborty P., Lahiri S., et al. Arsenic poisoning in the Ganges delta [J]. Nature,1999,401(6753):545.
    Aguirre R. J., Banerjee K., Balczewski A., et al. Arsenic adsorption technology—A review oflong-term performance in full-scale applications from Stadtoldendorf to Phoenix. In:Bundschuh J., Armienta M. A., Bhattacharya P., et al.(Eds) Natural Arsenic in Groundwaterof Latin America. Freiberg: Bergakademie, Abstract Volume,2006.
    Amonette J. E., Templeton J. C. Improvements to the quantitative assay of nonrefractory mineralsfor Fe(II) and total Fe using1,10phenanthroline [J]. Clays and Clay Minerals,1998,46(1):51-62.
    Amstaetter K., Borch T., Larese-Casanova P., et al. Redox Transformation of Arsenic byFe(II)-Activated Goethite (α-FeOOH)[J]. Environmental Science and Technology,2010,44(1):102-108.
    Andradae S., Hypolito R., Ulbrich H. H. G. J., et al. Iron(II) oxide determination in rocks andminerals [J]. Chemical Geolology,2002,182(1),85-89.
    Appelo C. A. J., Postma D. Geochemistry, groundwater and pollution [M]. Leiden: BalkemaPublishers,1996.
    Appelo C. A. J., Van der Weiden M. J. J., Tournassat C., et al. Surface complexation of ferrousiron and carbonate on ferrihydrite and the mobilization of arsenic [J]. Environmental Scienceand Technology,2002,36(14):3096-3103.
    Argos M., Kalra T., Rathouz P. J., et al. Arsenic exposure from drinking water, and all-cause andchronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study [J]. Lancet,2010,376(9737):252-258.
    Banerjee K., Amy G. L., Prevost M., et al. Kinetic and thermodynamic aspects of adsorption ofarsenic onto granular ferric hydroxide (GFH)[J]. Water Research,2008,42:3371-3378.
    Bang S., Korfiatis G. P., Meng X. Removal of arsenic from water by zero-valent iron [J]. Journalof Hazardous Materials,2005,121(1-3):61-67.
    Beak D. G., Wilkin R. T. Performance of a zerovalent iron reactive barrier for the treatment ofarsenic in groundwater: Part2. Geochemical modeling and solid phase studies [J]. Journal ofContaminant Hydrology,2009,106(1-2):15-28.
    Beaulieu B., Ramirez R. E. Arsenic remediation field study using a sulfate reduction andzero-valent iron PRB [J]. Ground Water Monitoring and Remediation,2013,33(2):85-94.
    Berg M., Trang P. T. K., Stengel C., et al. Hydrological and sedimentary controls leading toarsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenicratios, peat, river bank deposits, and excessive groundwater abstraction [J]. ChemicalGeology,2008,249(1-2):91-112.
    Bortun A., Bortun M., Pardini J., et al. Synthesis and characterization of a mesoporous hydrouszirconium oxide used for arsenic removal from drinking water [J]. Materials ResearchBulletin,2010,45(2):142-148.
    Catherine A. W., Matthew J. E. Kinetics of arsenic adsorption on goethite in the presence ofsorbed silicic acid [J]. Soil Science Society of America Journal,2002,66(3):818-825.
    Chauhan V S, Dwivedi P K, Iyengar L.2007. Investigations on activated alumina based domesticdefluoridation units[J]. Journal of Hazardous Materials,139(1):103-107.
    Chen T., Wei C., Huang Z., et al. Arsenic hyperaccumulator Pteris Vittata L. and its arsenicaccumulation [J]. Chinese Science Bulletin,2002,47(11):902-905.
    Choong T. S. Y., Chuah T. G., Robiah Y., et al. Arsenic toxicity, health hazards and removaltechniques from water: an overview [J]. Desalination,2007,217(1-3):139-166.
    Chowdhury S. R., Yanful E. K. Arsenic removal from aqueous solutions by adsorption onmagnetite nanoparticles [J]. Water and Environment Journal,2011,25,429-437.
    Chowdhury T. R., Basu G. K., Mandal B. K., et al. Arsenic poisoning in the Ganges delta [J].Nature,1999,401(6753):545-546.
    Cullen W. R., Reimer K. J. Arsenic speciation in the environment [J]. Chemical Reviews,1989,89(4):713-764.
    Dixit S., Hering J. G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:Implications for arsenic mobility [J]. Environmental Science and Technology,2003,37:4182-4189.
    Dou X. M., Zhang Y., Yang M., et al. Occurrence of arsenic in groundwater in the suburbs ofBeijing and its removal using an iron–cerium bimetal oxide adsorbent [J]. Water QualityReseach Journal of Canada,2006,41(2):140-146.
    Fan X., Parker D. J., Smith M. D. Adsorption kinetics of fluoride on low cost materials [J]. WaterResearch,2003,37(20):4929-4937.
    Farquhar M. L., Charnock J. M., Livens F. R., et al. Mechanisms of arsenic uptake from aqueoussolution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-rayabsorption spectroscopy study [J]. Environmental Science and Technology,2002,36(8):1757-1762.
    Fendorf S., Michael H. A., van Geen A. Spatial and temporal variations of groundwater arsenic inSouth and Southeast Asia [J]. Science,2010,328(5982):1123-1127.
    Foo K. Y., Hameed, B. H. Insights into the modeling of adsorption isotherm systems [J]. ChemicalEngineering Journal,2010,156(1),2-10.
    Giménez J., Martínez M., de Pablo J., et al. Arsenic sorption onto natural hematite, magnetite, andgoethite [J]. Journal of Hazardous Materials,2007,141(3):575-580.
    Goldberg S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals [J]. SoilScience Society of America Journal,2002,66(2):413-421.
    Goldberg S., Johnston C. T. Mechanism of arsenic adsorption on amorphous oxides evaluatedusing macroscopic measurements, vibrational spectroscopy, and surface complexationmodeling [J]. Journal of Colloid and Interface Science,2001,234(1):204-216.
    Grafe M., Eick M. J., Grossl P. R. Adsorption of arsenate(V) and arsenite(III) on goethite in thepresence and absence of dissolved organic carbon [J]. Soil Science Society of AmericaJournal,2001,65(6):1680-1687.
    Guan X. H., Ma J., Dong H. R., et al. Removal of arsenic from water: Effect of calcium ions onAs(III) removal in the KMnO4-Fe(II) process [J]. Water Research,2009,43(20):5119-5128.
    Guan X. H., Wang J., Chusuei C. C. Removal of arsenic from water using granular ferrichydroxide: Macroscopic and microscopic studies [J]. Journal of Hazardous Materials,2008,156(1-3):178-185.
    Guo H. M., Li Y., Zhao K. Arsenate removal from aqueous solution using synthetic siderite [J].Journal of Hazardous Materials,2010,176:174-180.
    Guo H. M., Li Y., Zhao K. et al. Removal of arsenite from water by synthetic siderite: Behaviorsand mechanisms. Journal of Hazardous Materials,2011,186,1847-1854.
    Guo H. M., Ren Y., Liu Q., et al. Enhancement of arsenic adsorption during mineraltransformation from siderite to goethite: Mechanism and application [J]. EnvironmentalScience and Technology,2013,47,1009-1016.
    Guo H. M., Stüben D., Berner Z. Adsorption of arsenic(III) and arsenic(V) from groundwaterusing natural siderite as the adsorbent [J]. Journal of Colloid and Interface Science,2007a,315(1):47-53.
    Guo H. M., Stüben D., Berner Z. Arsenic removal from water using natural iron mineral-quartzsand columns [J]. Science of the Total Environment,2007b,377(2-3):142-151.
    Guo H. M., Stüben D., Berner Z. Removal of arsenic from aqueous solution by natural siderite andhematite [J]. Applied Geochemistry,2007c,22(5):1039-1051.
    Guo H. M., Wen D. G., Liu Z. Y., et al. A review of high arsenic groundwater in Mainland andTaiwan, China: Distribution, characteristics and geochemical processes [J]. AppliedGeochemistry,2014,41:196-217.
    Guo H. M., Yang S., Tang X., et al. Groundwater geochemistry and its implications for arsenicmobilization in shallow aquifers of the Hetao Basin, Inner Mongolia [J]. Science of the TotalEnvironment,2008,393(1):131-144.
    Gupta V. K., Saini V. K., Jain N. Adsorption of As(III) from aqueous solutions by ironoxide-coated sand [J]. Journal of Colloid and Interface Science,2005,288(1):55-60.
    Hasan M. A., Bhattacharya P., Sracek O., et al. Geological controls on groundwater chemistry andarsenic mobilization: Hydrogeochemical study along an E-W transect in the Meghna basin,Bangladesh [J]. Journal of Hydrology,2009,378(1-2):105-118.
    Hery M., van Dongen B. E., Gill F., et al. Arsenic release and attenuation in low organic carbonaquifer sediments from West Bengal [J]. Geobiology,2010,8(2):155-168.
    Ho Y. S., Mckay G. Pseudo-second order model for sorption processes [J]. Process Biochemistry,1999,34(5):451-465.
    Hug S. J., Leupin O. Iron-catalyzed oxidation of arsenic(III) by oxygen and hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction [J]. Environmental Science andTechnology,2003,37(12):2734-2742.
    Hughes M. F., Beck B. D., Chen Y., et al. Arsenic exposure and toxicology: A historicalperspective [J]. Toxicological Sciences,2011,123(2):305-332.
    Jia Y. F., Xu L. Y., Wang X., et al. Infrared spectroscopic and X-ray diffraction characterization ofthe nature of adsorbed arsenate on ferrihydrite [J]. Geochimica et Cosmochimica Acta,2007,71(7):1643-1654.
    Jing C. Y., Liu S. Q., Patel M., et al. Arsenic leachability in water treatment adsorbents [J].Environmental Science and Technology,2005,39(14):5481-5487.
    Kanel S. R., Manning B., Charlet L., et al. Removal of arsenic(III) from groundwater by nanoscalezero-valent iron [J]. Environmental Science and Technology,2005,39:1291-1298.
    Katsoyiannis I. A., Ruettimann T., Hug S. J. pH dependence of Fenton reagent generation andAs(III) oxidation and removal by corrosion of zero valent iron in aerated water [J].Environmental Science and Technology,2008,42(19):7424-7430.
    Katsoyiannis I. A., Zouboulis A. I. Application of biological processes for the removal of arsenicfrom groundwaters [J]. Water Research.2004,38(1):17-26.
    Keon N. E., Swartz C. H., Brabander D. J., et al. Validation of an arsenic sequential extractionmethod for evaluating mobility in sediments [J]. Environmental Science and Technology,2001,35:2778-2784.
    Ko I., Davis A. P., Kim J. Y., et al. Effect of contact order on the adsorption of inorganic arsenicspecies onto hematite in the presence of humic acid [J]. Journal of Hazardous Materials,2007,141,53-60.
    Korte N. E., Fernando Q. A review of arsenic(III) in groundwater [J]. Critical Reviews inEnvironmental Control,1991,21(1):1-39.
    Krehula S., tefani G., Zadro K., et al. Synthesis and properties of iridium-doped hematite(α-Fe2O3)[J]. Journal of Alloys and Compounds,2012,545:200-209.
    Kundu S., Gupta A. K. Adsorption characteristics of As(III) from aqueous solution on iron oxidecoated cement (IOCC)[J]. Journal of Hazardous Materials,2007,142:97-104.
    Lackovic J. A., Nikolaidis N.P., Dobbs G. M. Inorganic arsenic removal by zero-valent iron [J].Environmental Engineering Science,2000,17(1):29-39.
    Lagergren S. About the theory of so-called adsorption of soluble substances [J]. Kungliga SvenskaVetenskapsakademiens Handlingar Band,1989,24(4):1-39.
    Lakshmipathiraj P., Narasimhan B. R. V., Prabhakar S., et al. Adsorption of arsenate on syntheticgoethite from aqueous solutions [J]. Journal of Hazardous Materials,2006,136(2):281-287.
    Lee K. J., Lee Y., Yoon J., et al. Assessment of zero-valent iron as a permeable reactive barrier forlong-term removal of arsenic compounds from synthetic water [J]. EnvironmentalTechnology,2009,30(13):1425-1434.
    Li Z. J., Deng S. B., Yu G., et al. As(V) and As(III) removal from water by a Ce–Ti oxideadsorbent: Behavior and mechanism [J]. Chemical Engineering Journal,2010,161(1-2):106-113.
    Li Z., Jean J. S., Jiang W. T., et al. Removal of arsenic from water using Fe-exchanged naturalzeolite [J]. Journal of Hazardous Materials,2011,187(1-3):318-323.
    Lien H. L., Wilkin R. T. High-level arsenite removal from groundwater by zero-valent iron [J].Chemosphere,2005,59(3):377-386.
    Lin Z., Puls R. W. Adsorption desorption and oxidation of arsenic affected by clay minerals andaging process [J]. Environmental Geology,2000,39(7):753-759.
    Ludwig R. D., Smyth D. J. A., Blowes D. W., et al. Treatment of arsenic, heavy metals, and acidityusing a mixed ZVI-compost PRB [J]. Environmental Science and Technology,2009,43(6):1970-1976.
    Luo T., Hu S., Cui J. L., et al. Comparison of arsenic geochemical evolution in the Datong Basin(Shanxi) and Hetao Basin (Inner Mongolia), China [J]. Applied Geochemistry,2012,27:2315-2323.
    Lytle D. A., Sorg T. J., Snoeyink V. L. Optimizing arsenic removal during iron removal:Theoretical and practical considerations [J]. Journal of Water Supply: Research andTechnology-AQUA,2005,54(8):545-560.
    Ma L., Komar K. M., Tu C., et al. A fern that hyperaccumulates arsenic—A hardy, versatile,fast-growing plant helps to remove arsenic from contaminated soils [J]. Nature,2001,409(6820):579-579.
    Mandal B. K., Suzuki K. T. Arsenic round the world: a review [J]. Talanta,2002,58(1):201-235.
    Masue Y., Loeppert R. H., Kramer T. A. Arsenate and arsenite adsorption and desorption behavioron coprecipitated aluminum:iron hydroxides [J]. Environmental Science and Technology,2007,41:837-842.
    McArthur J. M., Ravenscroft P., Safiulla S., et al. Arsenic in groundwater: Testing pollutionmechanisms for sedimentary aquifers in Bangladesh [J]. Water Resources Research,2001,37(1):109-117.
    McArthur J. M., Banerjee D. M., Hudson-Edwards K. A., et al. Natural organic matter insedimentary basins and its relation to arsenic in anoxic ground water: The example of WestBengal and its worldwide implications [J]. Applied Geochemistry,2004,19(8):1255-1293.
    Meng X. G., Bang S. B., Korfiatis G. P. Effects of silicate, sulfate, and carbonate on arsenicremoval by ferric chloride [J]. Water Research,2000,34:1255-1261.
    Meng X. G., Korfiatis G. P., Bang S. B., et al. Combined effects of anions on arsenic removal byiron hydroxides [J]. Toxicology Letters,2002,133:103-111.
    Mohan D., Pittman Jr. C. U. Arsenic removal from water/wastewater using adsorbents—Acritical review [J]. Journal of Hazardous Materials,2007,142(1-2):1-53.
    Mukherjee A., Bhattacharya P., Shi F., et al. Chemical evolution in high arsenic groundwater inHuhhot basin (Inner Mongolia, P.R. China) and its difference from Western Bengal basin(India)[J]. Applied Geochemistry,2009,24(10):1835-1851.
    Müller K., Ciminelli V. S. T., Dantas M. S. S., et al. A comparative study of As(III) and As(V) inaqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy [J]. WaterResearch,2010,44:5660-5672.
    Nickson R. T., McArthur J. M., Burgess W., et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature,1998,395(6700):338.
    Nickson R. T., McArthur J. M., Ravenscroft P., et al. Mechanism of arsenic release to groundwater,Bangladesh and West Bengal [J]. Applied Geochemistry,2000,15(4):403-413.
    Nordstrom D. K. Worldwide occurrences of arsenic in ground water [J]. Science,2002,296(5576):2143-2145.
    Ohe K., Tagai Y., Nakamura S., et al. Adsorption behavior of arsenic(III) and arsenic(V) usingmagnetite [J]. Journal of Chemical Engineering of Japan,2005,38(8):671-676.
    Ona-Nguema G., Morin G., Wang, Y. H., et al. XANES evidence for rapid arsenic(III) oxidation atmagnetite and ferrihydrite surfaces by dissolved O2via Fe2+-mediated reactions [J].Environmental Science and Technology,2010,44:5416-5422.
    O’Reilly S. E., Strawn D. G., Sparks D. L. Residence time effects on arsenateadsorption/desorption mechanisms on goethite [J]. Soil Science Society of America Journal,2001,65(1):67-77.
    Pang S. Y., Jiang J., Ma J. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zerovalent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fentonreaction [J]. Environmental Science and Technology,2011,45(1):307-312.
    Peyton G. R., Holm T. R., Shim J. Development of Low Cost Treatment Options for ArsenicRemoval in Water Treatment Facilities. Illinois State Water Survey, MTAC Publication,TR06-03,2006.
    Pontius F. W., Brown K. G., Chen C. J. Health implications of arsenic in drinking-water [J].Journal American Water Works Association,1994,86(9):52-63.
    Postma D., Larsen F., Hue N. T. M., et al. Arsenic in groundwater of the Red River floodplain,Vietnam: Controlling geochemical processes and reactive transport modeling [J]. Geochimicaet Cosmochimica Acta,2007,71(21):5054-5071.
    Qiao J. L., Jiang Z., Sun B., et al. Arsenate and arsenite removal by FeCl3: Effects of pH, As/Feratio, initial As concentration and co-existing solutes [J]. Separation and PurificationTechnology,2012,92:106-114.
    Ramaswami A., Tawachsupa S., Isleyen M. Batch-mixed iron treatment of high arsenic waters [J].Water Research,2001,35(18):4474-4479.
    Randall S. R., Sherman D. M., Ragnarsdottir K. V. Sorption of As(V) on green rust(Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (g-FeOOH): Surface complexes fromEXAFS spectroscopy [J]. Geochimica et Cosmochimica Acta,2001,65(7):1015-1023.
    Ravel B., Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorptionspectroscopy using IFEFFIT [J]. Journal of Synchrotron Radiation,2005,12:537-541.
    Rodríguez-Lado L., Sun G. F., Berg, M., et al. Groundwater arsenic contamination throughoutChina [J]. Science,2013,341(6148):866-868.
    Sing K. S. W., Everett D. H., Haul R. A. W., et al. Reporting physisorption data for gas/solidsystems with special reference to the determination of surface area and porosity [J]. Pure andApplied Chemistry,1985,57(4):603-619.
    Smedley P. L., Kinniburgh D. G. A review of the source, behaviour and distribution of arsenic innatural waters [J]. Applied Geochemistry,2002,17(5):517-568.
    Smith S. D., Edwards M. The influence of silica and calcium on arsenate sorption to oxidesurfaces [J]. Journal of Water Supply Research and Technology,2005,54(4):201-211.
    Song S., Lopez-Valdivieso A., Hernandez-Campos D. J., et al. Arsenic removal from high-arsenicwater by enhanced coagulation with ferric ions and coarse calcite [J]. Water Research,2006,40(2):364-372.
    Su C. M., Puls R. W. Arsenate and arsenite removal by zerovalent iron: kinetics, redox,transformation, and implications for in situ groundwater remediation [J]. EnvironmentalScience and Technology,2001,35(7):1487-1492.
    Su C. M., Puls, R.W. Significance of iron (II,III) hydroxycarbonate green rust in arsenicremediation using zerovalent iron in laboratory column test [J]. Environmental Science andTechnology,2004,38:5224-5231.
    Su C. M., Puls, R.W. Arsenate and arsenite sorption on magnetite: Relations to groundwaterarsenic treatment using zerovalent iron and natural attenuation [J]. Water, Air and SoilPollution,2008,193(1-4):65-78.
    Sun G. F. Arsenic contamination and arsenicosis in China [J]. Toxicology and AppliedPharmacology,2004,198(3):268-271.
    Suzuki T. M., Bomani J. O., Matsunaga H., et al. Preparation of porous resin loaded withcrystalline hydrous zirconium oxide and its application to the removal of arsenic [J]. Reactive&Functional Polymers,2000,43(1-2):165-172.
    Tchounwou P. B., Patlolla A. K., Centeno J. A. Carcinogenic and systemic health effectsassociated with arsenic exposure—A critical review [J]. Toxicologic Pathology,2003,31(6):575-588.
    Thirunavukkarasu O.S., Viraraghavan T., Subramanian K.S. Arsenic removal from drinking waterusing granular ferric hydroxide [J]. Water SA,2003a,29:161-170.
    Thirunavukkarasu O. S., Viraraghavan T., Subramanian K. S. Arsenic removal from drinkingwater using iron oxide-coated sand [J]. Water, Air, and Soil Pollution,2003b,142(1-4):95-111.
    USEPA. Toxicity Characteristics Leaching Procedure [S]. Washington, DC: Method1311,1992.
    USEPA. Permeable Reactive Barrier Technologies for Contaminant Remediation [R]. Washington,DC: EPA/600/R-98/125,1998.
    USEPA. Technologies and Costs for Removal of Arsenic from Drinking Water [R]. Washington,DC: EPA/815/R-00-028,2000.
    USEPA. Assessing arsenic removal by metal (hydr)oxide adsorptive media using rapid small scalecolumn tests [R]. Washington, DC: EPA/600/R-08/051,2008.
    van Geen A., Radloff K., Aziz Z., et al. Comparison of arsenic concentrations insimultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam,and Nepal [J]. Applied Geochemistry,2008,23:3244-3251.
    Viraraghavan T., Subramanian K.S., Arduldoss J.A. Arsenic in drinking water—problems andsolutions [J]. Water Science and Technology,1999,40(2):69-76.
    Weber Jr W. J., Morris J. C. Kinetics of adsorption on carbon from solution [J]. Journal of SanitaryEngineering Division-Proceedings of American Society of Civil Engineers,1963,89(2):31-42.
    WHO. Guidelines for drinking-water quality. Volume1: Recommendations,2nd ed. Geneva,Switzerland,1993.
    Wilkin R. T., Acree S. D., Ross R. R., et al. Performance of a zerovalent iron reactive barrier forthe treatment of arsenic in groundwater: Part1. Hydrogeochemical studies [J]. Journal ofContaminant Hydrology,2009,106(1-2):1-14.
    Worasith N., Goodman B. A., Neampan J., et al. Characterization of modified kaolin from theRanong deposit Thailand by XRD, XRF, SEM, FTIR and EPR techniques [J]. Clay Minerals,2011,46(4):539-559.
    Yean S., Cong L., Yavuz C. T., et al. Effect of magnetite particle size on adsorption anddesorption of arsenite and arsenate [J]. Journal of Materials Research,2005,20(12):3255-3264.
    Yu G., Sun D., Zheng Y. Health effects of exposure to natural arsenic in groundwater and coal inChina: An overview of occurrence [J]. Environmental Health Perspectives,2007,115(4):636-642.
    Yuan C., Lien H. L. Removal of arsenate from aqueous solution using nanoscale iron particles [J].Water Quality Research Journal of Canada,2006,41(2):210-215.
    Zhang J., Stanforth R. Slow adsorption reaction between arsenic species and goethite (α-FeOOH):Diffusion or heterogeneous surface reaction control [J]. Langmuir,2005,21(7):2895-2901.
    Zhang G. S., Liu H. J., Qu J. H., et al. Arsenate uptake and arsenite simultaneous sorption andoxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid [J].Journal of Colloid and Interface Science,2012,36:141-146.
    Zhang W., Singh P., Paling E., et al. Arsenic removal from contaminated water by natural ironores [J]. Minerals Engineering,2004,17(4):517-524.
    Zhang Y., Dou X. M., Zhao B., et al. Removal of arsenic by a granular Fe-Ce oxide adsorbent:Fabrication conditions and performance [J]. Chemical Engineering Journal,2010,162(1):164-170.
    Zhao H., Stanforth R. Competitive adsorption of phosphate and arsenate on goethite [J].Environmental Science and Technology,2001,35(24):4753-4757.
    Zhao K., Guo H. M. Behavior and mechanism of arsenate adsorption on activated natural siderite:evidences from FTIR and XANES analysis [J]. Environmental Science and PollutionResearch,2014,21:1944-1953.
    Zhao Z. X., Jia Y. F., Xu L. Y., et al. Adsorption and heterogeneous oxidation of As(III) onferrihydrite [J]. Water Research,2011,45:6496-6504.
    Zouboulis A.I., Kydros K.A., Matis K.A. Arsenic(III) and arsenic(V) removal from solutions bypyrite fines [J]. Separation Science and Technology,1993,28(15-16):2449-2463.
    伯英,罗立强.内蒙古河套地区水体中砷的地球化学特征[J].生态与农村环境学报,2010,26(1):31-34.
    陈春宁,石林,熊正为,等. Fe0对饮用水中砷的去除效率及影响因素[J].安全与环境学报,2007,7(4):46-49.
    陈锴,李义连,杨国栋,等.腐殖酸对As(V)在覆铁砂介质中吸附行为的影响[J].环境化学,2010,29(2):231-236.
    崔亚伟,刘云根.污染地下水原位处理PRB技术研究进展[J].地下水,2009,31(141):100-102.
    丁爱中,陈海英,程莉蓉,等.地下水除砷技术的研究进展[J].安徽农业科学,2008,36(27):11979-11982.
    丁亮,陈焕新,黄承武.美国Albuquerque市的地下水除砷方法介绍[J].地方病通报,2001,16(2):108-110.
    丁世敏,封享华,汪玉庭,等.交联壳聚糖多孔微球对染料的吸附平衡及吸附动力学分析[J].分析科学学报,2005,21(2):127-130.
    豆小敏,张昱,杨敏,等.砷在金属氧化物/水界面上的吸附机制Ⅱ.电荷分布多位络合模型模拟[J].环境科学学报,2006,26(10):1592-1599.
    关小红,李修华,姜利,等.氧化-混凝法去除水中As(III)的研究进展[J].环境科学与技术,2009,32(8):88-100.
    郭华明,郭琦,贾永锋,等.中国不同区域高砷地下水化学特征及形成过程[J].地球科学与环境学报,2013,35(3):83-96.
    郭华明,杨素珍,沈照理.富砷地下水研究进展[J].地球科学进展,2007,22(11):1109-1117.
    郭学军,陈甫华.载铁棉纤维素吸附剂固定床去除地下水砷[J].化工学报,2005,56(9):1757-1764.
    胡立刚,蔡勇.砷的生物地球化学[J].化学进展,2009,21(2-3):458-466.
    黄鑫,高乃云,刘成,等.饮用水除砷工艺研究进展[J].净水技术,2007,26(5):37-41.
    贾永锋,郭华明.高砷地下水研究的热点及发展趋势[J].地球科学进展,2013,28(1):51-61.
    贾彦忠,王祥臻,胡长松,等.菱铁矿的烧结特性[J].钢铁研究学报,2011,23(12):22-26.
    金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查[J].卫生研究,2003,32(6):519-539.
    李坤权,郑正,罗兴章,等. KOH活化微孔活性炭对对硝基苯胺的吸附动力学[J].中国环境科学,2010,30(2):174-179.
    李莉,王业耀,孟凡生.饮用水中砷去除技术综述[J].四川环境,2008,27(1):87-90.
    李曼尼,杨睿媛,吴瑞凤,等.微波法磷改性斜发沸石的结构及水中除砷的研究[J].环境化学,2003,22(6):591-595.
    李晓波.饮用水除砷技术研究进展[J].环境工程学报,2009,3(5):777-781.
    李晓波,吴水波,顾平.铁盐和铝盐混凝微滤工艺除As(V)的比较研究[J].环境科学,2007,28(10):2198-2202.
    李增新,李俊,王国明,等.天然沸石负载壳聚糖去除水中砷的研究[J].现代化工,2007,27(增刊):196-197.
    廖立兵, Fraser D. G.羟基铁溶液-蒙脱石体系对砷的吸附[J].中国科学D辑—地球科学,2005,35(8):750-757.
    鲁安怀.环境矿物材料研究方向[J].岩石矿物学杂志,1997,16(4):184-187.
    陆泗进,谭文峰,刘凡,等.一种改进的盐滴定法测定氧化锰矿物的电荷零点[J].土壤学报,2006,43(5):756-763.
    罗婷,景传勇.地下水砷污染形成机制研究进展[J].环境化学,2011,30(1):77-83.
    孟园园,王琦,金志杰.膨润土的改性及其在污水治理中的应用[J].污染与防治技术,2008,21(3):53-57.
    欧阳通.稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[J].环境科学,2004,25(增刊):43-47.
    彭书传,杨远胜,陈天虎,等.铝镁阴离子粘土对砷酸根离子的吸附作用[J].硅酸盐学报,2005,33(8):1023-1027.
    商平,孙恩呈,李海明,等.环境矿物材料处理砷(As)污染水的研究进展[J].岩石矿物学杂志,2008,27(3):232-240.
    王楠,梁成华,杜立宇,等.柱撑蒙脱石对水中砷(V)的吸附研究[J].工业水处理,2009,29(7):31-35.
    王晓伟,席北斗,霍守亮,等.膜技术在饮用水除砷中的应用研究进展[J].水处理技术,2011,37(6):15-18.
    王永华,刘文荣.矿物学[M].北京:地质出版社,1985,197.
    席北斗,王晓伟,霍守亮,等.纳滤膜技术在地下水除砷应用中的研究进展[J].环境工程学报,2012,6(2):353-360.
    张海燕,张帆,马新宾,等.紫外光强化钛柱撑型蒙脱土除砷吸附剂的研制[J].化学工业与工程,2007,24(3):199-202.
    张微,王骋,于光前,等.2010年全国饮水型地方性砷中毒监测报告[J].中国地方病学杂志,2012,31(1):55-59.
    张昱,杨敏,王桂燕,等.利用稀土基无机合成材料去除饮用水中砷的研究[J].环境化学,2001,20(1):70-75.
    赵安珍,徐仁扣.二氧化锰As(III)的氧化及其对针铁矿去除水体中As(III)的影响[J].环境污染与防治,2006,28(4):252-253.
    赵锋,蒋丽,胡思琴.贵州省赫章县菜园子菱铁矿床地质特征及成因探讨[J].广东科技,2009,219(16):298-300.
    赵凯,郭华明,李媛,等.天然菱铁矿改性及强化除砷研究[J].环境科学,2012,33(2):123-132.
    中国地下水科学战略研究小组.中国地下水科学的机遇与挑战[M].北京:科学出版社,2009.
    郑文飞.发展中国家饮用水除砷技术探讨[J].化学工程与装备,2009,10:182-185.