溶菌酶—聚乳酸复合微球的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸作为优良的生物相容性和可生物降解性的聚合物,在药物控释体系得到了广泛的研究;超临界二氧化碳流体技术在细微颗粒的制备方面也具有独特的优点,其应用领域中最受研究者关注的莫过于生物和医药制剂以及特殊聚合物。本文主要采用超临界流体强制分散溶液法(SEDS法)进行聚乳酸药物载体微球的制备,并以溶菌酶为模型研究其在多肽、蛋白类大分子药物给药体系中的应用,为日后超临界流体技术在制备大分子类药物缓释微球方面的应用奠定基础。
     首先,以L-聚乳酸为模型体系,超临界CO_2为抗溶剂,采用SEDS法制备聚乳酸微球。考察了压力、温度、溶液浓度、溶液流速、聚合物分子量等参数对制备微球的形态、粒径及其分布的影响。结果表明:改变工艺参数,可在一定范围内调控微球粒径,所制微球平均粒径0.67μm-6.64μm,有机溶液浓度及其流速为主要影响因素,SEDS过程的最佳操作条件是压力为12 MPa,温度33℃,有机溶液浓度0.5%(w/v),流速0.5 ml-min~(-1)。在实验范围内,聚乳酸微球的粒径随着压力的增大先减小后增大;随温度升高而增大;随浓度增大而变大,且微球的团聚程度增大;随着有机溶液流速变大,聚乳酸微球粒径长大;四种分子量聚乳酸同种条件下制备得微球,分子量为5万、10万的聚乳酸能够形成球形度较好、粒度较均匀的微球。在优化后的操作条件下,又研究了不同方法(超临界CO_2流体抗溶剂法及SEDS法)和混合溶剂对聚乳酸微球形貌及粒径的影响。实验条件一定时,采用二氯甲烷-丙酮混合溶剂及强制分散溶液法制备得较小粒径微球
     其次,利用SEDS法制备溶菌酶粉末;并对制备前后溶菌酶二级结构及活性的变化进行表征;红外光谱及圆二色光谱测试结果表明,经SEDS过程后,溶菌酶的二级结构没有明显变化,活性测试结果表明经SEDS过程后溶菌酶的活性提高了51.2%。
     再次,以溶菌酶作为多肽、蛋白类大分子药物模型,制备了溶菌酶—聚乳酸复合微球。将制备所得溶菌酶粉末用于溶菌酶—聚乳酸复合微球的制备,考察聚乳酸分子量、聚乙二醇(PEG)含量、PEG分子量以及载药量等对复合微球药物释放性能的影响,结果表明:在实验范围内,随着载药量的增大,溶菌酶—聚乳酸复合微球的粒径逐步减小,药物释放速度逐步增大,载药量为8%的微球的球形度及分散度较好;微球的大小随着聚乳酸分子量的增大先增大后减小,药物的释放速度由聚乳酸分子量及复合微球粒径大小共同决定;PEG的含量越高,分子量越大,微球的粒径越小,药物的释放速度越快。
     最后,对聚乳酸药物载体微球进行了体外降解与初步生物学评价实验。采用pH 6.8 PBS作为降解介质对经超临界二氧化碳流体技术制备出的不同分子量的聚乳酸微球进行体外降解实验;同时以MTT法考察了聚乳酸微球。实验结果表明,在37℃的pH 6.8 PBS浸泡10周后,起初表面光滑的聚乳酸微球在表面均出现一定程度的孔洞,但质量及降解介质pH均未发现显著变化,聚乳酸的分子量出现一定程度的下降,且分子量较大的聚乳酸其分子量的下降幅度也较大。MTT实验结果显示,聚乳酸微球无体外细胞毒性,具有良好的生物相容性。
In this study, the drug carries based on PLLA was prepared using solution-enhanced dispersion by supercritical CO_2 (SEDS), and its application in drug delivery for protein drugs was investigated.
     Firstly, microparticles of poly-L-lactide (PLLA) were prepared with SEDS process by using supercritical carbon dioxide as an anti-solvent. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included temperature (33-39°C), pressure (8-16 MPa), PLLA concentration (0.5-1.5%, w/v), flow rate of organic solution (0.5-1.5 ml·min~(-1)), mixing acetone into PLLA dichloromethane solution (1:1, v/v) and different molecular weight of PLLA. The results indicated that concentration of the organic solution and the flow rate of the solution played important roles on the properties of products; the mean particles size was decreased with the decreasing of PLLA concentration or flow rate of organic solution; the temperature and pressure had minor effects on the properties of products, however, the mean particles size was decreased slightly with the increasing of CO_2 density, and the agglomeration of products was increased with the increasing of temperature; the PLLA microparticles with MW of 50 kDa and 100 kDa exhibited rather spherical shape, smooth surface, and narrow particle size distribution. Various microparticles with the mean particle size ranging from 0.64μm to 6.64μm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in the SEDS process with dichloromethane/acetone mixture as solution.
     Secondly, lysozyme was used as macromolecular drug model, the micronization of lysozyme was performed in SEDS process and both the change in the secondary structure and activity of lysozyme were studied. The results of Fourier-transform infrared (FTIR) spectra and Circular Dichoism (CD) spectra both showed that there was no significant change in the secondary structure of lysozyme after SEDS process, while the activity test indicated that its activity was increased 51.2% after this process;
     Thirdly, the micronized lysozyme were used to prepare lysozyme-PLLA microparticles, the effect of molecular weight (MW) of PLLA, Polyethylene Glycol (PEG) ratio, PEG MW and drug loading on the properties of lysozyme-PLLA microparticles were studied. The results indicated that with the increasing of drug loading, PEG ratio, or PEG MW, the particle size of lysozyme-PLLA microparticles decreased, and its rate of drug release increased, while with the increasing of PLLA MW, the particle size of lysozyme-PLLA microparticles increased first and then decreased, and its drug-release rate was controlled by both particle size and PLLA MW.
     Finally, the in vitro degradation of PLLA microparticles was investigated by incubating PLLA microparticles in 37℃pH 6.8 PBS, and the toxicity of PLLA microparticles was measured by MTT assay. It was found that after being incubated for 10 weeks, there were some tiny holes on the surface of PLLA microparticles, the PLLA MW was decreased, the larger was the MW, the bigger was the decreasing scope of MW; the MTT assay demonstrated that the PLLA microparticles had no cytotoxicity, they would be biocompatible.
引文
1.俞耀庭主编.生物医用材料.天津:天津大学出版社,2000
    2.平其能主编.现代药剂学.北京:中国医药科技出版社,1998
    3.陆彬主编.药剂学.北京:中国医药科技出版社,2003
    4.贾伟,高文远主编.药物控释新剂型.北京:化学工业出版社,2005
    5.陆彬主编.药物新剂型与新技术.北京:人民卫生出版社,2005
    6.吕慧侠,周建平.缓、控释给药系统发展概况.机电信息,2004,72(12):54-58
    7.郭圣荣主编.医药用生物降解性高分子材料.北京:化学工业出版社,2004
    8. Hyon SH. Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsci medical journal, 2000, 41(6): 720-734
    9. Anderson JM, Shivc MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews, 1997, 28(1): 5-24
    10. El-Baseir MM, Kellaway IW. Poly(l-lactic acid) microspheres for pulmonary drug delivery: release kinetics and aerosolization studies. International journal of pharmaceutics, 1998, 175(2): 135-145
    11. Andreopoulos AG, Hatzi EC, Doxastakis M. Controlled release systems based on poly (lactic acid): An in vitro and in vivo study. Journal of materials science: materials in medicine, 2000, 11(6): 393-397
    12. Musumecia T, Vcntura CA, Giannonc I, Ruozi B, Montenegro L, Pignatcllo R, Puglisi G. PLA/PLGA nanoparticlcs for sustained release of docctaxel. International journal of pharmaceutics, 2006, 325(1-2): 172-179
    13. Moinard-Checot D, Chevalier Y, Briancon S, Fessi H, Guinebretière S. Nanoparticles for drug delivery: Review of the formulation and process difficulties illustrated by the emulsion-diffusion process. Journal of nanoscience and nanotechnology, 2006, 6(9-10): 2664-2681
    14. McGinity JW, O'Donnell PB. Preparation of microspheres by the solvent evaporation technique. Advanced drug delivery review, 1997, 28(1): 25-42
    15. Jeffer YH, Davis SS, O'Hagan DT. The preparation and characterisation of poly(lactide-co-glycolide) microparticles. I: Oil-in-water emulsion solvent evaporation. International journal of pharmaceutics, 1991, 77(2-3): 169-175
    16. Grandfils C, Flandroy P, Nihant N, Barbette S, Jérome R, Teyssié P, Thibaut A. Preparation of poly (D, L) lactide microspheres by emulsion-solvent evaporation, and their clinical applications as a convenient embolic material. Journal of biomedical materials research, 2004, 26(4): 467-479
    17. Chung TW, Huang YY, Tsai YL, Liu YZ. Effects of solvent evaporation rate on the properties of protein-loaded PLLA and PDLLA microspheres fabricated by emulsion-solvent evaporation process. Journal of microencapsulation, 2002, 19(4): 463-471
    18. Lai MK, Tsiang RCC. Microencapsulation of acetaminophen into poly(L-lactide) by three different emulsion solvent-evaporation methods. Journal of microencapsulation, 2005, 22(3): 261-274
    19. Zhu KJ, Jiang HL, Du XY, Wang J, Xu WX, Liu SF. Preparation and characterization of hCG-loaded polylactide or poly(lactide-co-glycolide) microspheres using a modified water-in-off-in-water (w/o/w) emulsion solvent evaporation technique. Journal of microencapsulation, 2001, 18(2): 247-260
    20. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. Journal of controlled release, 1998, 50 (1-3): 31-40
    21. Schugens C, Laruelle N, Nihant N, Grandfils C, Jerome R, Teyssie P. Effect of the emulsion stability on the morphology and porosity of semicrystalline poly 1-lactide microparticles prepared by w/o/w double emulsion-evaporation. Journal of controlled release, 1994, 32(2): 161-176
    22. Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D,L-lactide microspheres of naltrexone prepared by double emulsion technique. Journal of microencapsulation, 2005, 22(2): 139-151
    23. Mcgee JP, Davis SS, O'Hagan DT. The immunogenicity of a model protein entrapped in poly(lactide-co-glycolide) microparticles prepared by a novel phase separation technique. Journal of controlled release, 1994, 31 (1): 55 -60
    24. Ruiz JM, Tissier B, Benoit JP. Microencapsulatin of peptide: a study of the phase separation of poly(D,L-lactic acid-co-lycolic acid) copolymers 50/50 by silicone oil. International journal of pharmaceutics, 1989, 49(1): 69-77
    25. Zhang JX, Zhu KJ, Chen D. Preparation of bovine serum albumin loaded poly (D, L-lactic-co-glycolic acid) microspheres by a modified phase separation technique. Journal of microencapsulation, 2005, 22(2): 117-126
    26. Voumakis JN, Runstadler PW. Optimization of the microenvironment for mammalian cell culture in flexible collagen microspheres in a fluidized-bed bioreactor. Biotechuology, 1991, 17: 305-326
    27.王晓静,孙志民,田兆君,钱树德.喷雾流化床微料包衣的实验研究.干燥技术与设备,2004,(2):37-39,48
    28. Palmieri GF, Bonacucina G, Di Martino P. Spray drying as a method for microparticulate controlled release systems preparation: advantages and limits. Ⅰ. Water-soluble drugs. Drug development and industrial pharmacy, 2001, 27(3): 195-204
    29. Bodmeier R, Chen HG. Preparation of biodegradable poly(+/-)laetide microparticles using a spray-drying technique. Journal of pharmacy and pharmacology, 1988, 40(11): 754-757
    30. Bittner B, Mader K, Kroll C, Borchert HH, Kissel T. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation. Journal of controlled release, 1999, 59(1): 23-32
    31. Fu YJ, Mi FL, Wong TB, Shyu SS. Characteristic and controlled release of anticancer drug loaded poly (D,L-lactide) microparticles prepared by spray drying technique. Journal of microencapsulation, 2001, 18(6): 733-747
    32. Fu YJ, Shyu SS, Su FH, Yu PC. Development of biodegradable co-poly(d,l-lactic/glycolic acid) microspheres for the controlled release of 5-FU by the spray drying method. Colloids and surfaces B: Biointerfaces, 2002, 25(4): 269-279
    33 Ramesh DV, Tabata Y, Ikada y. Poly (DL-lactic acid) microspheres for controlled drug delivery systems. Indian journal of pharmaceutical sciences, 1998, 60(4): 232-234
    34 Sosnowski S, Gadzinowski M, Slomkowski S. Poly(L,L-lactide) microspheres by ring-opening polymerization. Macromolecules, 1996, 29(13): 4556-4564
    35 Sosnowski S, Gadzinowski M, Slomkowski S, Penczek S. Synthesis of bioerodible poly(ε-caprolactone) latexes and poly(D, L-lactide) microspheres by ring-opening polymerization. Journal of bioactive and compatible polymers, 1994, 9(4): 345-366
    36 Allémann E, Leroux JC, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. pharmaceutical research, 1993, 10(12): 1732-1737
    37 Allémann E, Doelker E, Guruy R. Drug loaded poly(lactic acid) nanoparticles produced by a reversible salting-out process : purification of an injectable dosage form. European journal of pharmaceutics and biopharmaceutics, 1993, 39(1): 13-18
    38 McCarron PA, Donnelly RF, Marouf W. Celecoxib-loaded poly(D, L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. Journal of microencapsulation, 2006, 23(5): 480-498
    39 Urayama H, Kanamori T, Fukushima K, Kimura Y. Controlled crystal nucleation in the melt-crystaLlization of poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Polymer, 2003, 44(19): 5635-5641
    40 Jameela SR, Suma N, Jayakrishnan A. Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. Journal of biomaterials science-polymer edition, 1997, 8(6): 457-466
    41 Lin WJ, Kang WW. Comparison of chitosan and gelatin coated microparticles: prepared by hot-melt method. Journal of microencapsulation, 2003, 20(2): 169-77
    42 Cansel F, Aymonier C, Loppinet-Serani A. Review on materials science and supercritical fluids. Current opinion in solid state and materials science, 2003, 7: 331-340
    43 朱自强主编.超临界流体技术—原理和应用.北京:化学工业出版社,2000
    44 彭英利,马承愚主编.超临界流体技术应用手册.北京:化学工业出版社,2005
    45 Eckert CA, Knutson BL, Debenedetti PG. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383: 313-318
    46 Hauthal WH. Advances with supercritical fluids. Chemosphere, 2001, 43(1): 123-135
    47 Hong HL, He WZ, Suo QL, Shah A. Progress in supereritical fluid precipitation technology used for preparation of microparticles. Progress in chemistry, 2005, 17(5): 789-792
    48 Yeo SD, Kiran E. Formation of polymer particles with supercdtical fluids: A review. The journal of supercritical fluids, 2005, 34(3): 287-308
    49 Pourmortazavi SM, Hajimirsadeghi SS. Application of supereritical carbon dioxide in energetic materials processes: A review. Industrial and engineering chemistry research, 2005, 44(17): 6523-6533
    50 York P. Strategies for particle design using supereritical fluid technologies. Pharmaceutical science and technology today, 1999, 2(11): 430-440
    51 Vemavarapu C, Mollan MJ, Lodaya M, Needham TE. Design and process aspects of laboratory scale SCF particle formation systems. International journal of pharmaceutics, 2005, 292: 1-16
    52 Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey. The journal of supereritical fluids, 2001, 20:179-219
    53 Tomasko DL, Han XM, Liu DH, Gao WH. Supercritical fluid applications in polymer nanocomposites. Current opinion in solid state and materials science, 2003, 7: 407-412
    54 Shariati A, Peters CJ. Recent developments in particle design using supercritical fluids. Current opinion in solid state and materials science, 2003, 7(4-5): 371-383
    55 Fages J, Lochard H, Letourneau JJ, Sauceau M, Rodier E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder technology, 2004, 141: 219-226
    56 Helfgen B, Hils P, Holzknecht C, Turk M, Schaber K. Simulation of particle formation during the rapid expansion of supercritical solutions. Journal of aerosol science, 2001, 32(3): 295-319
    57 Krober H, Teipel U. Microencapsulation of particles using supercritical carbon dioxide. Chemical engineering and processing, 2005, 44: 215-219
    58 Sun YP, Meziani MJ, Pathak P, Qu LW. Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chemistry- a European journal, 2005, 11(5): 1366-1373
    59 Turk M, Hils P, Helfgen B, Schaber K, Martin HJ, Wahl MA. Micronization of pharmaceutical substances by the Rapid Expansion of Supereritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. The journal of supercritical fluids, 2002, 22(1): 75-84
    60 Türk M, Helfgen B, Hils P, Lietzow R, Sehaber K. Micronization of pharmaceutical substances by rapid expansion of supercritieal solutions (RESS): experiments and modeling. Particle and particle systems characterization, 2002, 19(5): 327-335
    61 Kayrak D, Akman U, Hortaesu O. Micronization of ibuprofen by RESS. The journal of supercritical fluids, 2003, 26(1): 17-31
    62 Gosselin PM, Thibert R. Polymorphic properties of micronized carbamazepine produced by RESS. International journal of pharmaceutics, 2003, 252(1-2): 225-233
    63 Wang YL, Wei DG. Extraction and precipitation particle coating using supereritical CO_2. Powder technology, 2002, 127(1): 32-44
    64 Kere J, Srcie S, Knez Z. Micronization of drugs using supercritical carbon dioxide. International journal of pharmaceutics, 1999, 182(1): 33-39
    65 Kilzer A, Petermann M. Generation of functional particle morphologies by the PGSS process. Chemic ingeuieur technik, 2005, 77(3): 243-247
    66 Li J, Rodrigues M, Paiva A, Matos HA, de Azevedo EG. Modeling of the PGSS process by crystallization and atomization. AIChE journal, 2005, 51 (8): 2343-2357
    67 Reverchon E. Supercritical antisolvent precipitation of micro- and nano-particles. The journal of supercritical fluids, 1999, 15(1): 1-21
    68 Carretier E, Badens E, Guichardon P, Boutin O, Charbit G. Hydrodynamics of supercritical antisolvent precipitation: Characterization and influence on particle morphology. Industrial and engineering chemistry research, 2003, 42(2): 331-338
    69 Reverchon E, Caputo G, de Marco I, Role of phase behavior and atomization in the supercritical antisolvent precipitation. Industrial and engineering chemistry research, 2003, 42(25): 6406-6414
    70 Elvassore N, Cozz F, Bertueco A. Mass Rransport Modeling in a Gas Antisolvent Process. Industrial and engineering chemistry research, 2004, 43(16): 4935-4943
    71 Muhrer GC, Mazzotti M. Modeling the gas antisolvent recrystallization process. I Industrial and engineering chemistry research, 2002, 41(15): 3566-3579
    72 De la Fuente Badilla JC, Peters CJ, de Swaan Arons J. Volume expansion in relation to the gas-antisolvent process. The journal of supercritical fluids, 2000, 17(1): 13-23
    73 Yeo SD, Debenedett PG, Schmidt HW. Supercritical antisolvent process for substituted paralinked aromatic polymides: phase equilibrium and morphology study. Macromolecules, 1993, 26(26): 6207-6210
    74 Breitenbach A, Mohr D, Kissel T. Biodegradable semi-crystalline comb polyesters influence the microsphere production by means of a supercritical fluid extraction technique (ASES). Journal of controlled release, 2000, 63(1-2): 53-68
    75 Ruchatz F, Kleinebudde P, Müller BW, Residual solvent in biodegradable microparticles: Influence of process parameters on the residual solvent in microparticles produced by the aerosol solvent extraction system (ASES) process. Journal pharmaceutical. Science, 1997, 86(1): 101-105
    76 Ruchatz F, Müller BW. Peptide loaded microparticles produced by the ases process. European Journal of pharmaceutical sciences, 1996, 4(1): 134-134
    77 Dixon DJ, Luna BG, Johnston KP. Microcellular microspheres and microballons by precipitation with a vapour-liquid compressed fluid antisolvent. Polyer, 1994, 35(18): 3998-4005
    78 Fusaro F, Hanchen M, Mazzotti M, Muhrer G, Subramaniam B. Dense gas antisolvent precipitation: A comparative investigation of the GAS and PCA techniques. Industrial and engineering chemistry research, 2005, 44(5): 1502-1509
    79 Perez de Diego Y, Pellikaan HC, Wubbolts FE, Witkamp GJ, Jansens PJ. Operating regimes and mechanism of particle formation during the precipitation of polymers using the PCA process. The journal of supercritical fluids, 2005, 35(2): 147-156
    80 Perez de Diego Y, Pellikaan HC, Wubbolts FE, Borchard G, Witkamp GJ, Jansens PJ. Opening new operating windows for polymer and protein micronisation using the PCA process. The journal of supercritical fluids, 2006, 36(3): 216-224
    81 Perez de Diego Y, Wubbolts FE, Jansens PJ. Modelling mass transfer in the PCA process using the Maxwell-Stefan approach. The journal of supercritical fluids, 2006, 37(1): 53-62
    82 Tald S, Badens E, Charbit G. Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer. The journal of supercritical fluids, 2001, 21(1): 61-70
    83 He WZ, Suo QL, Jiang ZH, A S, Hong HL. Precipitation of ephedrine by SEDS process using a specially designed prefilming atomizer. The journal of supercritical fluids, 2004, 31(1): 101-110
    84 Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in dl-PLG microparticles using supercritical fluids. European journal of pharmaceutical sciences, 2000, 10(1): 1-9
    85 Velaga SP, Bergh S, Carlfors J. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process. European journal of pharmaceutical sciences, 2004, 21(4): 501-509
    86 Young PM, Price R. The influence of humidity on the aerosolisation of micronised and SEDS produced salbutamol sulphate. European journal of pharmaceutical sciences, 2004, 22(4): 235-240
    87 Moshashaee S, Bisrat M, Forbes RT, Nyqvist H, York P. Supercritical fluid processing of proteins Ⅰ: Lysozyrne precipitation from organic solution. European journal of pharmaceutical sciences, 2000, 11(2): 239-245
    88 Yeo S D, Debenedetti PG, Lim G B. Formation of microparticulate protein powders using a supercritical fluid antisolvent. Biotechnology and bioengineering, 1993, 41(3): 341-346
    89 Winters MA, Knutson BL, Debenedetti PG, Gerald Sparks H, Przybycien TM, Stevenson CL, Prestrelski SJ. Precipitation of proteins in supercritical carbon dioxide. Journal of Pharmaceutical Sciences, 1996, 85(6): 586-594
    90 Reverchon E, Marco ID, Porta GD. Rifampicin microparticles production by supercritical antisolvent precipitation. International journal of pharmaceutics, 2002, 243(1-2): 83-91
    91 Reverchon E, Porta GD. Production of antibiotic micro- and nano-particles by supercdtical antisolvent precipitation. Powder technology, 1999, 106(1-2): 23-29
    92 Revcrchon E, Porta GD, Pallado P. Supercritical antisolvent precipitation of salbutamol microparticles. Powder technology, 2001, 114(1-3): 17-22
    93 Reverchon E, Marco ID, Caputo G, Porta GD. Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation. The journal of supercritical fluids, 2003, 26(1): 1-7
    94 Reverchon E, Porta GD, Falivene MG. Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. The journal of supercritical fluids, 2000, 17(3): 239-248
    95 Reverchon E, Marco ID. Supercritical antisolvent precipitation of cephalosporins. Powder technology, 2006, 164(3): 139-146
    96 Kalogiannis CG, Michailof CM, Panayiotou CG. Microencapsulation of amoxicillin in poly(L-lactic acid) by supercritical antisolvent precipitation. Industrial and engineering chemistry research, 2006, 45(25): 8738-8743
    97 Caliceti P, Salmaso S, Elvassore N. Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques. Journal of controlled release, 2004, 94(1): 195-205.
    98 Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glycol)/poly(1-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. Journal of pharmaceutical sciences, 2001, 90(10): 1628-1636
    99 Thiering R, Dehghani F, Dillow A, Forster NR. The influence of operating conditions on the dense gas precipitation of model proteins. Journal of chemical technology and biotechnology, 2000, 75:29-41
    100 Thiering R, Dehghani F, Dillow A, Forster NR. Solvent effects on the controlled dense gas precipitation of model proteins. Journal of chemical technology and biotechnology, 2000, 75:42-53
    101 Whitakera MJ, Hao JY, Davies OR, Serhatkulu G, Stolnik-Trenkic S, Howdle SM, Shakesheff KM. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. Journal of controlled release, 2005, 101 (1-3): 85-92
    102 Kim MY, Lee YW, Byun HS, Lira JS. Recrystallization of poly(L-lactic acid) into submicrometer particles in supercritical carbon dioxide. Industrial and engineering chemistry research, 2006, 45(10): 3388-3392
    103 Thies J, Müller BW. Size controlled production of biodegradable microparticles with supercritical gases. European journal of pharmaceutics and biopharmaceutics, 1998, 45(1): 67-74
    104 Bleich J, Kleinebudde P, Müller BW. Influence of gas density and pressure on microparticles produced with the ASES process. International journal of pharmaceutics, 1994, 106 (11): 77-84
    105 Bleich J, Müller BW, Wabmus W. Aerosol solvent extraction system: a new microparticle production technique. International journal of pharmaceutics, 1993, 97(1-3): 111-117
    106 Kwak H, Bae SY. Recrystallization of L-PLA fine particles by supercritical anti-solvent (SAS) process. Journal of dndustrial and engineering chemistry, 2006, 12(3): 387-394
    107 滕新荣,任杰,张鹏.超临界CO_2抗溶剂法制备聚(1-交酯)微球.建筑材料学报,2006,9(1):120-124
    108 Elvassore N, Parton T, Bertucco A, Di Noto V. Kinetics of particle formation in the gas antisolvent precipitation process. AIChE journal, 2003, 49(4): 859-868
    109 滕新荣,任杰,张鹏.超临界抗溶剂技术制备聚乳酸微粒及表征.高分子材料科学与工程,2006,22(1):195-198
    110 Rantakyla M, Jantti M, Aaltonen O, Hurme M. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique. The journal of supercritical fluids, 2002, 24(3): 251-263
    111 Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution-enhanced dispersion by supcrcritical fluids (SEDS). Pharmaceutical research, 1999, 16(5): 676-681
    112 Randolph TW, Randolph AD, Mebes M, Yeung S. Sub-micrometer-sized biodegradable particles of poly (L-lactic acid) via the gas antisol-vcnt spray precipitation process. Biotechnology progress, 1993, 9(4): 429-435
    113 Choi S, Lee K, Kim H. Preparation of poly(L-lactic acid) nano-and micro-particles using supercritical antisolvent. Journal of chemical engineering of Japan, 2005, 38(8): 571-577
    114 Krober H, Teipel U. Materials processing with supercritical antisolvent precipitation: process parameters and morphology of tartaric acid. The journal of supercritical fluids, 2002, 22(3): 229-235
    115 Wang Y, Robert P, Rajesh D, Robert E. Polymer encapsulation of free particles by a supercritical antisolvent process. AIChE journal, 2005, 51 (2): 440-455
    116 Reverchon E, Porta GD, Falivene MG. Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. The journal of supercritical fluids, 2000, 17(3): 239-248
    117 Wu HT, Lee MJ, Lin H. Nano-particles formation for pigment red 177 via a continuous supercritical anti-solvent process. The journal of supercritical fluids, 2005, 33(2): 173-182
    118 Badens BE, Carretier E, Charbit G. Co-precipitation of a herbicide and biodegradable materials by the supercritical anti-solvent technique. The journal of supercritical fluids, 2004, 31(1): 89-99
    119 Cocero MJ, Ferrero S. Crystallization of carotene by a GAS process in batch effect of operating conditions. The journal of supercritical fluids, 2002, 22(3): 237-245
    120 Miguel F, Martin A, Gamse T, Cocero MJ. Supercritical anti solvent precipitation of lycopene-Effect of the operating parameters. The journal of supercfitical fluids, 2006, 36(3): 225-235
    121 Wu RC, Wang Z, Liu MJ, Chen DF, Yue XS. β_2-integrins mediate a novel form ofchemoresistance in cycloheximide-induced U937 apoptosis. Cellular and molecular life sciences, 2004, 61(16): 2071-2082
    122 刘源岗.新型自控降解壳聚糖基组织工程支架材料的制备与性能.博士学位论文,2006,暨南大学:广州
    123 Van de Weert M, Van't Hof R, Van der Wcerd J, Heeren RMA, Posthuma G, Hennink WE, Crommelin DJA. Lysozyme distribution and conformation in a biodegradable polymer matrix as determined by FTIR techniques. Journal of controlled release, 2000, 68(1): 31-40
    124 Fu K, Griebenow K, Hsieh L, Klibanov AM, Langer R. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. Journal of controlled release, 1999, 58(3): 357-366
    125 Bezemer JM, Radersma R, Grijpma DW. Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylenes terephthalate) matrices. Journal of controlled release, 2000, 64(1-3): 179-192
    126 Krishnamurthy R, Lumpkin JA, Sridhar R. Inactivation of lysozyme by sonication under conditions relevant to microencapsulation. International journal of pharmaceutics 2000, 205(1-2): 23-34