超临界CO_2抗溶剂法制备无定型头孢呋辛酯颗粒的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头孢呋辛酯是一种广谱抗菌药。它有三种晶型:α、β和无定型。但是只有β和无定型具有生物可利用特性。而市场上注册生产的只有无定型的头孢呋辛酯。本文介绍了利用超临界抗溶剂结晶法实现头孢呋辛酯的微粉化和无定型化。
     本文介绍了依靠一套连续的气体抗溶剂实验装置——超临界抗溶剂结晶仪,以头孢呋辛酯—丙酮一CO_2物系为研究对象,利用超临界流体抗溶剂过程制备了无定型头孢呋辛酯颗粒,从而验证了装置的可靠性。
     实验通过扫描电子显微镜、X-射线衍射法和红外吸收光谱法确定了利用超临界抗溶剂结晶法制备的头孢呋辛酯晶型为无定型;同时,对不同的实验条件(温度,结晶压力,操作气液比,头孢呋辛酯溶液浓度和喷嘴)对结晶颗粒粒径的影响进行了研究。结果表明,在以上实验因素中,结晶压力、温度、头孢呋辛酯溶液浓度和CO_2与丙酮溶液气液比这四个因素对实验结果影响最大。实验改变结晶压力、头孢呋辛酯溶液浓度和CO_2与丙酮溶液气液比这三个因素的单独实验,分析了这三个因素对实验结果的单独影响(结晶压力升高,头孢呋辛酯晶体平均粒径减小;头孢呋辛酯浓度升高,头孢呋辛酯晶体平均粒径增大;CO_2与丙酮溶液气液比增大,头孢呋辛酯晶体平均粒径减小),并分析了可能存在的原因,实验成功制备了粒径较小的无定型头孢呋辛酯颗粒。
Cefuroxime axetil belongs to cephalosporim antibiotic. Here are three polym-orphs which areα,βand the unformed for cefuroxime axetil but onlyβand the unformed are able for us, however, the unformed cefuroxime axetil is permitted to produce exclusively. The paper introduces the way to get Cefuroxime axetil power and the unformed cefuroxime axetil by means of supercritical antisovent crystallization.
     The paper introduces that we use a continuous gas supercritical antisovent instrument to get cefuroxime axetil power by supercritical antisovent process. Our research object is the object system of cefuroxime axetil- acetone- carbon dioxide. The paper uses three ways of SEM, X-ray diffraction and Infrared spectrum to check the unformed cefuroxime axetil by GAS ; and we also check the reliability of the instrument. At the same time, we do much research about the influence of the crystal size in different testing conditions (temperature, crystallization pressure, the value of gas and fluid flow rate, cefuroxime axetil concentration and nozzles).
     The result is that temperature, crystallization pressure, cefuroxime axetil concentration and the value of gas and fluid flow rate are the most important in all these test conditions. We also check the separate impact of these three test conditions (crystallization pressure rises, the crystal average size reduces; concentrations rise, the crystal average size increases; the value of gas and fluid flow rate rises, the crystal average size reduces).We also analysis the possible reasons. The unformed cefuroxime axetil which has smaller crystal average size is produced successfully.
引文
[1] 张洁玫,陈鸿彬,陈丹瑾.头孢呋辛酯片与新菌灵片的溶出度比较[J].广东药学院学报,2000,18(4):308-309
    [2] 崔岚.头孢呋辛酯片稳定性研究[J].南通医学院学报.2002,22(4):484-484
    [3] 林建雄,洪晓云,肖秋书.头孢呋辛酯制备工艺的改进[J].广东药学院学报.2002,18(3):180-181
    [4] 柯学,平其能,施爱明.头孢呋辛酯固态分散体形成和增加溶出的机制[J].中国医学杂志.2001,36(2):106-108
    [5] Harold Alfred Crisp, John Charles Clayton, Leonard Godfrey Elliott, etal. Amorphous cefuroxime axetil, United Kingdom[P]. GB 2127401A.. 1984-04-11
    [6] 李志万.药物晶型分析方法[J].中国兽药杂志.2006,40(1):45-48
    [7] Gubskaya A V, Lisnyak Y V, Blagoy Y P. Effect of cryogrinding on physico chemical properties of drugs. The ophyiline evaluation of particles sizes and the degree of crystallinity, relation to dissolution parameters[J]. Drug Develop Ind Pharm. 1995, 21 (17): 1953-1954
    [8] Glaxo operations ukltd. Ester derivative of cefuroxime[P]. GB: 1571683. 1980
    [9] Crisp, Harold A, Clatton etal. Amorphous form of cefuroxime ester[P]. US: 4562181.1985
    [10] Yoon Geal, etal. A process for preparing an amorphous cefuroxime axetil[P]. US: 2377369. 1998
    [11] M.泽诺尼,M.莱昂,A.卡塔尼奥,L.马希里.生物可利用的结晶形式头孢呋辛酯[P].US:6915001.2002-04-25
    [12] Sherkunov B Yu, York P. Proceedings of the Sixth Meeting on Supercritical Fluids[J]. Crystal Growth. 2000, 211(6): 122-136
    [13] E.B.哈姆斯基.化学工业中的结晶[M].北京:化学工业出版社,1984.213-215
    [14] E.B.哈姆斯基.化学工业中的结晶[M].北京:化学工业出版社,1984.233-236
    [15] 丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.127-129
    [16] 李风生.超细粉体技术[M].北京:国防工业出版社,2000.136-139
    [17] 胡英.近代化工热力学[M].上海:上海科技文献出版杜,1994.69-71
    [18] 陈维纽.超临界流体萃取的原理和应用[M].北京:化学工业出版杜,2000.96-98
    [19] 何卫中,朱自强,姚善泾.超临界抗溶剂沉析技术[J].化学工程.2001,29(4):142.
    [20] 胡爱军,丘泰球.超临界流体结晶技术及其应用研究[J].化工进展.2002,21(2):127-130
    [21] 韩金玉,颜迎春,常贺英,王华.新型药物结晶技术[J].化工进展.2002,12(12):945-948
    [22] Reverchon E. Supercrtital anti-solvent precipition of micro-and-nano particles [J]. Supereritical Fluids. 1999. 15:1-21
    [23] 朱自强.超临界流体技术—原理与应用[M].北京:化学工业出版社,2000.516-535
    [24] Oosterhof H, . Geertman R M, Witkampm G J, van Rosmalen G M. The growth of sodium nitrate from mixtures of water and isopropoxy ethanol laboratory for process equipment [J]. Delft University of Technology. 2002, 63(9):465-467
    [25] Gerald K. AHFS Drug Information[M]. American Society of Hospital Pharmacists Inc, 1992. 148-154
    [26] Daniel AMARO-Gonzalez, Guillermo Mabe, Marcelo Zabaloy, etal. Gas antisolvent crystallization of organic salts from aqueous solutions [J]. Supercritical Fluids. 2000, 17(4): 249-258
    [27] Reverchon E. Supercritieal antisolvent precipitation:Its application and to microparticle generation and products fraetionatiolt[M].France NICE:International Society for the Advancement of Supereritieal Fluids,1998. 221-236 [28] Dixon D J,Luna-Barcenas G,Johnston K P.Microcellular microspheres and microballoons by precipitation with a vaporliquid compressed fluid antisolvent[J].Polymer.1994,35(13) :3998-3999
    [29] Villiers MMde,Watt JGVd,Lotter AP,etal.Correlation between physico-chemical properties and cohesivebehavior of furosemide crystal modifications[J].Drug Develop Ind Pharm.1995,21(17) :1975-1978
    [30] Bleich J,Muller B W,Wa W.Aerosol solvent extraction system new microparticle production technique[J].Int J Pharm.1993,97(13) :111-120 [31] Randolph T W,Mebes M.,Yeung S.Sub-micrometer-sized biodegradable particles of poly(L-lactic acid)via the gas antisolvent spray precipitation process[J].Biotechnol Prog.1993,9(10) :429-435 [32] Yeo S D,Debenedeti P,Radosz M.Supercritical antisolvent process for substituted para-linked aromatic polymides:phase equilibrium and morphology study[J].Macromole-cular.1993,26(19) :6207-6210 [33] Yeo S D,Debenedeti P,Radosz M..Supercritical antisolvent process for a series of substituted para-linked aromatic polymides[J].Macromolecular.1995,28(3) :1316-1317 [34] Dixon D J,Johnston K.P,Bodmeier R.A polymeric materials formed by precipitation with a compressed fluid antisolvent[J].AIChE J.1993,39(1) :127-139 [35] Johnston K P,Dixon D J.Polymeric materials by precipitation with a compressed fluid antisolven,in:Perrut M,Subra P.(Eds.) Proceedings of the 3rd internation alsymposium on supercritical fluids[J].INPL,Vandeuvre(Fr).1994,15(6) :359-363 [36] Luna-Bercenasq Kanakia S K,Sanchez J C,Johnston K P.Semicrystalline microfibrils and hollow fibres by precipitation with a compressed fluid antisolvent[J].Polymer.1995,16:3173-3182 [37] Beruucco,Vaccaro,Pallado.Drags encapsulation suing a compressed gas antisolvent precipitation,in:EdReverchon,proceedings 4h Italian conference on supercritical fluids and their applications[J].CVES,Salero.1997,9(13) :327-330 [38] Bodmeier R,Wang H,Dixon D J.Polymeric microspheres prepared by spraying into compressed carbon dioxide[J].J Pharm Res.1995,3(9) :1211-1219 [39] Dixon D J,Luna-Bercenasq Johnston K P.Microcellular microspheres and microballons by precipitation with a vapour-liquid compressed fluid anisolvent [J].Polymer.1994,35(33) :3998-4005 [40] Benedeti L,Bertucco A.Pallado.Production of micronic particles of biocompatible polymer using supercritical carbon dioxide[J].Biotechnol.Bioeng.1997,53(9) :232-237 [41] Debenedettiq Lim GB.Formation of protein microparticles by antisolvent precipitation[p].EP,0542314A1. 1992 [42] Yeo S D,Lim G B,Debenedetiq H,Bemstern H.Formation of microparticulate protein powers using a supercritical fluid antisolvent[J].Biotech Bioeng.1993,41(6) :341-346 [43] Yeo S D,Debenedeti G.Secondary structure characterization of microparfculate insulin powder[J].J Pharm Sci.1994,83(13) :1651-1659 [44] Winters M A,Knutson B L,Debenedeti P G.Precipitation of proteins in supercritical carbon dioxide[J].J Pharm Sci.1996,85(3) :586-597 [45] Schimtt W J,Salada M C,Shook G G.Finely-divided powder by carrier solution injection into a near or supercritical fluid[J].AIChE J.1995,41(19) :2476-2486 [46] Revercbon E.Production of antibiotic micro-and-nano-particles by supercritical antisolvent precipitation[J].Powder Technol.1999,106(11) :23-29 [47] Steckel H,Thies Muller B W.Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide[J].Int J Pharm.1997,152(13) :99-110 [48] Badens E,Magnan C,Charbit G.Microparticles of soy lecithin formed by supercritical process[J].Biotechnol Bioeng.2001,72(2) :194-203
    [49] Gao Y, Mulenda, shi Y F. Fine particles preparation of red lake C pigment by supercritical fluid[J]. Supercrit Fluids. 1998, 13(18): 369-374
    [50] Reverchon E, Della Porta, Celano C. Process formation microparticle composition precursor superconductor precipitation by supercritieal fluid[P]. Italian Patent SA97A/10. 1997
    [51] Reverchon E, Della Porta, Pace S. Supercritical antisolvent precipitation of submicronic particles of superconductor precursors[J]. Ind Eng Chem Res. 1998, 37(8): 952-958
    [52] Reverehon E, Della Porta, Celano C. Supererical antisolvent precipitation: a new technique for preparing submicronic yttrium powders to improve YBCO superconductors[J]. Mater. Res. 1998, 13(2): 284-289
    [53] Reverchon E, Della Porta, Sannino D. Supereritical antisolvent precipitation of a zinc oxide precursor[J]. Powder Technology. 1999, 102(13): 127-134
    [54] 朱自强.超临界流体技术——原理和应用[M].北京:化学工业出版社,2000.528-530
    [55] Gallagher P M, Coffey M P, Krukonis V J, Klasutis N, In: Johnston K P, Penninger J M L eds. Supercritical Fluid Science and Technology. ACS Symp [J]. Series 406. Washington D C:ACS. 1989, 19(23):334-335
    [56] E.B.哈姆斯基.化学工业中的结晶[M].北京:化学工业出版社,1984.59-62
    [57] 刘强.GAS重结晶制备聚碳硅烷纳米微粒[D].四川:四川大学.2004
    [58] 陈岚,张岩,李保国,伍贻文,华泽钊,刘哲鹏,陆伟跃.气体抗溶剂法制备乙基纤维素微球过程的实验研究[J].上海理工大学学报.2004,26(2):121-125