超临界CO_2辅助制备碳纳米管及石墨烯基纳米杂化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别作为典型的一维和二维的碳纳米材料,碳纳米管(CNTs)和石墨烯(graphene)因其特殊的结构和优异的力学、电学、热学和光学性能,受到广泛的关注。CNTs和graphene基纳米杂化材料尤其是与聚合物形成的纳米杂化材料不仅实现了CNTs和graphene的功能化和分散性,还拓宽了其在纳米复合材料、传感器、电子器件和生物医药等领域的应用。因此,本论文旨在探索-种方便有效的方法制备功能化CNTs和graphene基纳米杂化材料,并研究实验条件对CNTs和graphene功能化程度的影响,探讨形成不同形貌的原因。本工作为功能化CNTs和graphene基纳米杂化材料的应用开辟新的机会。
     本论文主要工作包括:
     (1)采用超临界CO2辅助制备聚乙烯(PE)和聚环氧乙烷(PEO)/CNTs纳米杂化材料,并研究了PE和PEO在CNTs表面形成不同形貌的原因。
     PE在CNTs上形成“纳米杂化串晶”结构,而PEO则在CNTs表面形成很薄的无定形聚合物涂层。PE/CNTs和PEO/CNTs纳米杂化材料的不同形貌取决于聚合物分子链的构象和聚合物链与CNTs之间的相互作用。实验结果表明CNTs为PE提供异相成核点,形成的纳米杂化串晶结构阻止了聚合物链的扩散和晶体的生长。而CNTs对PEO分子链起抗成核效应。本工作为制备多功能性CNTs基纳米杂化材料提供理论支持。
     (2)利用超临界CO2辅助制备芘基聚乙二醇(pyrene-PEG)/CNTs纳米杂化材料及其稳定性研究
     实验结果发现pyrene-PEG与CNTs形成强的非共价键π-π相互作用,而PEG分子链赋予CNTs良好的水溶液分散性。由于pyrene-和CNTs之间的π-π相互作用引起了强的光诱导电荷转移/或能量转移,从而导致pyrene-PEG/CNTs纳米杂化材料水溶液的荧光强度显著降低。pyrene-PEG/CNTs纳米杂化材料在O.1M HCl和强离子溶液中稳定分散,为CNTs在生物领域的应用提供可能。
     (3)超临界CO2辅助制备聚乙烯-b-聚环氧乙烷(PE-b-PEO)/氧化石墨烯(GO)纳米杂化材料及进一步功能化
     成功制备了两亲性双结晶性嵌段共聚物PE-b-PEO/GO纳米杂化材料,实验结果发现溶剂体系和超临界CO2对PE-b-PEO分子链在GO表面的结晶、聚集和组装具有显著的影响。同时以PE-b-PEO/GO纳米杂化材料为模板将金纳米粒子(Au NPs)和碲化镉纳米晶(CdTe NPs)固定在GO表面,成功地制备了GO基多功能性纳米杂化结构。
     (4)基于超临界CO2和芘基聚合物直接剥离石墨制备石墨烯(graphene)
     基于芘基聚合物(pyrene-PEG和pyrene-PCL)和超临界CO2直接剥离石墨制备了高质量的、在不同溶液中稳定分散的graphene溶液。剥离过程包括石墨、溶剂、芘基聚合物和超临界CO2之间的多重相互作用,其中超临界CO2作为渗透剂、膨胀剂和抗溶剂,芘基聚合物作为分子楔和改性剂获得高产量的稳定分散的graphene溶液。此方法结合高产量制备和功能化graphene为一体,为进-步制备多功能的graphene基材料提供了可能,从而拓宽了graphene的应用领域。
As typical one-dimensional and two-dimensional carbon nanomaterials, carbon nanotubes (CNTs) and graphene, have attracted considerable interest due to their specific structure, and extraordinary mechanical, electrical, thermal and optic properties. CNTs and graphene based nanohybrids especially polymer nanohybrids not only endow good functionalization and dispersion of CNTs and graphene, but broaden their application in nanocomposite, sensor, electronic device and biomedical fields. Therefore, this work is aim at exploring a facile and efficient method to fabricate functional CNTs and graphene based nanohybrids, and studying the effect of experimental conditions on the functionalization degree of CNTs and graphene. Meanwhile the varing morphologies of the nanohybrids will also be discussed. This work will open up new opportunities for nanoscience and nano techno logy and accelerate their application
     The main work in this paper contains:
     (1) Fabrication of polyethylene (PE) and poly(ethylene oxide)(PEO)/CNTs nanohybrids via supercritical CO2, and comparison study of varing morphologies of PE and PEO on CNTs.
     CNTs were decorated by PE lamellar crystals, forming "nanohybrid shish-kebab" structure, whereas PEO only wrapped on CNTs and formed thin amorphous polymer coating on the surface of CNTs. The results showed that the varing morphologies of PE/CNTs and PEO/CNTs nanohybrids depend on the molecular conformantin and the interaction between polymer chains and CNTs. CNTs provided heterogeneous nucleation sites for PE and the fromed shish-kebab structure hindered PE chains diffusion and crystal growth, whereas CNTs played antinucleation effect on PEO chains. This work provided theoretical understanding of fabricating multifunctional CNTs based nanohybrids.
     (2) Fabrication of pyrene-PEG/CNTs nanohybrids based on supercritical CO2and study of their stability in different solvents.
     The results showed that pyrene-PEG can form strong noncovalent π-π interaction with CNTs, and PEG chains endow good dispersion of CNTs in aqueous solution. There exists fluorescence quenching of pyrene-PEG/CNTs solution as a result of strong photoinduced electron/energy transfer between pyrene-and CNTs. In addition, pyrene-PEG/CNTs nanohybrids showed good stability in0.1M HCl and strong ionic solution, which paved way for CNTs in the field of biological application.
     (3) Fabrication of PE-b-PEO/graphite oxide (GO) nanohybrids via supercritical CO2and its further functionalization
     In this section, we succefully fabricated amphiphilic double-crystalline block copolymer PE-b-PEO/GO nanohybrids via supercritical CO2-The results showed that the solvent system and supercritical CO2play remarkable influence on the crystallization,aggregation and assembly of PE-b-PEO chains on the surface of GO. Furthermore, the PE-b-PEO/GO nanohybrid was used as template to immobilize Au nanoparticles (Au NPs) and CdTe nanoparticles (CdTe NPs), which succefully produced multifunctional GO based nanohybrids.
     (4) Direct exfoliation of graphite to graphene based on supercritical CO2and pyrene-polymer
     In this section, we used pyrene-polymers and supercrital CO2, that the large-scale direct exfoliation of graphite into defect-free graphene sheets has been achieved, leading to stable graphene dispersions in solutions. This novel exfoliation process involves with multiple interactions among graphite, solvent, pyrene-derivatives and SC CO2, where SC CO2acts as penetrant, expanding agent and antisolvent, and pyrene-derivatives act as molecular wedges and modifier to obtain high-yield and stable graphene solutions. The method of combining high-throughput production and functionalization of graphene in one step, which might pave the way for developing multifunctional high-performance applications of graphene and graphene-based materials in various fields.
引文
[1]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(7):56~58
    [2]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666~669
    [3]Kroto H W, Heath J R, O'Brien S C, et al. C60:Buck minster fullerene[J]. Nature,1985,318: 162~163
    [4]Kunz G F. The genesis of the diamond[J]. Science,1897,6(142):450~456
    [5]Veatch, O. Graphite in vein quartz[J]. Science,1911,33(836):38
    [6]Tang T H, Wang N, Zhang Y F, et al. Synthesis and characterization of amorphous carbon nanowires[J]. Appl. Phys. Lett.,1999,75(19):2921~2923
    [7]Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes [J]. Carbon,1995, 33(7):883~891
    [8]Douglas R, Kauffman, Alexander S. Carbon nanotube gas and vapor sensors [J]. Angew. Chem. Int. Ed.,2008,47(35):6550~6570
    [9]Smith B W, Luzzi D E. Formation mechanism of fullerene peapods and coaxial tubes:a path to large scale synthesis[J]. Chem. Phys. Lett.,2000,321(1-2):169~174
    [10]Guldi D M, Rahman G M A, Zerbetto F, Prato M. Carbon nanotubes in electron donor-acceptor nanocomposites[J]. Acc. Chem. Res.,2005,38 (11):871~878
    [11]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature,2007,446(7131):60~63
    [12]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotech.,2008,3(2):101~105
    [13]Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature,1997,388(21):756~758
    [14]Waldorff E I, Waas A M, Friedmann P P, et al. Characterization of carbon nanotubes produced by arc discharge:effect of the background pressure[J]. J. Appl. Phys.,2004,95(5): 2749~2754
    [15]王敏,赵红,张相育等.电弧法制备单臂碳纳米管的机理及进展[J].化学工程师,2006,135(12):38-40
    [16]Guo T. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chem. Phys. Lett.,1995,243(1-2):49~54
    [17]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J], Science, 1996,273(5274):483~487
    [18]Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science,1999,283(5401):512~514
    [19]Ivanov V, Nagy J B, Lambin P, et al. The study of carbon nanotubules produced by catalytic method[J]. Chem. Phys. Lett.,1994,223(4):329~335
    [20]Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics [J]. Chem. Rev., 2007,107(3):718~747
    [21]Choucair M, Thordarson P, Stride J A Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nature Nanotech.,2009,4(1):30~33
    [22]Srivastava S K, Shukla A K, Vankar V D, et al. Growth, structure and field emission characteristics of petal like carbon nano-structured thin films[J]. Thin Solid Films,2005,492 (1-2):124~130
    [23]Wang J J, Zhu M Y, Outlaw R A, et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon,2004, 42(14):2867~2872
    [24]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium[J]. Nature Mater.,2008, 7(5):406~411
    [25]Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Lett,2008,8(7):2012~2016
    [26]Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett.,2009,9(1):30~35
    [27]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706~710
    [28]Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312(5777):1191~1196
    [29]Ginderow D. Preparation of insertion compounds in graphite from liquid reagents[J]. Ann. Chim.,1971,6:5~16
    [30]. Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite[J]. Adv. in Phys., 1981,30(2):139~326
    [31]Viculis L M, Mack J, Mayer O M, et al. Intercalation and exfoliation routes to graphite nanoplatelets[J]. J. Mater. Chem,2005,15(9),974~978
    [32]Englert J M, Dotzer C, Yang G, et al. Covalent bulk functionalization of graphene[J]. Nature Chem.,2011,3(4):279~286
    [33]Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotech.,2008,3(9):538~542
    [34]Behabtu N, Lomeda J R, Green M J, et al. Spontaneous high-concentration dispersions and liquid crystals of graphene [J]. Nature Nanotech,2010,5(6):406~411
    [35]Shih C J, Vijayaraghavan A, Krishnan R, et al. Bi- and trilayer graphene solutions[J]. Nature Nanotech.,2011,6(7):439~445
    [36]Hernandez Y, Nicolosi V, Lotya M, et aL High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotech.,2008,3(9):563~568
    [37]Shih C J, Lin S, Strano M S, et al. Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents:molecular dynamics simulations and kinetic theory of colloid aggregation[J]. J. Am. Chem. Soc.,2010,132(41):14638~14648
    [38]Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. J. Mater. Chem.,2006,16(2):155~158
    [39]Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2008,2(3):463~470
    [40]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457~460
    [41]Go mez-Navarro C, Meyer J C, Sundaram R S, et al. Atomic structure of reduced graphene oxide[J]. Nano Lett.,2010,10(4):1144~1148
    [42]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787~792
    [43]Vigolo B, Coulon C, Maugey M, et al. An experimental approach to the percolation of sticky nanotubes [J]. Science,2005,309(5736):920~923
    [44]Gao C. Supramolecular self-assembly of polymer-functionalized carbon nanotubes on surfaces[J]. Macromol. Rapid Commun.,2006,27(11):841~847
    [45]Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules,2006,39(16):5194~5205
    [46]Kim J A, Seong DG, Kang T J, et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites[J], Carbon,2006,44(10):1898~1905
    [47]Geim A K, Novoselov K S. The rise of graphene [J]. Nature Mater.,2007,6(3):183~191
    [48]Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett.,2008,8(3):902~907
    [49]Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385~388
    [50]Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits[J]. Appl. Phys. Lett.,2008,92(15):151911
    [51]Mak K F, et al. Measurement of the optical conductivity of graphene[J]. Phys. Rev. Lett. 2008,101(19):196405
    [52]Kuila B K, Malik S, Batabyal S K, et al. N-situ synthesis of soluble poly(3-hexylthiophene)/multiwalled carbon nanotube composite:morphology, structure, and conductivity[J]. Macromolecules,2007,40(2):278-287
    [53]Uragami T, Katayama T, Miyata T, et al. Dehydration of an ethanol/water azeotrope by novel organic/inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane[J]. Biomacromolecules,2004,5(4):1567~1574
    [54]Zhou S Y, Gweon G-H, Fedorov A V, et al. Substrate-induced bandgap opening in epitaxial graphene[J]. Nature Mater.,2007,6(11):916
    [55]Freitag, M. Graphene:nanoelectronics goes flat out[J]. Nature Nanotech.,2008,3(8): 455~457
    [56]Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9-10):351-355
    [57]Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotech.,2008,3(6):327~331
    [58]Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Lett.,2008,8(10): 3498~3502
    [59]Lu X, Chen Z. Curved π-conjugation, aromaticity, and the related chemistry of small fullerenes (C60) and single-walled carbon nanotubes[J]. Chem. Rev.,2005,105 (10): 3643~3696
    [60]Hong S, Myung S. Nanotube electronics:a flexible approach to mobility [J]. Nature Nanotech.,2007,2 (4):207~208
    [61]Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature,2005,438(7065):201~204
    [62]Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene[J]. Nature Phys.,2006,2(3):177~180
    [63]Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Phys,2006,2(9):620~625
    [64]Postma H W C. Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature [J]. Science,2001,293 (5527):76~79
    [65]Zhao Y, Wei J, Vajtai R, et al. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals[J]. Scientific Reports,2011,1, doi:10.1038/srep00083
    [66]Jung I, Dikin D A, Piner R D, et al. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at "Low"Temperatures[J]. Nano Lett.,2008,8(12):4283~4287
    [67]Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotech.,2009,4(1):25~29
    [68]Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett.,2008,8(1):323~327
    [69]Peigney A, Laurent C, Flahaut E, et aL Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon,2001,39(4):507~514
    [70]Chae H K, SiberioPerez D Y, Kim J. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523~527
    [71]Kong J, Chapline M G, Dai H J. Functionalized carbon nanotubes for molecular hydrogen sensors[J]. Adv. Mater.,2001,13(18):1384~1386
    [72]Fowler J D, Allen, M J, Tung V C, et al. Practical chemical sensors from chemically derived graphene[J]. ACS Nano,2009,3(2):301~306
    [73]Robinson J T, Perkins F K, Snow E S, et al. Reduced Graphene Oxide Molecular Sensors[J]. Nano Lett.,2008,8(10):3137~3140
    [74]Motta M, Moisala A, Kinloch I A, et al. High performance fibres from'dog bone'carbon nanotubes[J]. Adv. Mater.,2007,19(21):3721~3726
    [75]Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites [J]. App. Phys. Lett.,1998,73(26):3842~3844
    [76]Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties [J]. Prog. in Polym. Sci.,2010,35(3): 357~401
    [77]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature,2006,442(7100):282~286
    [78]Luo J, Gao L Z, Leung Y L, et al. The decomposition of NO on CNTs and 1 wt% Rh/CNTs[J]. Catal. Lett.,2000,66(1-2):91~97
    [79]Nishi Y, Suzuki T, Kaneko K. Ambient temperature reduction of NO to N2 in Ru-tailored carbon subnanospace[J]. J. Phys. Chem. B,1997,101(11):1938~1939
    [80]Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc.,2009,131(23):8262~8270
    [81]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Letters to Nature,1997,386(27):377~379
    [82]Nikitin A, Li X, Zhang Z, et al. Hydrogen storage in carbon nanotubes through the formation of stable C-H Bonds[J]. Nano Lett.,2008,8(1):162~167
    [83]Tozzini V, Pellegrini V. Reversible Hydrogen Storage by Controlled Buckling of Graphene Layers[J]. J. Phys. Chem. C,2011,115(51):25523~25528
    [84]Du A, Zhu Z, Smith S C. Multifunctional porous graphene for nanoelectronics and hydrogen storage:New properties revealed by first principle calculations[J]. J. Am. Chem. Soc.,2010,132 (9):2876~2877
    [85]Kaempgen M, Chan C K, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Lett.,2009,9(5):1872~1876
    [86]Masarapu C, Zeng H F, Hung K H, et al. Effect of temperature on the capacitance of carbon nanotube supercapacitors [J]. ACS Nano,2009,3 (8):2199~2206
    [87]Li X, Rong J. Wei B. Electrochemical behavior of single-walled carbon nanotube supercapacitors undercompressive stress[J]. ACS Nano,2010,4(10):6039~6049
    [88]Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Lett., 2011,11 (6):2472~2477
    [89]Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials [J]. J. Phys. Chem. C,2009,113 (30):13103~13107
    [90]Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett.,2010,10(12):4863~4868
    [91]Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers[J]. J. Am. Chem. Soc.,2006,128(34): 11199~11205
    [92]Jan E, Kotov N A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite[J]. Nano Lett.,2007,7(5): 1123~1128.
    [93]Zhang X K, Meng L J, Lu Q H, et al. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes[J]. Biomaterials, 2009,30(30):6041~6047
    [94]Cui Y, Kim S N, Jones S E, Chemical functionalization of graphene enabled by phage displayed peptides[J]. Nano Lett.,2010,10(11):4559~4565
    [95]Cohen-Karni T, Qing Q, Li Q, et al. Graphene and nanowire transistors for cellular interfaces and electrical recording[J]. Nano Lett.,2010,10(3):1098~1102
    [96]Lee D Y, Khatun Z, Lee J-H, et al. Blood compatible graphene/heparin conjugate through noncovalent chemistry[J]. Biomacromolecules,2011,12(2):336~341
    [97]Eder D. Carbon nanotube-inorganic hybrids [J]. Chem. Rev.,2010,110(3):1348~1385
    [98]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes[J]. Science,1998,282(5386):95~98
    [99]Banerjee S, Wong S S. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures[J]. Nano Lett.,2002,2(3):195~200
    [100]Azamian B R, Coleman K S, Davis J J, et al. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes[J]. Chem. Commun.,2002,4:366~367
    [101]Kongkanand A, Dominguez R M, Kamat P V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons [J]. Nano Lett.,2007,7(3):676~680
    [102]Sainsbury T, Fitzmaurice D. Templated assembly of semiconductor and insulator nanoparticles at the surface of covalently modified multiwalled carbon nanotubes[J]. Chem. Mater.,2004,16(19):3780~3790
    [103]He H, Gao C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry [J]. Chem. Mater.,2010,22(17): 5054~5064
    [104]Ismaili H, Geng D, Sun A X, et al. Light-activated covalent formation of gold nanoparticle-graphene and gold Nanoparticle-glass composites[J]. Langmuir,2011,27(21): 13261~13268
    [105]Lee C L, Ju Y C, Chou P T, et al. Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst[J]. Electrochem. Commun.,2004,7(4):453~458
    [106]Whitsitt E A, Barron A R. Silica coated single walled carbon nanotubes[J]. Nano Lett., 2003,3(6):775-778
    [107]Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage[J]. ACS Nano,2010,4(3):1587~1595
    [108]Li Y, Wu Y. Coassembly of graphene oxide and nanowires for large-area nanowire alignment^]. J. Am. Chem. Soc.,2009,131(16):5851~5857
    [109]Han L, Wu W, Kirk F L, et al. A direct route toward assembly of nanoparticle-carbon nanotube composite materials[J]. Langmuir,2004,20(14):6019~6025
    [110]Fang Y, Guo S, Zhu C, et al. Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles:A two-dimensional heterostructure for hydrogen peroxide sensing[J]. Langmuir,2010,26(13):11277~11282
    [111]Guldi D M, Rahman G M A, Jux N, et al. Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids[J]. Angew. Chem., Int Ed.,2004,43(41):5526~5530
    [112]Georgakilas V, Tzitzios V, Gournis D, et al. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives [J]. Chem. Mater.,2005,17(7):1613~1617
    [113]Correa-Duarte M A, Liz-Marzan L M. Carbon nanotubes as templates for one-dimensional nanoparticle assemblies [J]. J. Mater. Chem.,2006,16:22-25
    [114]Ostranger J W, Mamedov A A, Kotov N A Two modes of linear layer-by-layer growth of nanoparticle-polylectrolyte multilayers and different interactions in the layer-by-layer deposition[J]. J. Am. Chem. Soc.,2001,123(6):1101~1110
    [115]Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction[J]. J. Am. Chem. Soc.,2012,134(5):2492~2495
    [116]Shen J, Hu Y, Shi M, et al. One step synthesis of graphene oxide-magnetic nanoparticle composite[J]. J. Phys. Chem. C,2010,114(3):1498~1503
    [117]Li X L, Liu Y Q, Fu L, et al. Efficient synthesis of carbon nanotube-nanoparticle hybrids[J]. AdV. Funct Mater,2006,16(18):2431~2437
    [118]Xie X, Gao L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method[J]. Carbon 2007,45(12):2365~2373
    [119]Huang H, Zhang W, Li M, et al. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries [J]. J. Colloid Interface Sci.,2005, 284(2):593-599
    [120]Kim I H, Kim J H, Lee Y H, et al. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications[J]. J. Electrochem. Soc.,2005,152(11):A2170~A2178
    [121]Qu L, Dai L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes[J]. J. Am. Chem. Soc.,2005,127(31):10806~10807
    [122]Zhou X, Huang X, Qi X, et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces[J]. J. Phys. Chem. C,2009,113(25): 10842~10846.
    [123]Chen X, Wu G, Chen J, et al. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. J. Am. Chem. Soc.,2011, 133(11):3693~3695
    [124]Xiang J, Drzal L T.Electron and phonon transport in Au nanoparticle decorated graphene nanoplatelet nanostructured paper[J]. ACS Appl. Mater. Interfaces,2011,3(4): 1325~1332
    [125]Vincent P, Brioude A, Journet C, et al. Inclusion of carbon nanotubes in a TiO2 sol-gel matrix [J]. J. Non-Cryst. Solids,2002,311(2):130~137
    [126]Li Y, Ding J, Chen J F, et al. Preparation of ceria nanoparticles supported on carbon nanotubes[J]. Mater. Res. Bull.,2002,37(2):313~318
    [127]Qiu Y, Yan K, Yang S, et al. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance[J]. ACS Nano,2010,4(11):6515~6526
    [128]Zhang W D. Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays [J]. Nanotechnology 2006,17(4):1036~1040
    [129]Kawasaki S, Scott J F, Fan H, et al. Liquid source misted chemical deposition process of three-dimensional nano-ferroelectrics with substrate heating[J]. Integr. Ferroelectr.2007, 95(1):180~186
    [130]Wu J, Shen X, Jiang L, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites [J]. App. Sur. Science,2010,256(9):2826~2830
    [131]Shen X, Wu J, Bai S, et al. One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites [J]. J. Alloys and Comp.,2010,506(1):136~140
    [132]Kim H, Sigmund. W. Zinc oxide nanowires on carbon nanotubes[J]. Appl. Phys. Lett., 2002,81(11):2085~2087
    [133]Zhang Y, Franklin N W, Chen R J, et al. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction[J], Chem. Phys. Lett.,2000,331(1):35~41
    [134]Zhu Y W, Elim H I, Foo Y L, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching[J]. AdV. Mater.,2006,18(5): 587~592
    [135]Kumar B, Lee K Y, Park H K, et al. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators[J]. ACS Nano,2011,5(5):4197~4204
    [136]Yu Y, Yu J C, Yu J G, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes[J]. Appl. Catal. A,2005,289(2):186~196
    [137]Wang W D, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method[J]. J. Mol. Catal. A:Chem.,2005,235(1-2):194~199
    [138]Ou Y, Lin J, Fang S, et al. MWNT-TiO2:Ni composite catalyst:A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination[J]. Chem. Phys. Lett.,2006,429(1-3):199~203
    [139]Kamat, P. V. Meeting the clean energy demand:Nanostructure architectures for solar energy conversion[J]. J. Phys. Chem. C,2007,111(7):2834~2860
    [140]Chen C, Cai W, Long M, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction[J]. ACS Nano,2010,4(11):6425~6432
    [141]Jia L, Wang D H, Huang Y X, et al. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation[J]. J. Phys. Chem. C,2011,115(23):11466~11473
    [142]Xiang Q, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites [J]. J. Phys. Chem. C,2011,115(15): 7355~7363
    [143]Jusys Z, Behm R J. Methanol oxidation on a carbon-supported Pt fuel cell catalyst-A kinetic and mechanistic study by differential electrochemical mass spectrometry[J]. J. Phys. Chem. B,2001,105(44):10874-10883
    [144]Li C H, Yu Z X, Yao K F, et al. Nitrobenzene hydrogenation with carbon nano tube-supported platinum catalyst under mild conditions [J]. J. MoL Catal.A:Chem., 2005,226(1):101~105
    [145]Fu X, Yu H, Peng F, et al. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance[J]. Appl. CataL, A,2007, 321(2):190~197
    [146]Zhou M, Zhang A, Dai Z, et al. Strain-enhanced stabilization and catalytic activity of metal nanochlsters on graphene[J]. J. Phys. Chem. C,2010,114(39):16541~16546
    [147]Qiu J, Wang G C, Liang R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells [J]. J. Phys. Chem. C,2011, 115(31):15639~15645
    [148]Wei B Y, Hsu M C, Su P G, et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature[J]. Sens. Actuators, B,2004,101(1-2):81~89
    [149]Wu R J, Wu J G, Yu M R, et al. Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature[J]. Sens. Actuators, B,2008, 131(1):306~312
    [150]Dey R S, Raj C R. Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material[J]. J. Phys. Chem. C,2010,114(49): 21427~21433
    [151]Fu X, Lou T, Chen Z, et al. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene[J]. ACS Appl. Mater. Interfaces,2012,4(2):1080~1086
    [152]Gao H, Xiao F, Ching C B, et al. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection[J]. ACS Appl. Mater. Interfaces,2011,3(8):3049~3057
    [153]Park J H, Ko J M, Parka O O. Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors[J]. J. Electrochem. Soc.,2003,150(7):A864~A867.
    [154]Ma S B, Nam K W, Yoon W S, et al. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications [J]. J. Power Sources,2008, 178(1):483~489
    [155]Wu Z S, Ren W, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano,2010,4(10):5835~5842
    [156]Chen S, Zhu J, Wu X, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano,2010,4(5):2822~2830
    [157]Ajayan P M, stephan O, Colliex C, et al. Aligned carbon nanotbe arrays formed by cutting a polymer resin-nanotube composite[J]. Science,1994,265(5176):1212~1214
    [158]Meincke O, Kaempfer D, Weickmann H, et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene[J]. Polymer,2004,45(3):739~748
    [159]Wakabayashi K, Pierre C, Dikin D A, et al. Polymer-graphite nanocomposites:effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromolecules,2008,41(6):1905~1908
    [160]Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science,2008,319(5867):1229~1232
    [161]Dufresne A, Paillet M, Putaux J L, et al. Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocompositesp[J]. Journal of Materials Science,2002,37(18):3915~3923
    [162]Dalmas F, Chazeau L, Gauthier C, et al. Multiwailed carbon nanotube/polymer nanocomposites:processing and properties [J]. Journal of Polymer Science Part B: Polymer Physics,2005,43(10):1186~1197
    [163]Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letter,2000,76(20): 2868~2870
    [164]Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes[J]. Small, 2005,1(2):180~192
    [165]Gao J, Zhao B, Mikhail E, et al. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface[J]. J. Am. Chem. Soc.,2006,128(23):7492~7496
    [166]Jia Z J, Wang Z Y, Xu C L, et aL Study on poly(methylmethacrylate)/carbon nanotube composites[J]. Materials Science & Engineering A,1999,271(1-2):395~400
    [167]Zhao C, Hu G, Justice R, et aL Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization[J]. Polymer,2005,46(14): 5125~5132
    [168]Fang M, Wang K, Lu H., et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. J. Mater. Chem.,2009,19(38):7098~7105
    [169]Shen J. F., Hu Y Z, Li C, et al. Synthesis of amphiphilic graphene nanoplatelets[J]. Small, 2009,5(1):82~85
    [170]Hu H T, Wang X B, Wang J, et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization [J]. Chem. Phys. Lett.,2010,484(4-6):247~253
    [171]Liu T X, Phang I Y, Shen L, et al. Morphology and mechanical p roperties of multiwalled carbon nanotubes reinforced nylon-6 composites [J]. Macromolecules,2004,37(19): 7214~7222
    [172]Liang J J, Xu Y F, Huang Y, et al., Infrared-triggered actuators from graphene-based nanocomposites [J]. J. Phys. Chem. C.,2009,113(22):9921~9927
    [173]Dalton A B, Stephan C, Coleman J N, et al. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes[J]. J. Phys. Chem. C.,2000,104(43): 10012~10016
    [174]Grimes C A, Mungle C, Kouzoudis D, et al. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites[J]. Chem. Phys. Lett.,2000,319(5-6):460~464
    [175]Zhang H B, Zheng W G, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer, 2010,51(5):1191~1196
    [176]Shen B, Zhai W, Chen C, et al. Melt blending in situ enhances the interaction between polystyrene and graphene through π-π stacking[J]. ACS AppL Mater. Interfaces,2011, 3(8):3103~3109
    [177]Baibarac M, Lira-Cantffl M, Oru-Soly J, et al. Electrochemically functionalized carbon nanotubes and their application to rechargeable lithium batteries[J]. Small, 2006,2 (8-9): 1075~1082
    [178]Zhou Y K, He B L, ZhouW J, et al. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites [J]. Electrochimica Acta,2004, 49(2):257~262
    [179]Wang D W, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode-J]. ACS Nano, 2009,3(7):1745~175
    [180]Jeong H K, Jin M, Ra E J, et al. Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability [J]. ACS Nano,2010,4(2):1162~1166
    [181]Lu G H, J iang L Y, Song F, et al. Determination of uricacid and norep inephrine by chitosan-multiwall carbon nanotube modified electrode[J]. Electroanalysis,2005,17(10): 901~905
    [182]Webster T J, Waid M C, McKenzie J L, et al. Nanobiotechnology:carbon nanofibres as imp roved neural and ortopaedic implants[J]. Nanotechnology,2004,15(1):48~54
    [183]Liu Z, Robinson J T, Sun X, et al. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs [J]. J. Am. Chem. Soc.,2008,130(33):10876~10877
    [184]Endo M, Koyama S, Matsuda Y, et al. Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube/nylon-based composite[J]. Nano Lett., 2005,5(1):101~105
    [185]张镜澄.超临界流体萃取[M].北京:北京化工出版社,2000
    [186]Eckert C A, Knutson B L, Debenedetti P G Supercritical fluids as solvents for chemical and materials processing[J]. Nature,1996,383(6598):313~318
    [187]韩布兴.超临界流体技术[J].化工冶金,1999,20(3):298-304
    [188]张敬畅,吴向阳,曹维良.超临界流体技术在催化反应和金属有机反应中的应用[J].化学通报,2001,64(6):353-359
    [189]Chaudhary AK, Beckman E J, Russell AJ. Rational control of polymer molecular weight and dispersity during enzyme-catalyzed polyester synthesis in supercritical fluids[J]. J. Am. Chem. Soc.,1995,117(13):3728~3733
    [190]Baker R T, Tumas W. Toward greener chemistry[J]. Science,1999,284(5419): 1477~1479
    [191]廖传华,柴本银主编,超临界流体与新材料制备[M].北京:中国石化出版社,2007
    [192]Eric B, Porter R S. Crystallization of biophenol a polycarbonate induced by supercritical carbon dioxide[J]. J. Polym. Sci.1987,25(7):1511~1517
    [193]王修云,工涛.超临界CO2诱导聚碳酸酯结晶的研究[J].第五届全国超临界流体技术学术及应用讨论会论文集,青岛,2004:479-483
    [194]Reverchon E. Supercritical anti-solvent precipitation of micro-and nano-particles[J]. J. Supercrit. Fluids,1999,15(1):1~21
    [195]Wang Y, Dave R N, Pfeffer R Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process[J]. J. Supercrit. Fluids,200428(1):85~99
    [196]Martin T M, Bandi N, Shulz N, et al. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology[J]. AAPS Pharm. Sci. Tech,2002,3(3):16~26
    [197]Yue J, Xu Q, Zhang Z W, et al, Periodic patterning on carbon nanotubes:Supercritical CO2-induced polyethylene epitaxy[J]. Macromolecules,2007,40(25):8821~8826
    [198]Zhang F, Zhang H, Zhang Z W, et aL Modification of carbon nanotubes:Water-soluble polymers nanocrystal wrapping to periodic patterning with assistance of supercritical CO2[J]. Macromolecules,2008,41(12):4519~4523
    [199]Yu N, Zheng X L, Xu Q, et al. Controllable-induced crystallization of PE-b-PEO on carbon nanotubes with assistance of supercritical CO2:Effect of solvent[J]. Macromolecules, 2011,44(10):3958~3965
    [200]Zhang F, Xu Q, Zhang H, et al. Polymer supermolecular structures built on carbon nanotubes via a supercritical carbon dioxide-assisted route[J]. J. Phys. Chem. C,2009, 113(43):18531~18535
    [201]Manitiu M, Bellair R, Horsch S, et al. Supercritical carbon dioxide-processed dispersed polystyrene-clay nanocomposites[J]. Macromolecules,2008,41(21):8038~8046
    [202]Shao H, Ray J R, Jun Y. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation [J]. Environ. Sci. TechnoL,2011,45(4):1737~1743
    [203]Serhatkulu G K, Dilek C, Gulari E. Supercritical CO2 intercalation of layered silicates [J]. J. Supercrit. Fluids,2006,39(2):264~270
    [204]Pu N W, Wang C A, Sung Y, et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite[J]. Materials Letters,2009,63(23):1987~1989
    [205]Rangappa D, Sone K,Wang M,et al. Rapid and Direct Conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chem. Eur. J., 2010,16(22):6488~6494
    [206]Wu B, Yang X N. A molecular simulation of interactions between graphene nanosheets and supercritical CO2[J]. J. Colloid Interface Sci. 2011,361(1):1~8
    [207]Jang J H, Rangappa D, Kwon Y U, et al. Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties [J]. J. Mater. Chem.2011,21(10):3462~3466
    [208]Tang B Z, Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes[J]. Macromolecules,1999,32(8): 2569~2576
    [209]Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2002,124(43):12664~12665
    [210]Yang M J, Koutsos V, Zaiser M. Interactions between polymers and carbon nanotubes:A molecular dynamics study [J]. J. Phys. Chem. B,2005,109(20):10009~10014
    [211]Yang H, Chen Y, Liu Y, et al. Molecular dynamics simulation of polyethylene on single wall carbon nanotube[J]. J. Chem. Phys.,2007,127(9):094902
    [212]Wei C, Srivastava D, Cho K Structural ordering in nanotube polymer composites [J]. Nano Lett.,2004,4(10):1949~1952
    [213]Cadek M, Coleman J N, Barron V, et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J]. Appl. Phys. Lett.,2002,81(27):5123~5125
    [214]Trijillo M, Arnal M L, Muller A J, et al. Thermal fractionation and isothermal crystallization of polyethylene nanocomposites prepared by in situ polymerization[J]. Macromolecules,2008,41(6):2087~2095
    [215]Chatterjee T, Yurekli K, Hadjiev V G, et al. Single-walled carbon nanotube dispersions in poly(ethylene oxide)[J]. AdV. Funct. Mater.2005,15(11):1832~1838
    [216]Wang B B, Li B, X J, et al. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization[J]. Macromolecules,2008,41(24):9516~9521
    [217]Li C Y, Li L Y, Cai W W, et al. Nanohybrid shish-kebabs:Periodically functionalized carbon nanotubes[J]. AdV. Mater.2005,17(9):1198~1202
    [218]Uehara H, Kato K, Kakiage M, et al. Single-walled carbon nanotube nucleated solution-crystallization of polyethylene[J]. J. Phys. Chem. C,2007,111(51): 18950~18957
    [219]Liang S, Wang K, Chen D Q, et al. Shear enhanced interfacial interaction between carbon nanotubes and polyethylene and formation of nanohybrid shish-kebabs [J]. Polymer,2008, 49(23):4925~4929
    [220]Brosse A C, Tence'-Girault S, Piccione P M, et al. Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6[J]. Polymer,2008,49(21):4680~4686
    [221]J enkins, A. D. Polymer Science -A materials science handbook[M]. North-Holland Publishing Co.:London,1972; Vol.1, Chapter 4
    [222]Lotz B, Wittmann J C. Polyethylene-isotactic polypropylene epitaxy:Analysis of the diffraction patterns of oriented biphasic blends[J]. J. Polym. Sci., Part B:Polym. Phys., 1987,25(5):1079~1087
    [223]Liu W, Yang C L, Zhu Y T, et al. Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly(phenylacetylene)/poly(p-phenyleneviny lene) considering repeat unit arrangements and conformations:A molecular dynamics simulation study[J]. J. Phys. Chem. C,2008,112(6):1803~1811
    [224]Baskaran D, Mays J W, Bratcher M S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes[J]. Chem. Mater.,2005, 17(13):3389~3397
    [225]Ruiz-Hitzky E, Aranda P. Polymer-salt intercalation complexes in layer silicates [J]. AdV. Mater.,1990,2(11):545~547
    [226]Papke B L, Ratner M A, Shriver D F. Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts[J]. J. Phys. Chem. Solids, 1981,42(6):493~500
    [227]Li L Y, Li C Y, Ni C Y. Polymer crystallization-driven, periodic patterning on carbon nanotubes[J]. J. Am. Chem. Soc.,2006,128(5):1692~1699
    [228]Hadjiev V G, Iliev M N, Arepalli S, et al. Raman scattering test of single-wall carbon nanotube composites [J]. Appl. Phys. Lett.,2001,78(21):3193~3195
    [229]徐敏,陈群.PEO接枝多壁碳纳米管的固体NMR研究[J].波谱学杂志,2007,24(4):469-474
    [230]Na B, Wang K, Zhang Q, et al. Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding[J]. Polymer,2005,46(9):3190~3198
    [231]Shieh Y T, Liu G L, Hwang K C, et al. Crystallization, melting and morphology of PEO in PEO/MWNT-g-PMMA blends[J]. Polymer,2005,46(24):10945~10951
    [232]Zhang L, Tao T, Li C Z. Formation of polymer/carbon nanotubes nano-hybrid shish-kebab via non-isothermal crystallization[J]. Polymer,2009,50(15):3835~3840
    [233]Wang J, Kaito A, Yase K, et al. Epitaxial growth of poly(p-oxybenzoate) crystals on crystalline substrates [J]. Polymer,1996,37(15):3247~3254
    [234]Lordi V, Yao N. Molecular mechanics of binding in carbon-nano tube-polymer composites[J]. J. Mater. Res.,2000,15(12):2770~2779
    [235]O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J]. Chem. Phys. Lett.,2001,342(3-4):265~271
    [236]Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano. Lett.2003,3(2):269~273
    [237]Kang Y, Taton T A. Micelle-encapsulated carbon nanotubes:A route to nanotube composites[J]. J. Am. Chem. Soc.,2003,125(19):5650~5651
    [238]Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes[J]. Nat Mater,2003,2(5):338~342
    [239]Liu L, Wang T, Li J, et al. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker[J]. Chem. Phys. Lett.2003,367(5-6):747~752
    [240]Xin H, Woolley A T. DNA-templated nanotube localization[J]. J. Am. Chem. Soc.,2003, 125(29):8710~8711
    [241]Chen R J, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. J. Am. Chem. Soc.,2001,123(16): 3838~3839
    [242]Karachevtsev V A, Stepanian S G, Glamazda A Y, et al. Noncovalent interaction of single-walled carbon nanotubes with 1-pyrenebutanoic acid succinimide ester and glucoseoxidase[J]. J. Phys. Chem. C,2011,115(43):21072~21082
    [243]Lin Y, Allard L F, Sun Y P. Protein-affinity of single-walled carbon nanotubes in water[J]. J. Phys. Chem. B,2004,108(12):3760~3764
    [244]Prencipe G, Tabakman S M, Welsher K, et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation[J]. J. Am. Chem. Soc.,2009,131(13): 4783~4787
    [245]Zhao B, Hu H, Yu A, et al. Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers[J]. J. Am. Chem. Soc.,2005,127(22): 8197~8203
    [246]Lim E K, Yang J, Dinney C P N, et al. Self-assembled fluorescent magnetic nanoprobes for multimode-biomedical imaging[J]. Biomaterials,2010,31(35):9310~9319
    [247]Simmons T J, Bult J, Hashim D P, et al. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites [J]. ACS Nano,2009,3(4):865~870
    [248]Zheng X L, Xu, Q. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes[J]. J. Phys. Chem. B,2010,114(29):9435~9444
    [249]Li M, Xu P, Yang J, et al. Synthesis of pyrene-substituted poly(3-hexylthiophene) via postpolymerization and its noncovalent interactions with single-walled carbon nanotubes[J]. J. Phys. Chem. C 2011,115(11):4584~4593
    [250]Zou J H, Liu L W, Chen H, et al. Dispersion of pristine carbon nanotubes using conjugated block copolymers[J]. Adv. Mater.2008,20(11):2055~2060
    [251]Zhang J L, Zhang F, Yang H J, et al. Graphene oxide as a matrix for enzyme immobilization[J]. Langmuir,2010,26(9):6083~6085
    [252]Goncalves G, Marques P A A P, Granadeiro C M, et al. Surface modification of graphene nanosheets with gold nanoparticles:The role of oxygen moieties at graphene surface on gold nucleation and growth[J]. Chem. Mater.,2009,21(20):4796~4802
    [253]Kamat P V J. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support[J]. Phys. Chem. Lett.2010,1(2): 520~527
    [254]Jain S, Bates F S. On the origins of morphological complexity in block copolymer surfactants[J]. Science,2003,300(5618):460~464
    [255]Chen E Q, Xia Y, Graham M J, et al. Glass transition behavior of polystyrene blocks in the cores of collapsed dry micelles tethered by poly(dimethylsiloxane) coronae in a PS-6-PDMS diblock copolymer[J]. Chem. Mater.,2003,15(11):2129~2135
    [256]Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery:design, characterization and biological significance[J]. Adv. Drug Delivery Rev.,2001,47(1): 113~131
    [257]Kim B H, Kim J Y, Jeong S J, et al. Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography [J]. ACS Nano,2010,4(9):5464~5470
    [258]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater.,1999,11(3):771~778
    [259]何曼君,陈维孝,董西侠等著,高分子物理[M].上海:复旦大学出版社,2000,第三章
    [260]Webber G B, Wanless E J, Butun V, et al. Self-organized monolayer films of stimulus-responsive micelles[J].Nano Lett.,2002,2(11):1307~1313
    [261]Rao A M, Eklund P C, Bandow S, et al. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering [J]. Nature,1997,388(6639):257~259
    [262]Sun J, Wang L W, Buhro W E. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots[J]. J. Am. Chem. Soc.,2008,130(25):7997~8005
    [263]Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. J. Am. Chem. Soc.,2008,130(18): 5856~5857
    [264]Mann J A, Rodriguez-Lopez J, Abruna H D, et al. Multivalent binding motifs for the noncovalent functionalization of graphene[J]. J. Am. Chem. Soc.,2011,133(44): 17614-17617
    [265]An X H, Simmons T, Shah R, et al. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications[J]. Nano Lett.,2010,10(11):4295~4301
    [266]Li J B, Ren J, Cao Y, et al. Synthesis of biodegradable pentaarmed star-block copolymers via an asymmetric BIS-TRIS core by combination of ROP and RAFT:From star architectures to double responsive micelles[J]. Polymer,2010,51(6):1301~1310
    [267]Petrov P, Stassin F, Pagnoulle C, et al. Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers[J]. Chem. Commun.,2003,67: 2904~2905
    [268]Etika K C, Jochum F D, Theato P, et al. Temperature controlled dispersion of carbon nanotubes in water with pyrene-functionalized poly(N- cyclopropylacrylamide)[J]. J. Am. Chem. Soc.,2009,131(38):13598~13599
    [269]Liu J, Bibari O, Mailley P, et al. Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene-polyethylene glycol through π-π stacking[J]. New J. Chem. 2009,33:1017~1024
    [270]Yan Y, Cui J, Potschke P, et al. Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites [J]. Carbon 2010,48(9):2603~2612
    [271]Polo Fonseca C, Cavalcante Jr. F, Amaral F A, et al. Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts[J]. Int. J. Electrochem. Sci.,2007,2(1):52~63