超临界流体抗溶剂—雾化技术制备PEG和BSA微粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的微粒制备方法(如机械粉碎与研磨、溶液结晶、化学反应等)相比,超临界流体微粒化技术具有产品纯度高、几何形状均一、粒径分布窄、制造工艺简单、操作适中等许多优点,尤其对热敏感、结构不稳定和具有生物活性的物系的处理具有明显优势。超临界流体抗溶剂-雾化SAS-A(Supercritical Anti-Solvent Atomization, SAS-A)技术以PGSS和SEDS技术为基础,综合了PGSS和SEDS的优点,适合于处理含水体系。本文介绍一套自行设计及搭建的SAS-A实验装置,以该技术研究制备高分子、蛋白质微粒,以及它们的复合微粒;探讨压力、溶液流量和溶液浓度等工艺参数对形成的微粒粒径、粒径分布及蛋白质活性的影响;计算实验涉及体系的高压相平衡,为该技术的进一步开发提供理论指导。
     本文首先研究了实验体系所涉及的二元和三元系统的高压相行为。用PR状态方程对CO2+丙酮体系的高压汽液平衡进行计算,取得较好的效果。对CO2+乙醇,CO2+水,乙醇+水三个二元体系的高压汽液平衡计算也取得了满意的效果。对CO2+乙醇+水三元体系高压汽液平衡数据进行了预测,所得结果基本上与实验值相符。因此,可以运用这些计算方法确定SAS-A技术过程中体系所处的状态,从而和所制备的微粒联系起来。
     用SAS-A工艺分别以N2和CO2从PEG6000的丙酮溶液中成功制备了PEG微粒。结果表明,所制备的微粒形态基本为球形,并且粒径分布可以方便地控制在1-5μm之间。在N2系统中,PEG微粒随预膨胀压力增大而减少,粒径分布变窄;低PEG/丙酮溶液流量下制备的微粒粒径分布较窄;高PEG溶液浓度所制备的微粒粒径要比低溶液浓度下明显大,粒径分布也宽;在研究范围内,喷嘴尺寸对微粒粒径影响不大。在CO2系统中,增大预膨胀压力会造成不规则微粒增多,低流量和低浓度更有利于制备更小的微粒。N2系统制备的微粒的形态和大小对操作条件不敏感,因此,更适合制备PEG微粒。以CO2作为超临界流体,探讨了SAS-A技术从PEG6000的乙醇水溶液中制备PEG微粒,并研究控制喷嘴前后压力不同(即控制喷嘴前压力P1和喷嘴后压力P2)对实验结果的影响。喷嘴前后压力差降低会造成雾化效果不好;固定P1,升高P2造成抗溶剂效果增大;当P1接近乙醇/CO2混合物的临界点压力,P2为大气压时具有最好的雾化效果。以SAS-A工艺用CO2成功地从BSA/乙醇/水溶液中制备了BSA微粒。研究各种操作参数对微粒形态、平均粒径和蛋白质活性的影响。结果表明,在各种操作条件下制备的BSA产品均为球形微粒,且粒径均在3μm以下。通过改变操作条件可以有效地控制微粒的形态和大小:增大压力使得粒径变小,粒径分布变窄;降低溶液流量会使微粒变小,粒径分布变窄;增高BSA浓度会明显增大微粒粒径,粒径分布也随之变宽;乙醇浓度对微粒的影响不大。在所有操作条件下获得的BSA微粒的活性损失在0-25%之间。溶液流量和乙醇浓度是影响BSA活性的主要因素,流量越小或乙醇浓度越高,BSA活性损失越大。
     用SAS-A技术研究制备不同PEG/BSA进料配比下的高分子和蛋白质复合微粒。结果表明,不同进料配比下的微粒大部分为球形;但从产品的溶出度来看,低BSA含量情况下的控释效果较好,说明采用PEG可以对BSA进行包裹并获得控释效果。
Microparticles with narrow particle size distributions are widely used in many fields, such as biochemistry, materials, pharmaceuticals, cosmetics, etc., due to their excellent chemical properties and physical effects. As a result, the generation of microparticles has been the focus of numerous research projects in the past decade. Supercritical fluid assisted technologies allow the generation of particles that are difficult or even impossible to be achieved by classical methods such as milling, crystallization, spray drying or chemical reaction, particularly for substances with thermal sensitivity, structure instability or bioactivity. In this thesis, a supercritical antisolvent-atomization (SAS-A) apparatus was established for micronization of polymer, protein, and their microcomposites from organic or aqueous solutions. The SAS-A process combined the advantages of PGSSTM and the SEDSTM process, could vary two operating pressures to control particle size and morphology.
     Prior to the micronization of the studied systems, the vapor-liquid equilibrium (VLE) of the binary CO2/acetone, CO2/ethanol, CO2/water, and water/ethanol systems, and the ternary CO2/ethanol/water system were investigated by the Peng-Robinson equations of state (PR-EoS) under various temperature and pressure in order to provide theoretical points for directing the micronzation process. The studies showed that the PR-EoS was suitable for describing the VLE of the mentioned systems, and therefore will be used for discussing the states of the processing fluids in the SAS-A process.
     The SAS-A process was applied to the generation of polyethylene glycol 6000 (PEG) microparticles by using high pressure CO2 or N2 from PEG/acetone solutions under the downstream pressure of 0.1MPa and other operating conditions. The effects of the nozzle size, pre-expansion pressure, PEG/acetone solution flow rate and PEG concentration in acetone on the particle morphology and particle size were investigated at 50°C. Results showed that the N2-assisted process could produce spherical particles with mean sizes of 1-5μm, while the CO2-assisted process produced spherical, irregular, or agglomerated particles. No obvious difference could be found in acetone residue, crystallinity and melting point of the PEG particles obtained from the two processes. What more, using the same apparatus, PEG microparticles were successfully generated by using ethanol/water instead of acetone. Through changing the operating pressure, the process was possible to switch between atomization or anti-solvent precipitation, and spheres, crystals or both were obtained. A low value of the pressure before the nozzle (such as of 8 MPa that is close to the critical pressure of the binary ethanol/CO2 mixture), and a low value of the pressure after the nozzle (such as atmospheric pressure) were suggested to obtain desired particles.
     The SAS-A process was employed to produce bovine serum albumin (BSA) protein particles from ethanol/water solutions at 50°C. The effect of the operating pressure, the flow-rate of the protein/ethanol/water feed, the protein concentration, and the ethanol content in the ethanol/water, on the morphology, size and bioactivity of the produced BSA particles was evaluated. The formed primary particles were spherical and discrete with sizes of 0.1-3μm; the statistical number- average particle size was 0.4-1.1μm. The loss of the activity of the BSA powders varied between 0 to 25% of the original BSA materials depending on the processing conditions, in particular, on the flow-rate of the protein/ethanol/water solution and the ethanol content in the solution. At mild operating pressure of 8MPa, relatively low temperature of 50°C, relatively high solution flow rate about 3-5mL/min, protein concentration about 20-30mg/mL, and the ethanol fraction less than 25% in mass, it was possible to produce BSA microparticles with almost no loss of its bioactivity by the SAS-A process.
     As a continuation, BSA/PEG composite microparticles were investigated by using the SAS-A process. The effects of the BSA to PEG mass ratio on the particle morphology and the release profiles of BSA of the produced composites were examined. Results showed that BSA was encapsulated by PEG successfully, but the encapsulation efficiency should be improved further.
引文
[1] 朱自强. 超临界流体技术-原理和应用[M], 北京:化学工业出版社. 2000, 1: 1-17, 516–535.
    [2] 韩布兴. 超临界流体科学与技术[M], 北京:中国石化出版社, 2005, 1: 1-14.
    [3] 廖传华, 黄振仁. 超临界CO2流体萃取技术-工艺开发及其应用[M], 北京: 化学工业出版社, 2004,14-16.
    [4] Shariati A, Peters CJ. Recent developments in particle design using supercritical fluids[J], Current Opinion in Solid State and Materials Science, 2003, 7: 371–383.
    [5] Kumar SK, Johnston. KP. Modeling the solubility of solids in supercritical fluids with density as the independent variable[J], The Journal of Supercritical Fluids, 1988, 1(1):15-22.
    [6] Jovanovic N, Bouchard A, Hofland GW, et. al. Stabilization of proteins in dry powder formulations using supercritical fluid technology[J], Pharmaceutical Research, 2004, 21(11): 1955-1979.
    [7] Jennifer J, Michel P. Particle design using supercritical fluids: Literature and patent survey[J], Journal of Supercritical Fluids, 2001, 20: 179-219.
    [8] 蒋斌波. 超临界流体技术制备无载体茂金属催化剂微粒的研究[D], 浙江大学, 2001.
    [9] 陈敏, 赵亚平, 蒋思媛, 朱斌雄. 超临界流体制备超细微粒实验装置的设计[J], 实验室研究与探索, 2004, 23(1): 53-57.
    [10] 聂颖. 超临界流体技术制备聚合物超细粒子的基础研究[D], 浙江大学, 2001.
    [11] 赵亚冬. CO2或N2辅助微粒形成技术研究[D], 厦门大学, 2005.
    [12] Li J, Rodrigues MA, Matos HA, Gomes de Azevedo. VLE of Carbon dioxide/ethanol/water: application for evaluation the system volume expansion and water removal efficiency[J], Ind. Chem. Eng. Res., 2005, 44(17): 6751-6759.
    [13] Francis AW. Ternary systems of liquid carbon dioxide[J], J.Phys. Chem., 1954, 58: 1099-1114.
    [14] McHugh MA, Guckes TL, Separating polymer solutions with supercritical fluids[J], Macromolecules, 1985, 18: 674-692.
    [15] Krukonis VJ, Gallagher PM, Coffey MP, Gas anti-solvent recrystalization process[P], Patent US, 5 360 478, 1991.
    [16] Gallagher PM, Coffey MP, Krukonis VJ, Klasutis N. Gas antisolvent recrystallization: New process to recrystallize compounds insoluble in supercritical fluids[A], In: Supercritical Fluid Science and Technology, Johnston KP, Penninger JM, ed., Amercrican Chemical Society, Washington D.C., 1989, 406: 334-354.
    [17] Berends EM, Bruinsma OSL., Graauw J, van Rosmalen GM. Crystallisation of phenanthrene from toluene with carbon dioxide as the anti-solvent by the gas-process[A], Proceedings of the 3rd International Symposium on Supercritical Fluids, Tome 3, Brunner G., Perrut M. (Eds.), Strasbourg, 1994, 223-228.
    [18] Dillow AK., Dehghani F, Foster N, et. al. Langer, Production of polymeric support materials using a supercritical fluid anti-solvent process[A], The 4th International Symposium on Supercritical Fluids,Sendai, Japan, 1997, 247-250.
    [19] Chattopadhyay P. and Gupta RB. Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer[J], Ind. Eng. Chem. Res., 2001, 40:3530–3539.
    [20] Reverchon E, De Marco I, Della Porta G. Rifampicin microparticles production by supercritical antisolvent precipitation[J], Int J Pharm, 2002, 243: 83-91.
    [21] Reverchon E, De Marco I, Caputo G, Della Porta G. Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation[J], J Supercrit Fluids, 2003, 26: 1-7.
    [22] Reverchon E, De Marco I, Della Porta G. Tailoring nano- and micro-particles of some superconductor precursors by supercritical antisolvent precipitation[J], J Supercrit Fluids, 2002, 23: 81-87.
    [23] Thiering R, Dehghani F, Dillow A, Foster NR. The influence of operating conditions on the dense gas precipitation of model proteins[J], J. of Chemical Technology and Biotechnology, 2000,75: 29-41.
    [24] Thiering R., Dehghani F, Dillow A, Foster NR. Solvent effects on the controlled dense gas precipitation of model proteins[J], J.of Chemical Technology and Biotechnology, 2000, 75: 42-53.
    [25] Elvassore N, Bertucco A, Caliceti P. Production of protein loaded polimeric microcapsules by compressed CO2 in mixed solvent[J], Ind. Eng. Chem. Res., 2001, 40(3): 795-800.
    [26] Yeo SD, Choi JH, Lee TJ. Crystal formation of BaCl2 and NH4Cl using a supercritical fluid antisolvent[J], Journal of Supercritical Fluids, 2000, 16: 235–246.
    [27] Forter-Barth U, Teipel U, Krause H. Formation of particles by applying the gas anti-solvent (GAS)- process[A], Proceedings of the 6th Meeting on Supercritical Fluids, Chemistry and Materials; Poliakoff M, George MW, Howdle SM. (Eds.), Nottingham, 1999, 175-180.
    [28] Schmitt WJ. Finely Devided solid crystaline powders via preciptation into anti-solvent[P], US Patent 5707634, 1998.
    [29] Debenedetti PG, Lim GB, Prud’Homme RK. Formation of protein microparticles by anti-solvent precipitation[P], European Patent EP 0542314, 1992.
    [30] Sze Tu L, Dehghani F, Foster NR. Micronization and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent[J], Powder Technol, 2002, 126(2): 134-149.
    [31] Hanna MH, York P. Method and apparatus for the formation of particles[P], WO95/01221,1994.
    [32] Subramaniam B, Said S,. Rajewski RA, Stella V. Methods and apparatus for the formation of particle precipitation and coating using near-critical and supercritical antisolvents[J], Patent WO 9731691, 1997.
    [33] Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using modified solution-enhanced dispersion by supercritical fluids (SEDS) and Entrapment of Hydrocortisone in DL-PLG[A], Proceed. Int’l. Symp. Cont. Rel. Bioact. Mater., 1999, 26: 701-702.
    [34] Hanna M, York P. Methods apparatus for the formation particles[P], Patent WO 9836825, 1998.
    [35] Hanna M, York P. Method and apparatus for the formation of particles[P], Patent WO 9600610, 1995.
    [36] Shekunov BY, Baldyga J, York P. Particle formation by mixing with supercritical antisolvent at high Reynolds numbers[J], Chem Eng Sci, 2001, 56: 2421-2433.
    [37] Sloan R, Tservistas M, Hollowood ME, et. al. Controlled particle formation of biological material using supercritical fluids[A], Proceedings of the 6th Meeting on Supercritical Fluids, Chemistry and Materials, Poliakoff M, George MW,. Howdle SM (Eds.), Nottingham, 1999, 169-174.
    [38] Sloan R, Hollowood ME, Humpreys GO, et. al. Supercritical fluid processing: preparation of stable protein particles[A], Proceedings of the 5th Meeting on Supercritical Fluids, Tome 1; Perrut M., Subra P. (Eds.), Nice, 1998, 301-306.
    [39] Bustami RT, Chan HK, Dehghani F, Foster N R. Generation of micro-particles of proteins for aerosol delivery using high pressure modified carbon dioxide[J], Pharmaceutical Research, 2000, 17(11): 1360-1367.
    [40] Okamoto H, Sakamura Y, Shiraki K, et. al. Stability of chitosan–pDNA complex powder prepared by supercritical CO2 process[J], Int. J. Pharm., 2005, 290: 73-81.
    [41] Caliceti P, Salmaso S, Elvassore N. and Bertucco A. Effective protein release from PEG/PLA nanoparticles produced by compressed anti-solvent precipitation techniques[J], J. Control. Release, 2004, 94: 195-205.
    [42] Li J, Rodrigues M, Paiva A, Matos HA, de Azevedo EG. Vapor-liquid equilibrium and volume expansion of the tetrahydrogenfuran/CO2 system: applications to a SAS-atomization process[J], J. Supercrit. Fluids, 2007, 41: 343-351.
    [43] Rodrigues M, Li J, Matos HA, Almeida A, de Azevedo EG, 2007, Control of the morphology of microparticles produced by supercritical CO2 from water/ethanol solutions[J], in preparation.
    [44] Knez Z, Weidner E. Particles formation and particle design using supercritical fluids[J], Current Opinion in Solid State and Materials Science, 2003, 7: 353–361.
    [45] 陈新志, 蔡振云, 胡望明. 化工热力学[M], 北京:化学工业出版社, 2001, 1:88-89, 128-146.
    [46] Giacobbe F W. Thermodynamic solubility behavior of carbon dioxide in acetone[J], Fluid Phase Equilibria, 1992, 72: 277-298.
    [47] Nishiumi H, Fujita M, Agou K. Diffusion of acetone in supercritical carbon dioxide[J], Fluid Phase Equilibria, 1996, 117: 356-363.
    [48] Bamberger A. and Maurera G. High-pressure (vapour + liquid) equilibria in (carbon dioxide + acetone or 2-propanol) at temperatures from 293 K to 333 K[J], J. Chem. Thermodynamics 2000, 32: 685-700.
    [49] Chen JW, Wu WZ, Han BX, et. al. Phase behavior, densities, and isothermal compressibility of CO2 +pentane and CO2 + acetone systems in various phase regions[J], J. Chem. Eng. Data, 2003, 48: 1544-1548.
    [50] Wu JL, Pan QM, and Rempel GL. Pressure-density-temperature behavior of CO2/acetone, CO2/toluene, and CO2/monochlorobenzene mixtures in the near-critical region[J], J. Chem. Eng. Data, 2004, 49: 976-979.
    [51] Lazzaroni MJ, Bush D, Brown JS, Eckert CA. High-pressure vapor-liquid equilbria of some arbondioxide + organic binary systems[J], J. Chem. Eng. Data, 2005, 50: 60-65.
    [52] Stievano M, Elvassore N. High-pressure density and vapor–liquid equilibrium for the binary systems carbon dioxide–ethanol, carbon dioxide–acetone and carbon dioxide– dichloromethane[J], J. of Supercritical Fluids, 2005, 33: 7-14.
    [53] Han F, Xue Y, Tian YL, et. al. Vapor-liquid equilibria of the carbon dioxide + acetone system at pressures from (2.36 to 11.77) MPa and temperatures from (333.15 to 393.15) K[J], J. Chem. Eng. Data, 2005, 50: 36-39.
    [54] Peng DY, Robinson DB. A new tow-constant equation of state[J], Ind. Eng. Chem., 1976, 15(1): 59-64.
    [55] 马沛生. 化工数据[M], 北京: 中国石化出版社, 2003, 1: 216-228.
    [56] 刘家祺. 分离过程[M], 北京:化学工业出版社, 2002, 1: 46-64.
    [57] Chang CJ, Chiu KL, Day CY. A new apparatus for the determination of P–x–y diagrams and Henry’s constants in high pressure alcohols with critical carbon dioxide[J], Journal of Supercritical Fluids, 1998, 12: 223-237.
    [58] York P. Strategies for particle design using supercritical fluid technologies[J], Pharm. Sci. Technol. Today, 1999, 2: 430-440.
    [59] Gilbert ML, Paulaltls ME. Gas-liquid equilibrium for ethanol-water-carbon dioxide mixtures at elevated pressures[J], J. Chem. Eng. Data, 1986, 31: 296-298.
    [60] Takishima S, Saiki K, Arai K, Saito S. Phase equilibria for the CO2-C2H5OH-H2O system[J], J. Chem. Eng. Jpn, 1986, 19: 48-56.
    [61] Inomata H, Arai K, Saito S, et. al. Measurement and prediction of phase equilibria for the CO2- ethanol-water system[J], Fluid Phase Equilib., 1989, 53: 23-30.
    [62] Feng YS, Du XY, Li CF, Hou YJ. An apparatus for determining high-pressure fluid phase equilibria and its applications to supercritical carbon dioxide mixtures[A], International Symposium on Supercritical Fluids, Perrut M. Ed., Nice, France, 1988, 1: 75-84.
    [63] Nagahama K, Suzuki J, Suzuki T. High-pressure vapor-liquid equilibria for the supercritical CO2+ ethanol+water system[A], International Symposium on Supercritical Fluids, Perrut M. Ed., Nice, France, 1988, 1: 135-142.
    [64] De la Ossa EM, Brandani V, Del Re G, et. al. Binary and ternary phase behavior of the system water-ethanol-carbon dioxide[J], Fluid Phase Equilib., 1990, 56: 325-340.
    [65] Dahl S, Dunalewicz A, Fredenslund A, Rasmussen P. The MHV2 model: prediction of phase equilibria at sub- and supercritical conditions[J], J. Supercrit. Fluids 1992, 5: 42-47.
    [66] Lim JS, Lee YY, Chun HS. Phase equilibria for carbon dioxide-ethanol-water system at Elevated Pressures[J], J.Supercrit. Fluids, 1994, 7: 219-230.
    [67] Yao S, Guan Y, Zhu Z. Investigation of phase equilibrium for ternary systems containing ethanol, water and carbon dioxide at elevated pressures[J], Fluid Phase Equilib., 1994, 99: 249-259.
    [68] Zhang ZY, Yang JC, Li YG. Prediction of phase equilibria for CO2-C2H5OH-H2O system using the SAFT equation of state[J], Fluid Phase Equilib., 2000, 169: 1-18.
    [69] Perakis C, Voutsas E, Magoulas K, Tassios D. Thermodynamic modeling of the vapor–liquid equilibrium of the water/ethanol/CO2 system[J], Fluid Phase Equilibria, 2006, 243: 142–150.
    [70] Durling NE, Catchpole OJ, Tallon SJ, Grey JB. Measurement and modelling of the ternary phase equilibria for high pressure carbon dioxide–ethanol–water mixtures[J], Fluid Phase Equilibria, 2007, 252: 103-113.
    [71] Panagiotopoulos AZ, Reid RC. High-pressure phase equilibria in ternary fluid mixtures with a supercritical component[A], In Supercritical Fluids Chemical and Engineering Principles and Applications, Squires TG, Paulaitis ME, Eds., ACS Symposium Series 329, Washington, DC, 1985: 115-129.
    [72] Stryjek R, Vera JH. PRSV: An improved peng-robinson equation of state for pure compounds and mixtures[J], Can. J. Chem. Eng., 1986, 64: 323-333.
    [73] Seung NJ, Chang WY, Hun YS, et. al. Measurements and correlation of high-pressure VLE of binary CO2–alcohol systems (methanol, ethanol, 2-methoxyethanol and 2-ethoxyethanol)[J], Fluid Phase Equilibria, 2001, 185: 219-230.
    [74] Bamberger A, Sieder G, Maurer G. High-p ressure (vapor liquid) equilibrium in binary mixtures of (carbon dioxide water or acetic acid) at temperatures from 313 to 353 K[J], Journal of Supercritical Fluids, 2000, 17: 97-110.
    [75] Gmehling J, Onken U. Vapor-liquid equilibrium data collection[M], Chemistry Data Series, DECHEMA: Frankfurt, 1977, 1: 150-204.
    [76] Budich M, Brunner G. Supercritical fluid extraction of ethanol from aqueous solutions[J], J. of Supercritical Fluids, 2003, 25: 45-55.
    [77] Rodrigues MA, Li J, Almeida AJ, Matos HA, Gomes de Azevedo E. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide[J], Brazilian Journal of Chemical Engineering, 2006, 23(2): 205 – 212.
    [78] Moshashaee S, Bisrat M, Forbes RT, et al. Supercritical fluid processing of proteins I: Lysozyme precipitation from organic solution[J], European Journal of Pharmaceutical Sciences, 2000, 11(3): 239-245.
    [79] Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids[J], European Journal of Pharmaceutical Sciences, 2000, 10(1): 1-9.
    [80] Li J, Rodrigues MA, Matos HA, et al. Modeling of the PGSS process by crystallization and atomization[J], AIChE J., 2005, 51(8): 2345-2357.
    [81] 柴诚敬, 张国亮. 化工流体流动与传热[M], 北京: 化学工业出版社, 2000: 490-491.
    [82] 严瑞瑄. 水溶性高分子[M], 北京: 化学工业出版社, 1998: 223–243.
    [83] Rowe RC, Sheskey PJ, Weller PJ. 药用辅料手册[M], 郑俊民主译, 北京: 化学工业出版社, 2004: 523-529.
    [84] Miralles MJ, McGinity JW, Martin A. Combined water-soluble carriers for coprecipitates of tolbutamide[J], J .Pharm. Pharmacol., 1982, 71(3): 302–304.
    [85] Weuts I, Kempen D, Verreck G, et. al. Study of the physicochemical properties and stability of solid dispersions of loperamide and PEG6000 prepared by spray drying[J], European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59: 119-126.
    [86] Wells JI, Blsatt DA, Khan KA. Improved wet massed cabling using plasticized binder[J], J. Pharmacol., 1982 34: 46-47.
    [87] 王喜忠, 于才渊, 周才君. 喷雾干燥[M], 北京: 化学工业出版社, 2003: 40-98.
    [88] Kukova E, Petermann M, Weidner E. Phase behavior (S-L-G) and fluid dynamic properties of high viscous polyethylene glycols in the presence of compressed carbon dioxide[A], Proceedings of the 6th International Symposium on Supercritical Fluids, Brunner G., Kikic M, Perrut M, (Eds.), Versailles, France, 2003, 3: 1547-1552.
    [89] Li J, Matos H, Gomes de Azevedo E. Two-phase homogeneous model for particle formation from gas-saturated solution processes[J], Journal of Supercritical Fluids, 2004, 32: 275-286.
    [90] Weidner E, Powderous composites by high pressure spray processes[A], Proceedings of the 6th International Symposium on Supercritical Fluids, Brunner G., Kikic M, Perrut M, (Eds.), Versailles, France, 2003, 3: 1483-1495.
    [91] Russell CJ, Department of health and human services[M], Federal Register, 1997, 62(247): 67377-67388.
    [91] Shekunov BY. Production of powders for respiratory drug delivery[A], In Supercritical Fluid Technology for Drug Product Development, Edited by York P, Kompella UB, Shekunov BY, Marcel Dekker INC. Basel, New York, 2004, 10: 247-282.
    [92] Bandi N, Roberts BR., Gupta RB, Kompella EB. Formulation of controlled-release drug delivery systems[A], In Supercritical Fluid Technology for Drug Product Development, edited by York P, Kompella UB, Shekunov BY, Marcel Dekker INC. Basel, New York, 2004, 10: 367-410.
    [93] Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals[J], Advanced Drug Delivery Reviews,2006,58 (9-10): 1009-1029.
    [94] Winters MA, Knutson BL, Debenedetti PG, et. al. Precipitation of proteins in supercritical carbon dioxide[J], J. Pharm. Sci., 1996, 85: 586–594.
    [95] McHugh M, Krukonis V. Supercritical fluid extraction[M], Boston: Butterworth- Heinemann, 1994,1-10.
    [96] 卢锦汉, 章以浩, 赵凯. 医学生物制品学[M], 北京: 人民卫生出版社, 1995, 1: 796-843.
    [97] Brown JR, Serum albumin: amino acid sequence[A], In Albumin Structure, Function and Uses, edited by Rosenoer VM, Oratz M, Rothschild MA, New York: Pergamon, 1977, 53-48
    [98] Brown JR. Structure of bovine serum albumin[J], Fed. Proc., 1975, 34: 591-591.
    [99] Peters T, Serum albumin[J], Adv. Protein Chem., 1985, 37: 161-245
    [100] Bos OJM, Labro JFA, Fischer MJE, Witling J, Janssen LHM. The molecular mechanism of the Neutral-to-Base Transition of Human Serum Albumin[J], J. Biol. Chem., 1989, 264: 953-959.
    [101] Carter DC, He XM, Munson SH, et. al. Three-dimensional structure of human serum albumin[J], Science, 1989, 244: 1195-1198.
    [102] Sjoholm I, Ljungstedt I. Studies on the tryptophan and drug-binding properties of human serum albumin fragments by affinity chromatography and circular dichroism measurements[J], J. Biol. Chem., 1973, 248: 8434-8441.
    [103] Reed RG, Feldhoff RC, Clute OL, Peters TJ. Fragments of bovine serum albumin produced by limited proteolysis conformation and ligand binding[J], Biochemistry, 1975, 14: 4578-4583.
    [104] Riley DP, Arndt UW. New type of X-ray evidence on the molecular structure of globular proteins[J], Nature , 1952, 169: 138-139.
    [105] Harmsen BJM, Braam WJM. On the conformation of bovine serum albumin after alkaline or thermal denaturation[J], Int. J. Protein Research, 1969, 1: 225-233.
    [106] Clark AH, Saunderson DHP, Suggett A. Infrared and laser-raman spectroscopic studies of thermally-induced globular protein gels[J], Int. J. Peptide Protein Res., 1981, 17: 353-364.
    [107] Astbury WT, Dickinson S, Bailey K. The X-ray interpretation of denaturation and the structure of the seed globulins[J], J. Biochem., 1935, 29: 2351-2360.
    [108] Lin VJC, Koenig JL. Raman studies of bovine serum albumin[J], Biopolymers, 1976, 15: 203-218.
    [109] He XM, Carter DC. Atomic structure and chemistry of human serum albumin[J], Nature, 1992, 358: 209-214.
    [110] Aoki K, Okabayashi H, Maezawa S, et. al. Raman studies of bovine serum albumin-ionic detergent-complexes and conformational change of albumin molecule induced by detergent binding[J], Biochim. Biophys. Acta., 1982, 703: 11-16.
    [111] Wetzel R, Becker M, Behlke J, et. al. Temperature behaviour of human serum albumin[J], Eur. J. Biochem., 1980, 104: 469-478.
    [112] Foster JF. Albumin structure, function and Uses[M], Pergamon, Oxford, 1977, 53-84.
    [113] Khan MY. Direct evidence for the involvement of domain III in the N-F transition of bovine serum albumin[J], J. Biochem., 1986, 236: 307-310.
    [114] Carter DC, Ho JX. Structure of serum albumin[J], Adv. Protein Chem., 1994, 45: 153-203.
    [115] Poole S, West SI, Fry JC. Effects of basic proteins on the denaturation and heat-gelation of acidic proteins[J], Food Hydrocolloids, 1987, 1: 301-316.
    [116] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J], Anal. Biochem., 1976, 72: 248-254.
    [117] Elysee-Collen B,Lencki RW. Effect of ethanol, ammonium sulfate, fatty acids, and temperature on the solution behavior of bovine serum albumin[J], Biotechnol. Prog., 1997, 13(6): 849-856.
    [118] Carpenter JF, Crowe JH, Arakawa T. CoMParison of solute-induced protein stabilization in aqueous solution and in the frozen and dried states[J], J. Dairy Sci., 1990, 73: 3627-3636.
    [119] Lencki RW, Arul J, Neufeld RJ. Effect of subunit dissociation, denaturation, aggregation, coagulation, and decomposition on enzyme inactivation kinetics: Ⅱ. biphasic and grace period behavior[J], Biotechnol. Bioeng., 1992, 40: 1427-1430.
    [120] Lencki RW, Neufeld RJ. Solute modulation of urease inactivation kinetics[J], Enzyme Microb. Technol., 1996,19: 232-235.
    [121] Scopes RK. Protein purification: principles and practice[M], New York: Springer-Verlag, 1987, 3: 265-266
    [122] Belter PA, Cussler EL, Hu WS. Bioseparations: downstream processing for biotechnology[M], New York: Wiley, 1988.
    [123] Langer R. Drug delivery targets[J], Nature, 1998, 392: 5-10.
    [124] Mueller BW, Fisher W. Manufacture of sterile sustained release drug formulations using liquefied gases[P], (West) Germany, DE 3744329, 1989.
    [125] Elvassore N, Bertucco A, Caliceti P. Production of protein-loaded polymeric microcapsules by compressed CO2 in a mixed solvent[J], Pharm Res.,1995, 12: 1211-1217.
    [126] Dos Santos IR, Richard J, Pech B, Thies C, Benoit JP. Microencapsulation of protein particles within lipids using a novel supercritical fluid process[J], International Journal of Pharmaceutics, 2002, 242 : 69-78.
    [127] Whitaker MJ, Hao JY, Daviesc OR.et. al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying[J], Journal of Controlled Release, 2005, 101: 85-92.
    [128] Thote AJ, Gupta. RB. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release[J], Nanomedicine: Nanotechnology, Biology and Medicine, 2005, 1(1): 85-90.