超声联合新型微泡介导CTGF人工microRNA抗大鼠肝纤维化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的
     肝纤维化是慢性肝病的一种常见的病理变化,其主要特征是细胞外基质(extracellularmatrix, ECM)在肝内的积累。受到慢性肝损伤因子刺激后,肝星状细胞(hepatic stellatecell,HSC)从静止状态活化为能表达α-平滑肌肌动蛋白(alpha-smooth muscle actin,α-SMA)、产生大量ECM的肌成纤维样细胞,从而促进肝纤维化。转化生长因子(Transforming growth factor β1, TGF-β1)一直被认为是一个最有力的促进肝纤维化的细胞介质,但是由于它效应复杂,完全阻断可能会产生严重的副作用。结缔组织生长因子(connective tissue growth factor, CTGF)作为TGF-β1直接下游介质,其作用较为单一,与TGF-β1相比,其生物学效应更局限于纤维化的发生,近年来逐步受到关注。CTGF不仅可介导原代HSC的活化、增殖和迁移,还能促进活化HSC分泌ECM。研究表明抑制CTGF的表达可以明显抑制HSC的活化、增殖,减少ECM的合成。CTGF在正常肝组织表达水平很低,在纤维化肝脏,其表达水平明显增高,与肝纤维化的发生发展密切相关。通过小干扰RNA(small interfering RNA,siRNA)阻断CTGF策略取得了良好的抗肝纤维化作用。
     目前,RNA干扰技术的主要效应分子为siRNA、short hairpin RNA(shRNA)和微小RNA(microRNA,miRNA)。人工microRNA(artificial microRNA,amiRNA)是指利用天然内源性miRNA的骨干生成成熟miRNA,有效沉默目的基因。实验表明amiRNA较siRNA或shRNA更安全、有效。然而,面临的挑战是如何有效地将amiRNAs传递到靶器官。
     近几年大量研究报道超声靶向微泡破坏(ultrasound-targeted microbubble destruction,UTMD)能有效、安全增强基因转染效率并具有高度的靶向性,是一种新型的基因传递方法。微泡可作为基因的载体,在超声辐照作用下,微泡破坏,基因可在靶区释放,同时产生的空化效应增加细胞膜的通透性,促进基因进入细胞。但是目前普通微泡存在携带基因不足的缺陷。研究表明将纳米脂质体连接到微泡的表面,可以提高微泡的基因携带量。
     因此,本研究模仿内源性miRNA构建针对CTGF的人工microRNA质粒载体,观察在体外对大鼠肝星状细胞(HSC-T6)中CTGF的沉默效果;探讨高机械指数诊断超声联合微泡对肝脏通透性的影响及介导基因转染的优化条件;采用生物素-亲和素-生物素连接的方法,将载基因生物素化阳离子脂质体与生物素化微泡耦联制备出一种新型载基因微泡载体;采用新型超声微泡载体介导靶向CTGF的人工microRNA,利用UTMD技术介导其体内转染,旨在探讨其体内抑制大鼠肝CTGF基因表达的可行性及用于抗肝纤维化的有效性。方法
     1.靶向CTGF的人工microRNA质粒载体的构建和干扰筛选:
     模拟内源性miRNA,设计四对靶向大鼠CTGF的miRNA前体序列,同时设计一对阴性对照序列,构建到pcDNA6.2-GW/EmGFPmiR质粒载体中,并对重组质粒进行测序。重组质粒分别命名为miRNA-CTGF-1,miRNA-CTGF-2,miRNA-CTGF-3,miRNA-CTGF-4和miRNA-CTGF-Scramble。
     用脂质体转染法将以上质粒分别转染入大鼠肝星状细胞系HSC-T6细胞中,同时设未进行质粒转染的空白对照组,转染24h后倒置荧光显微镜观察转染效率,转染48h后荧光定量PCR法检测HSC-T6中CTGF mRNA表达情况,72h后Western Blot法检测CTGF蛋白表达情况,从而筛选出最高效沉默CTGF基因表达的干扰质粒载体。
     2.高机械指数诊断超声联合微泡对大鼠肝脏通透性的作用及安全性研究
     SD雄性大鼠104只随机分为四组:超声联合微泡组(US+MB组)、单纯超声组(US组)、单纯微泡组(MB组)、对照组(control组)。采用频率为1.5/3.2MHz,机械指数(MI)=1.0的高机械指数诊断超声进行辐照。用伊文氏蓝(Evans blue,EB)为示踪剂检测高机械指数诊断超声联合微泡对正常大鼠肝血管通透性的影响,激光共聚焦显微镜直观观察不同处理组EB在大鼠肝组织内的分布,硝酸镧示踪法透射电镜观察肝细胞膜通透性的变化。检测处理前及处理后0.5h、12h、24h血中丙氨酸氨基转移酶(alanine aminotransferase,ALT)和天冬氨酸氨基转移酶(aspartate aminotransferase,AST)变化及肾尿素氮(blood ureanitrogen,BUN)、肌酐(creatinine,CREA)变化。取处理后0.5h、1w肝、肾组织,苏木素伊红染色进行病理检测。
     3.制备载基因阳离子脂质体-微泡
     在自制“脂氟显”微泡基础上,以冷冻干燥法制备生物素化微泡和生物素化阳离子脂质体。将生物素化阳离子脂质体与质粒在室温下混合孵育30min,即制成载基因的生物素化阳离子脂质体。琼脂糖凝胶电泳观察不同体积比孵育质粒与阳离子脂质体的电泳情况。采用生物素-亲和素连接的办法,耦联生物素化微泡和载基因的生物素化阳离子脂质体制备载基因的新型超声微泡。激光共聚焦显微镜观察新型微泡形态及连接情况。分光光度计检测新型超声微泡载基因率。
     4.超声联合新型超声微泡介导CTGF人工microRNA抗肝纤维化的实验研究
     64只SD大鼠随机分为8组,第1组予生理盐水腹腔注射作为正常对照组,第2组为二甲基亚硝胺(dimethylnitrosamine,DMN)损伤建立的大鼠肝纤维化模型对照组。第3组为阴性序列对照组即载阴性序列对照质粒阳离子脂质体-微泡+超声组,第4-8组设为有效序列治疗组,分别为载基因阳离子脂质体-微泡(载基因新型微泡)+超声组、质粒+“脂氟显”微泡组+超声组、载基因新型微泡组、质粒+“脂氟显”微泡组、单纯质粒组。
     治疗结束后取肝组织用HE染色、Masson染色法和Sirius胶原染色观察肝脏的病理变化。实时荧光定量PCR及Western Blot方法检测CTGF mRNA及蛋白表达水平。免疫组织化学检测TGF-β1和α-SMA蛋白表达水平。
     结果
     1.成功构建和筛选了靶向CTGF基因的miRNA重组质粒
     构建了4个靶向CTGF基因的miRNA重组质粒,其测序结果与序列设计一致。质粒转染大鼠HSC-T6细胞后,荧光显微镜下观察到大于80%的HSC-T6细胞中观察到绿色荧光,说明质粒转染成功,而且高效表达。荧光定量PCR和Western blot结果表明,与空白对照和阴性序列质粒组比较,miRNA-CTGF-1、miRNA-CTGF-2、miRNA-CTGF-3、miRNA-CTGF-4干扰质粒均对CTGFmRNA和蛋白有明显抑制作用,其中以miRNA-CTGF-4干扰效果最为显著。
     2.高机械指数诊断超声联合微泡能安全有效提高肝区微血管通透性、肝细胞的通透性以及介导基因靶向转染
     肝组织内EB含量检测结果显示单纯超声组和单纯造影剂组与对照组比较没有统计学差异,超声联合微泡组与其余三组比较均有显著统计学差异。激光共聚焦显微镜下可见与其余三组比较,超声联合微泡组肝组织内可见明显增强的红色荧光,在肝细胞内可以清晰显示蓝色的胞核周围有明显的红色荧光围绕。硝酸镧电镜示踪结果显示对照组及单纯造影剂组及单纯超声组镧颗粒主要分布于肝窦毛细血管内及肝细胞间隙,未进入肝细胞内;超声联合微泡造影剂组,镧颗粒除了分布于肝窦毛细血管内及肝细胞间隙外,还可见镧颗粒进入到肝细胞内,但大部分呈颗粒状沉积于线粒体外,未进入线粒体内。超声联合微泡组处理后血清ALT和AST有一过性升高但很快恢复正常,肌酐、尿素氮虽略有波动,但其变化无统计学意义。病理结果显示超声联合微泡造影剂组处理0.5h后可见肝细胞变性,但是一周后恢复正常,对肾组织无明显影响。
     3.成功制备高载基因的新型微泡载体
     生物素化的阳离子脂质体平均粒径约120nm,平均表面电荷约50mV。当阳离子脂质体与质粒DNA体积比大于等于6:1时,质粒DNA可被完全阻止。激光共聚焦显微镜下观察到绿色圆形生物素化微泡周围可见红色点状的载基因生物素化阳离子脂质体。新型微泡的平均载基因率35%,普通微泡为10%。大鼠肝脏造影显示载基因阳离子脂质体-微泡能和普通微泡一样能明显增强肝脏显影。
     4.超声联合新型超声微泡介导CTGF的人工microRNA抑制大鼠肝纤维化
     HE染色、Masson染色和Sirius red染色显示CTGF人工microRNA能明显减轻DMN引起的大鼠肝纤维化程度。实时荧光定量PCR和Western Blot检测显示DMN模型组CTGFmRNA和蛋白水平较正常对照组明显升高,而CTGF人工microRNA处理后明显降低,以载基因新型微泡+超声组最为明显。免疫组织化学染色显示DMN模型组TGF-β1、α-SMA蛋白水平较正常对照组明显升高,CTGF人工microRNA处理后明显降低,以载基因新型微泡+超声组最为明显。
     结论
     1.成功构建了靶向CTGF基因的人工microRNA质粒表达载体,并筛选出对CTGF基因抑制作用最强的质粒。
     2.发现高机械指数诊断超声联合微泡能安全有效提高肝区微血管通透性及肝细胞通透性。
     3.生物素-亲和素系统可成功将载基因生物素化阳离子脂质体与生物素化微泡偶联起来制备出新型微泡载体,在提高微泡基因携带量的同时并不改变微泡的声学特性。
     4.新型超声微泡载体联合超声介导CTGF人工microRNA能明显抑制大鼠肝纤维化程度。
Backgrounds and objectives
     Hepatic fibrosis is a common pathological change in chronic liver injury characterisedby the accumulation of extracellular matrix (ECM). Following liver injury, hepatic stellatecells (HSCs) become activated and transform into myofibroblast-like cells that expressalpha-smooth muscle actin (α-SMA) and produce ECM.Transforming growth factor β1(TGF-β1) has been considered one of the most potent fibrogenic mediators to fibrosis.Because of its multiple actions, complete blockage of TGF-β1may have serious side effects.Connective tissue growth factor (CTGF) has received significant attention as a downstreameffector of the TGF-β1fibrogenic effect. CTGF not only can lead to the activation,proliferation and migration of primary HSCs, but can also promote the accumulation of ECMcomponents and inhibit their degradation. Disruption of CTGF expression has been shown toeffectively suppress the activation of HSCs and the accumulation of ECM. CTGF expressionis low or absent in normal liver tissue; however, its expression progressively increases infibrotic liver. CTGF expression is significantly correlated with the development of hepaticfibrosis. Strategies to block CTGF by small interfering RNAs (siRNA) have achievedfavourable anti-fibrotic effects for treating hepatic fibrosis.
     Based on recent studies, microRNAs (miRNAs) have gained significant attention for thetreatment of hepatic fibrosis. Artificial microRNAs (amiRNAs) exploit the backbone ofnatural miRNAs to generate designed miRNAs that can efficiently silence the gene of interest.This strategy has produced highly efficient and specific gene silencing for therapeuticapplications. However, the challenge is to effectively deliver amiRNAs to the target organ.
     Ultrasound-targeted microbubble destruction (UTMD) has emerged as a novel non-viralgene delivery technique because of its safety, high efficiency and local gene transfer. This method involves the attachment of genes to microbubbles, which are then injected andcirculated through blood vessels and destroyed at the target site by ultrasound insonation. Thedestruction increases capillary permeability and generates transient holes in the cellmembrane and releases the payload, which is incorporated intracellularly. Microbubbles,which consist of a lipid shell encapsulating perfluorocarbon gas. Nevertheless, thegene-loading capacity of microbubbles remains a consideration. Fortunately, studies haveshown that the loading capacity can be increased by attaching cationic liposomes to the lipidshell of microbubbles.
     In this study, we utilised novel cationic liposome-bearing microbubbles combined withultrasound to transfect a plasmid-based amiRNA designed against CTGF mRNA and protein,which showed high gene-silencing efficacy in vitro, to determine whether this techniquecould efficiently suppress the expression of CTGF and exert antifibrogenic effects on hepaticfibrosis in vivo.
     Methods
     1. To construct microRNA eukaryotic expression vectors
     Four different sequences targeting CTGF genes were designed. And also designed ascramble control sequence.The modified pre-miRNA sequence structure was derived frommurine miR-155. These sequences were annealed and ligated into five pcDNA6.2-GW/EmGFP-miR plasmids. Recombinant plasmid named miRNA-CTGF-1, miRNA-CTGF-2,miRNA-CTGF-3, miRNA-CTGF-4and miRNA-CTGF-Scramble.
     Used liposome carrying method to transfect five recombinant plasmids into rat hepaticstellate cells(HSC-T6) respectively and the blank contrast only transfect the Lipofectamine2000. After24hours, observed the EmGFP expression in HSC-T6cells through invertedfluorescence microscope and evaluated there transfection efficiency.Total RNA was extractedafter incubation for48h. The protein was extracted after incubation for72h. Quantitativepolymerase chain reaction (qPCR) and western blot analysis detected the differenceexpression level of CTGF mRNA and protein in HSC-T6cells, testified to the specificityinhibitional effect of miRNA-CTGF to target genes, and specified that which recombinantplasmid had the strongest inhibitional effect and its miRNA sequence.
     2. To investigate the effects of diagnostic ultrasound targeted microbubble destructionon permeability of normal liver in rats as well as its hepatic and renal toxicity.
     One hundred and four rats were divided into four groups, including the group ofultrasound irradiation with frequency of1.5/3.2MHZ combined with microbubble, the groupof ultrasound irradiation only, the group of microbubble only and the control group. Thepermeability of capillary and cell membrane was detected by using Evans blue and lanthanumnitrate as tracers, respectively. Its effect on normal rat liver tissue permeability wasobserved by confocal laser microscope. Blood chemical analysed the serum ALT,AST,BUN and CREA levels.
     3. To prepare DNA-loading cationic liposomes bearing-microbubbles.
     Biotinylated ultrasound microbubbles and biotinylated cationic nanoliposomes wereprepared by cryochem and machine vibration.Physicochemical properties were detected.Toobtain DNA-loading liposomes, incubated the biotinylated cationic nanoliposomes and DNAplasmid at room temperature for30min. Gel retardation assay for determining the mass ratiofor the biotinylated cationic nanoliposomes complete complexation with DNA. The newDNA-loading microbubbles were made by combined microbubbles with DNA-loadingcationic nanoliposomes by biotin-avidin system. And the morphology and connect effect ofcomplex were observed by laser scanning confocal microscope. The loaded-gene ability ofthe new microbubbles were detected.
     4. Inhibition of hepatic fibrosis by Artificial microRNA using cationic liposome-bearingand ultrasound
     The rats were randomly divided into eight groups: the normal control group (n=8),dimethylnitrosamine (DMN, Sigma, St. Louis, MO)-induced model group (n=8), theamiScramble group (amiScramble plasmid delivered via gene-loaded cationic microbubblecombined with ultrasound, n=8) and the amiCTGF groups (n=40). The amiCTGF groups weredivided into five groups randomly (eight rats per group): amiCTGF+M++US group(amiCTGF plasmid delivered via gene-loaded microbubble combined with ultrasound),amiCTGF+M+US (amiCTGF plasmid delivered via common microbubble combined withultrasound), amiCTGF+M+group(amiCTGF plasmid delivered via gene-loaded microbubble),amiCTGF+M group(amiCTGF plasmid delivered via common microbubble) and plasmidgroup(amiCTGF plasmid only).
     In the normal control group, rats received intraperitoneal saline injections for threeconsecutive days per week for up to4w. In the DMN model group, amiScramble group and amiCTGF groups, rats received intraperitoneal1%DMN (1ml/kg body weight) injections forthree consecutive days per week for up to4w. At the end of the second and third weeks, theDMN model group received a slow bolus injection of0.5ml/kg body weight of microbubbles,followed by1ml of saline to wash the tube via the caudal vein and ultrasound was applied asdescribed. At the end of the second and third weeks, the amiScrambe group and the amiCTGFgroups were given according treatments with amiScramble plasmid and amiCTGF plasmidrespectively.All rats were sacrificed4w after DMN or saline administration under generalanaesthesia. The liver tissue was quickly removed and a portion was instantly frozen in liquidnitrogen for Western blot and real-time RT-PCR analysis. Another portion was fixed in10%phosphate-buffered formalin for histopathological studies.
     Results
     1. Successfully constructed four MicroRNA plasmid expression vectors ofCTGFmRNAsequences,consequence of sequence analysis of those plasmids was coincidedwith computer designs. Green fluorescence could be observed in post-transfectional HSC-T6cells, which convinced that cell transfections were successful, and transfected plasmidsexpressed in cells. qPCR and Western blot showed that there was no obviously decline inCTGF mRNA and protein expression in the scambled amiRNA group(amiScamble) ascompared with the untreated HSC-T6cells group(blank) and that the four artificial microRNAtargeting CTGF groups showed different degrees of inhibitory effect, of which miRNA-CTGF-4group exhibited the strongest inhibitory effect.
     2. Evans blue amount in group of ultrasound combined with microbubble was highersignificantly than that in the other three groups (P<0.01).Lanthanum nitrate-tracingtransmission electron microscope examination indicated that intracellular lanthanum could befound entering the hepatocytes in group of ultrasound combined with microbubble. Bloodchemical analysis indicated the serum ALT, AST levels was increased (P <0.01) in group ofultrasound combined with microbubble at0.5h and12h when compared to the other threegroups, but there was no significant difference at24h (P>0.01). There was no significantdifference in the serum BUN and CREA levels among the four groups after treatment. Therewas cellular swelling in liver cells in group of ultrasound combined with microbubble at0.5h,but it repaired after one week.
     3. The biotinylated cationic liposomes appeared as spherical or nearly sphericalnanoparticles. The mean zeta potential was50mV. A gel retardation assay showed that thebiotinylated cationic liposomes/DNA volume ratio required to completely retain DNA in thecomplex was6:1.It showed that the green wall of biotinylated microbubbles was surroundedwith a number of red small round DNA-loading nanoliposomes. Its gene loading ability wasmuch higher than common microbubble. Contrast imaging showed that gene-loaded cationicmicrobubble could significantly enhance echo intensity of rat liver.
     4. The amiCTGF treatments prevented the development of hepatic fibrosis induced byDMN, as confirmed by HE, Masson's trichrome, and Sirius red staining, of which amiCTGFdelivered via gene-loaded cationic microbubble combined with ultrasound exhibited thestrongest inhibitory effect. The expression levels of CTGF mRNA and proteins were very lowin the normal control group. But they were significantly increased in the model andamiScrambe treated groups compared with that in the normal control group (P<0.01), ofwhich amiCTGF delivered via gene-loaded cationic microbubble combined with ultrasoundexhibited the strongest inhibitory effect. However, they were markedly decreased afteramiCTGF treatment compared with those of the model and the amiScrambe treatedgroups.Moreover, compared with the model and amiScrambe treated groups, TGF-β1andα-SMA protein levels was significantly reduced after amiCTGF treatment in terms of bothquantity and intensity as determined by immunohischemistry, of which amiCTGF deliveredvia gene-loaded cationic microbubble combined with ultrasound exhibited the strongestinhibitory effect.
     Conclusions
     1. Successfully constructed four microRNA plasmid expression vectors of CTGFmRNA sequences; all of them inhibit CTGF mRNA and protein expression and the inhibitionrate of miRNA-CTGF-4is the most.
     2. diagnostic ultrasound targeted microbubble destruction can increase the capillary andcell membrane permeability of normal liver without significant increase in hepatic and renaltoxicity.
     3. A new high gene-loading microbubble was developed by conjugating gene-loadingliposomes and microbubbles, using the high affinity interaction between avidin and biotin,which had good gene carrying capacity without changing its acoustic properties.
     4.Gene silencing of CTGF using amiRNAs delivered via liposome-bearing microbubbles combined with ultrasound may be a valuable specific approach for prevent hepaticfibrogenesis.
引文
1. Hernandez-Gea V, Friedman SL. Pathogenesis of Liver Fibrosis. Annu Rev Pathol,2011;6(2):425-456.
    2. Ismail MH, Pinzani M. Reversal of liver fibrosis. Saudi J Gastroenterol,2009;15(1):72-79.
    3. Jiao J, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol,2009;25(3):223-229.
    4. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res ClinGastroenterol,2011;25(2):195-206.
    5. Cheng K, Yang N, Mahato RI. TGF-beta1gene silencing for treating liver fibrosis. MolPharm,2009;6(3):772-779.
    6. Yang N, Mahato RI.GFAP promoter-driven RNA interference on TGF-β1to treat liverfibrosis.Pharm Res,2011;28(4):752-761.
    7.梁增文,张国,农兵.结缔组织生长因子在人及大鼠肝纤维化组织中表达增强.基础医学与临床,2009;27(1):49-52.
    8. Zhang D, Wang NY, Yang CB,, Fang GX, Liu W, Wen J. The clinical value of serumconnective tissue growth factor in the assessment of liver fibrosis. Dig Dis Sci,2010;55(3):767–774.
    9. Brigstock DR. Strategies for blocking the fibrogenic actions of connective tissue growthfactor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy invivo. J Cell Commun Signal.2009;3(1):5-18.
    10.薛苗,毛小荣,陈红,岳伟.抗结缔组织生长因子小分子干扰RNA防治大鼠肝纤维化的研究.肝脏,2011;16(1):41-44.
    11. McBride JL, Boudreau RL, HarperSQ, Stable PD, Monteys AM, Martins I, Gilmore BL,Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL. Artificial miRNAs mitigateshRNA-mediated toxicity in the brain: implications for the therapeutic development ofRNAi. Proc Natl Acad Sci USA,2008;105(15):5868-5873.
    12. Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles:improved safety as compared to shRNAs in vitro and in vivo. Mol Ther,2009;17(1):169-175.
    13. Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery.Advanced Drug Delivery Reviews,2008;60(10):1153-1166.
    14.罗丽卿,吴平.肝星状细胞结缔组织生长因子靶向siRNA与肝纤维化治疗的研究进展.广东医学院学报,2009;7(3):305-306.
    15.彭梅娟,郝春秋,张野,谢玉梅,张岩,白雪帆.抑制结缔组织生长因子表达对肝星状细胞增殖和活化的影响.实用肝脏病杂志,2012;15(5):430-433.
    16. Li GM, Li D, Xie Q, Shi Y, Jiang S, Jin Y. RNA interfering connective tissue growthfactor prevents rat hepatic stellate cell activation and extracellular matrix production.Gene Med,2008;10(9):1039-1047.
    17.封丽莎,樊晓明. Micro RNA在纤维化疾病中的研究进展.复旦学报(医学版),2012;39(1):94-102.
    18. Gaurav Sablok, álvaro L. Pérez-Quintero, Mehedi Hassan, Tatiana V. Tatarinova, CamiloLópez. Artificial microRNAs (amiRNAs) engineering-on how microRNA-basedsilencing methods have affected current plant silencing research. Biochem Biophys ResCommun,2011;406(3):315-319.
    19. Baek MN, Jung KH, Halder D, Choi MR, Lee BH, Lee BC, Jung MH, Choi IG, ChungMK, Oh DY, Chai YG. Artificial microRNA-based neurokinin-1receptor gene silencingreduces alcohol consumption in mice. Neurosci Lett,2010;475(3):124-128.
    20. Fan ZD, Zhang L, Gan XB, GaoXY, Zhu GQ. Artificial microRNA interference targetingAT(1a) receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther,2012;19(8):810-817.
    21. Chen Y, Blom IE, Sa S, Goldschmeding R, Abraham DJ, Leask A. CTGF and expressionin mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int,2002;62(4):1149-1159.
    22.梁增文,张国,农兵.结缔组织生长因子反义寡核苷酸对肝星状细胞胶原表达的影响.陕西医学杂志,2008;37(11):1443-1446.
    23.李光明,李定国,谢青,宗春华,周慧娟,姜山,陆汉明. siRNA沉默结缔组织生长因子对鼠肝星状细胞生物学特性的影响.上海交通大学学报(医学版),2008;28(10):1258-1261.
    24.主余华,任万华,张春清,石军,孙成刚. RNA干扰抑制肝星状细胞CTGF表达对细胞外基质分泌的影响.中国病理生理杂志,2008;24(11):2245-2250..
    25. Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD.siRNA, miRNA, and shRNA: in vivoApplications.J Dent Res,2008;87(11):992-1003.
    26. Khatri N, Rathi M, Baradia D, Trehan S, Misra A. In vivo delivery aspects of miRNA,shRNA and siRNA.Crit Rev Ther Drug Carrier Syst,2012;29(6):487-527.
    27.韩继波,陈晨,陈始明,陶泽璋. RNA干扰非特异性研究进展.生物技术通报,2009;(7):27-30.
    28.程思,周宇. MicroRNA与肝脏疾病关系的研究.胃肠病学和肝病学杂志,2011;20(4):295-298.
    29. Zeng Y.Cai X, Cu11en BR.Use of RNA polymerase II to transcribe artificialmicroRNAs.Methods Enzymol,2005;392:371-380.
    30. Mingozzi F, High KA.Immune responses to AAV in clinical trials. Curr Gene Ther,2010;11(4):321-330.
    31. Kamimura K and Liu D. Physical Approaches for Nucleic Acid Delivery to Liver. JAAPS,2008;10(4):589-595.
    32. Suda T, Liu D, Hydrodynamic gene delivery: its principles and Applications. Mol Ther,2007;15(12):2063-2069.
    33. Herweijer H, Wolff JA. Gene therapy progress and prospects: hydrodynamic genedelivery. Gene Ther,2007;14(2):99-107.
    34. Sawyer GL, Rela M, Davenport M, Whitehorne M, Zhang X, Fabre JW. HydrodynamicGene Delivery to the Liver: Theoretical and Practical Issues for Clinical Application.Current Gene Therapy,2009;9(2):128-135.
    35. Bekeredjian R, Katus HA, Kuecherer HF, Therapeutic use of ultrasound targetedmicrobubble destruction: a review of non-cardiac applications. Ultraschall Med,2006;27(2):134-140.
    36. Deelmana LE, Declèvesb AE, Rychak JJ, Sharma K. Targeted Renal Therapies throughMicrobubbles and Ultrasound. Adv Drug Deliv Rev,2010;62(14):1369-1377.
    37. Liang HD, Tang J, Halliwell M. Sonoporation, drug delivery, and gene therapy. Proc InstMech Eng H,2010;224(2):343-361.
    38. Guo H, Leung JC, Chan LY, Tsang AW, Lam MF, Lan HY, Lai KN.Ultrasound-contrastagent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Ther,2007;14(24):1712-1720.
    39. Ay T, Havaux X, Van Camp G, Campanelli B, Gisellu G, Pasquet A,Denef JF, Melin JA,Vanoverschelde JL. Destruction of contrast microbubbles by ultrasound: Effects onmyocardial function, coronary perfusion pressure, and microvascular integrity. Circulation,2001;104(4):461-466.
    40.刘平,高云华,谭开彬,刘政,张萍,朱小虎.经颅脑超声造影对血脑屏障通透性的影响.中华超声影像学杂志,2006;15(7):525-527.
    41.付赤学,高云华,刘政,赵洋,高顺纪,范顺娟,谭开彬.微泡介导下诊断超声开放人血脑屏障的可行性实验研究.中国医学影像学杂志,2011;19(2):81-83.
    42. Bekeredjian R, Kroll RD, Fein E, Tinkov S, Coester C, Winter G, Katus HA, Kulaksiz H.Ultrasound-targeted microbubble destruction increases capillary permeability inhepatomas. Ultrasound in Med&Biol,2007;33(10):1592-1598.
    43. Hoffestein S, Gennaro DE. Colloidal lanthanum as a marker for impaired plasmamembrane permeability in ischemic dog myocardium. Am J Pathol,1975;79(2):207-218.
    44. Nie F, Xu HX, Lu MD, Wang Y, Tang Q. Anti-angiogenic gene therapy forhepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: an invivo experimental study. J Drug Target,2008;16(5):389-395.
    45. Fujii H, Sun Z, Li SH, Wu J, Fazel S, Weisel RD, Rakowski H, Lindner J, Li RK.Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction inmice. JACC Cardiovasc Imaging,2009;2(7):869-879.
    46. Zhang Q, Wang Z, Ran H, Fu X, Li X, Zheng Y, Peng M, Chen M, Schutt CE. Enhancedgene delivery into skeletal muscles with ultrasound and microbubble techniques. AcadRadiol,2006;13(3):363-367.
    47. Yang FY, Fu WM, Chen WS, Yeh WL, Lin WL. Quantitative evaluation of the use ofmicrobubbles with transcranial focused ultrasound on blood–brain-barrier disruption.Ultrasonics,2008;15(4):636-643.
    48. Kertschanska S, Stulcova B, Kaufmann P, StulJ. Distensible transtrophoblastic channelsin the rat placenta. Placenta,2000;21(7):670-677.
    49. Liu P, Wang X, Zhou S, Hua X, Liu Z, Gao Y.Effects of a novel ultrasound contrastagent with long persistence on right ventricular pressure: Comparison with Sonovue.Ultrasonics,2011;51(2):210-214.
    50. S Song, Z Shen, L Chen, AA Brayman and CH Miao. Explorations of high-intensitytherapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. GeneTherapy,2011;18(10):1006-1014.
    51. Suzuki R, Oda Y, Utoguchi N, Maruyama K. Progress in the development ofultrasound-mediated gene delivery systems utilizing nano-and microbubbles. J ControlRelease,2011;149(1):36-41.
    52. Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery.Advanced Drug Delivery Reviews,2008;60(10):1153-1166.
    53. Tros de Ilarduya C, Sun Y, Düzgünes N. Gene delivery by lipoplexes and polyplexes. EurJ Pharm Sci,2010;40(3):159-170.
    54. Wang W, Liu GJ, Xie XY, Xu ZF, Chen LD,Huang GL, Zhou LY, Lu MD.Development and evaluation of lipid microbubbles targeted to alpha(v)beta(3)-integrinvia biotin-avidin bridge. J Microencapsul,2012;29(2):177-184.
    55. Tros de Ilarduya C, Sun Y, Düzgünes N. Gene delivery by lipoplexes and polyplexes. EurJ Pharm Sci,2010;40(3):159-170.
    56. Crispin R. Dass, Peter F.M. Choong. Selective gene delivery for cancer therapy usingcationic liposomes: In vivo proof of applicability. Journal of Controlled Release,2006;113(2):155-163.
    57. Jin-Liang Chen, Hua Wang, Jian-Qing Gao, Hai-Liang Chen, Wen-Quan Liang.Liposomes modified with polycation used for gene delivery: Preparation, characterizationand transfection in vitro. International Journal of Pharmaceutics,2007;343(1):255-261.
    58.杨莉,刘政,左松,谭开彬,高云华.机械振荡法制备负电荷超声造影剂的探讨.中国超声医学杂志,2006;22(12):1773-1776.
    59.王红红,冉海涛,王志刚,李攀.超声微泡一阳离子纳米脂质体复合体制备的实验研究.中国超声医学杂志,2011;27(1):1-3.
    60.沈圆圆,高钟镐, Natalya Rapoport.超声微泡作为基因或药物载体的研究进展.药学学报,2009;44(9):961-966.
    61.张喜君,李开艳.应用超声造影剂介导体内基因治疗.中国医学影像技术,2010,26(5):980-982.
    62.茹翱,田新桥.超声靶向微泡造影剂及其主要研究进展.实用医学杂志,2012;28(5):694-696.
    63. Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN. Ultrasoundassisted siRNA delivery using PEG-siPlex loaded microbubbles. Journal of ControlledRelease,2008;126(3):265-273.
    64. Kheirolomoom A, Dayton PA, Lum AF, Little E, Paoli EE, Zheng H, Ferrara KW.Acoustically-active microbubbles conjugated to liposomes: characterization of aproposed drug delivery vehicle. J Control Release,2007;118(3):275-284.
    65.王翔,刘平,高云华,刘佳,刘宏.含生物素化脂膜超声造影剂的制备与初步评价.临床超声医学杂志,2012;14(3):145-148.
    66.谭开彬,高云华,刘平,刘政,杨莉,左松.机械振荡法制备脂膜超声造影剂的初步实验研究.中国超声医学杂志,2006;22(8):561-563.
    67. Hernandez-Gea V, Friedman SL. Pathogenesis of Liver Fibrosis. Annu Rev Pathol,2011;6:425-456.
    68. Issa R,Zhou X,Constandinou CM,Fallowfield J, Millward-Sadler H, Gaca MD, Sands E,Suliman I, Trim N, Knorr A, Arthur MJ, Benyon RC, Iredale JP. Spontaneous recoveryfrom micronodular cirrhosis:evidence for incomplete resolution associated with matrixcross-linking. Gastroenterology,2004;126(7):1795-1808.
    69. Cheng K, Yang N, Mahato RI. TGF-beta1gene silencing for treating liver fibrosis. MolPharm,2009;6(3):772-779.
    70. Zhang D, Wang NY, Yang CB, Fang GX, Liu W, Wen J, Luo C. The clinical value ofserum connective tissue growth factor in the assessment of liver fibrosis. Dig Dis Sci,2010;55(3):767-774.
    71. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodelingand fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis TissueRepair,2012;5Suppl1:S24
    72. Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S. Inhibition of connective tissue growth factorby siRNA prevents liver fibrosis in rats. J Gene Med,2006;8(7):889-900.
    73. Baek MN, Jung KH, Halder D, Choi MR, Lee BH, Jung MH, Choi IG, Chung MK, OhDY, Chai YG. Artificial microRNA-based neurokinin-1receptor gene silencing reducesalcohol consumption in mice. Neurosci Lett,2010;475(3):124-128.
    74. Hu T, Fu Q, Chen P, Ma L, Sin O, Guo D. Construction of an artificial MicroRNAexpression vector forsimultaneous inhibition of multiple genes in mammalian cells. Int JMol Sci,2009;10(5):2158-2168.
    75. Chen ZY, Liang K, Lin Y, Yang F. Study of the UTMD-Based Delivery System toInduce Cervical Cancer Cell Apoptosis and Inhibit Proliferation with shRNA targetingSurvivin.Int J Mol Sci,2013;14(1):1763-1777.
    76. Carson AR, McTiernan CF, Lavery L, Hodnick A, Grata M, LengX, Wang J, Chen X,Modzelewski RA, Villanueva FS.. Gene therapy of carcinoma using ultrasound-targetedmicrobubble destruction. Ultrasound Med Biol,2011;37(3):393-402.
    77. Jiao J, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol,2009;25(3):223-229.
    78. Yuhua Z, Wanhua R, Chenggang S, Jun S, Yanjun W, Chunqing Z. Disruption ofconnective tissue growth factor by short hairpin RNA inhibits collagen synthesis andextracellular matrix secretion in hepatic stellate cells. Liver Int,2008;28(5):632-639.
    79. Hao C, Xie Y, Peng M, Ma L, Zhou Y, Zhang Y, Kang W, Wang J, Bai X, Wang P, JiaZ.Inhibition of connective tissue growth factor suppresses hepatic stellate cell activationin vitro and prevents liver fibrosis in vivo. Clin Exp Med,2013;[Epub ahead of print].
    80. George J, Tsutsumi M. siRNA-mediated knockdown of connective tissue growth factorprevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Ther,2007;14(10):790-803.
    81.黄迪,古维立,胡志文,张帅,王成兴.大鼠肝纤维化模型建立及肝纤维化的检测.广州医药,2012;43(5):56-60.
    82. Grizzi F. On the reversal of liver cirrhosis: mystery or reality? Clin Exp PharmacolPhysiol,2012;39(5):401-403.
    83. Li CH, Piao DM, Xu WX, Yin ZR, Jin JS, Shen ZS. Morphological and serum hyaluronicacid, laminin and type IV collagen changes in dimethylnitrosamine-induced hepaticfibrosis of rats. World J Gastroenterol,2005;11(48):7620-7624.
    84.王冰,张树彪,周集体,赵不凋,杨宝灵,崔绍辉,赵轶男.阳离子脂质体介导的基因转移机制.中国组织工程研究与临床康复,2011;15(8):1459-1462.
    85. Geis NA, Katus HA, Bekeredjian R.Microbubbles as a vehicle for gene and drug delivery:current clinical implications and future perspectives. Curr Pharm Des,2012;18(15):2166-2183.
    1. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, Sands E,Suliman I, Trim N, Knorr A, Arthur MJ, Benyon RC, Iredale JP. Spontaneous recoveryfrom micronodular cirrhosis: evidence for incomplete resolution associated with matrixcross-linking. Gastroenterology,2004;126(7): l795-1808.
    2. Chou WY, Lu CN, Lee TH, Wu CL, Hung KS, Concejero AM, Jawan B, Wang CH.Electroporative interleukin-10gene transfer ameliorates carbon tetrachloride-inducedmurine liver fibrosis by MMP and TIMP modulation. Acta Pharmacol Sin,2006;27(4):469-476.
    3. Hung KS, Lee TH, Chou W Y, Wu CL, Cho CL, Lu CN, Jawan B, Wang CH.Interleukin-10gene therapy reverses thioacetamide-induced liver fibrosis inmice.BiochemBioph Res Co,2005;336(1):324-331.
    4. Chen M, Wang GJ, Diao Y, Xu RA, Xie HT, Li XY, Sun JG. Adeno-associated virusmediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and invivo. Gastrornterol,2005;14;11(26):4045-4051.
    5. Ramalho LN, Ramalho FS, Zucoloto S, Castro-e-Silva Júnior O, Corrêa FM, Elias Júnior J,Magalh es JF. Effect of losartan, an angiotensin II antagonist, on secondary biliarycirrhosis. Hepatogastroenterology,2002;49(48):1499-1502.
    6. Kurikawa N, Suga M, Kuroda S, Yamada K, Ishikawa H. An angiotensin II type1receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis bysuppression of proliferation and collagen synthesis in activated hepatic stellate cells.Pharmacol,2003;139(6):1085-1094.
    7. Tsuruta S, Nakamuta M, Enjoji M, Kotoh K, Hiasa K, Egashira K, Nawata H.Anti-monocyte chemo-attractant protein-1gene therapy prevents dimethynitrosamine-induced hepatic fibrosis in rats. MolMed,2004;14(5):837-842.
    8. Naziroglu AM, Cay M, Ustünda B, Aksakal M, Yekeler H. Protective effects of vitaminE on carbon tetraehloride-induced liver damage in rats.Cell Biochem Funct,1999;17(4):253-259.
    9. Cao Q, Mak KM, Lieber CS. DLPC and SAMe prevent alpha1(I) col-lagen mRNAup-regulation in human hepatic stellate cells, whether caused by leptin or menadione.Biochem Biophys Res Commun,2006;350(1):50-55.
    10. Galli A, Crabb DW, Ceni E, Salzano R, Mello T, Svegliati-Baroni G, Ridolfi F, Trozzi L,Surrenti C, Casini A. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepaticstellate cell activation in vivo and in vitro. Gastroenterology,2002;122(7):1924-1940.
    11. Parsons CJ, TakashimaM, Rippe RA. Molecular mechanisms of hepatic fibrogenesis.Gastroenterol Hepatol,2007;22Supp l1:79-84.
    12. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, Suzuki Y, Kojima S.Prevention of rat hepatic fihrosis by the protease inhibitor, camostat mesilate, via reducedgeneration of active TGF-beta. Gastroenterology,200l;120(7):1784-1800.
    13. Jiang W, Yang CQ, Liu WB, Wang YQ, He BM, Wang JY. Blockage of transforminggrowth factorβreceptors prevents progression of pig serum-induced rat liver fibrosis.Gastroenterol,2004;10(11):1634-1638.
    14. Cui X, Shimizu I, Lu G, Itonaga M, Inoue H, Shono M, Tamaki K, Fukuno H, Ueno H,Ito S. Inhibitory effect of a soluble transforming growth factor-h type II receptor on theactivation of rat hepatic stellate cells in primary culture. Hepatol,2003,39(5):731-737.
    15. Dooley D, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P,Gressner AM. Smad7prevents activation of hepatic stellate cells and liver fibrosis in rats.Gastroenterology,2003;125(1):178-191.
    16. Kim KH, Kim HC, Hwang MY, Oh HK, Lee TS, Chang YC, Song HJ, Won NH, ParkKK.The antifibrotic effect of TGF-beta1siRNAs in murine model of livercirrhosis.Biochem Biophys Res Commun,2006;343(4):1072-1078.
    17. Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-β1to treat liverfibrosis.Pharm Res,2011;28(4):752-761.
    18. Gao Run-p ing, Brigstock DR. Connective tissue growth factor (CTGF) in rat pancreaticstellate cell function: integrin alpha5beta1as a novel CTGF receptor. Gastroenterolgy,2005;129(3):1019-1030.
    19. Gao Run-p ing, Ball DK, Perbal B,Brigstock DR. Connective tissue growth factor(CCN2)induces c-fos gene activation and cell proli-feration through p42/44MAP kinase (ERK1/2) in primary rat hepatic stellate cells. Hepatol,2004;40(3):432-439.
    20. Qi W, Chen X, Poronnik P, Pollock CA. Transforming growth factor-beta/connectivetissue growth factor axis in the kidney. Biochem Cell Biol,2008;40(1):9-13.
    21. Uchio K, Graham M, Dean NM, Rosenbaum J, Desmoulière A. Down-regulation ofconnective tissue growth factor and type I collagen mRNA exp-ression by connectivetissue growth factor antisense oligonucleotide during experimental liver fibrosis. WoundRep Reg,2004;12(1):60-66.
    22. George J, Tsutsumi M. siRNA-mediated knockdown of connective tissue growth factorprevents N-nitrosodimethylamine-induced hepatic fibrosis in rats.Gene Ther,2007;14(10):790-803.
    23. Raetsch C, Jia JD, Boigk G, Bauer M, Hahn EG, Riecken EO, Schuppan D.Pentoxifylline down-regulates profibrogenic cytokines and procollagen I expression in ratsecondary bililary fibrosis. Gut,2002;50(2):241-247.
    24. Chen SW, Zhang XR, Wang CZ. RNA interference targeting the platelet-derived growthfactor receptor beta subunit ameliorates experimental hepatic fibrosis in rats. Liver Int,2008;28(10):1446-1457.
    25. Xue X, Lin J, Song Y. RNA interference targeting leptin gene effect on hepatic stellatecells. J Huazhong Univ Sci Technolog Med Sci,2005;25(6):655-657.
    26. Hu PF, ChenH, ZhongW, Lin Y, Zhang X, Chen YX, Xie WF. Adenovirus-mediatedtransfer of siRNA againstPAI-1mRNA ameliorates hepatic fibrosis in rats. Hepatology,2009;51(1):102-113.
    27. Zhong W, Shen WF, Ning BF. Inhibition of extracellular signalregulated kinase1byadenovirus mediated small interfering RNA attenuates hepatic fibrosis in rats. Hepatology,2009;50(5):1524-1536.
    28. Jiang ZZ, Xia GY, Zhang Y, Dong L, He BZ, Sun JG. Attenuation of hepatic fibrosisthrough ultrasound-microbubble-mediated HGF gene transfer in rats. Clin Imaging,2013;37(1):104-110.
    29. Wright M, Issa R., Smart DE, Trim N, Murray GI, Primrose JN, Arthur MJ, Iredale JP,Mann DA. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells andenhances the resolution of liver fibrosis in rats. Gastroenterology,2001;121(3):685-698.
    30. Oakley F, Trim N, Constandinou CM, Ye W, Gray AM, Frantz G, Hillan K, Kendall T,Benyon RC, Mann DA, Iredale JP. Hepatocytes express nerve growth factor during liverinjury: evidence for paraerine regulation of hepatic stellate cell apoptosis. Pathol,2003;163(5):1849-1858.
    31.孙桦,李光明,虢灿杰,等. RNA干扰bcl-2基因的筛选及对肝星状细胞生物活性的影响.胃肠病学和肝病学杂志,2008;9(17):758-761.
    32.田力,李继昌,赵国强,袁建军,陈奎生,蔡庆春.超声辐照携TIMP-1siRNA微泡对大鼠肝纤维化的影响.中国医学影像技术,2007;23(7):960-962.
    1. Geis NA, Katus HA, Bekeredjian R. Microbubbles as a Vehicle for Gene and DrugDelivery: Current Clinical Implications and Future Perspectives. Current PharmaceuticalDesign,2012;18(15):2166-2183.
    2. Basude R, Duckworth JW, Wheatley MA. Influence of environmental conditions on anew surfactant-based contrast agent: ST68. Ultrasound Med Biol,2000;26(4):621-628.
    3. Sirsi S, Borden M. Microbubble Compositions, Properties and Biomedical Application.Bubble Sci Eng Technol,2009;1(1-2):3-17.
    4. Krupka TM,Solorio L,Wilson RE,Wu H, Azar N, Exner AA. Formulation andCharacterization of Echogenic Lipid-Pluronic Nanobubbles. Mol Pharm,2010;7(1):49-59.
    5. Liang HD, Tang J, Halliwell M. Sonoporation, drug delivery, and gene therapy.Proc InstMech Eng H,2010;224(2):343-361.
    6. Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubblecontrast agents. Theranostics,2012;2(12):1208-1222.
    7. Delalande A, Bureau MF, Midoux P, Bouakaz A, Pichon C. Ultrasound-assistedmicrobubbles gene transfer in tendons for gene therapy. Ultrasonics,2010;50(2):269-272.
    8. Wang X, Liang HD, Dong B, Lu QL, Blomley MJ. Gene transfer with microbubbleultrasound and plasmid DNA into skeletal muscle of mice: comparison betweencommercially available microbubble contrast agents. Radiology,2005;237(1):224-229.
    9. Yang H, Liu ZH, Liu YY, Lou CC, Ren ZL, Miyoshi H.Vascular gene transfer and drugdelivery in vitro using low-frequency ultrasound and microbubbles. Acta Pharmacol Sin,2010;31(4):515-522.
    10. Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T, Plath T,Rosewicz S, Schirner M. Evaluation of gas-filled microparticles and sonoporation as genedelivery system:feasibility study in rodent tumor models. Radiology,2005;236(2):572-578.
    11. Sun L, Huang CW, Wu J, Chen KJ, Li SH, Weisel RD, Rakowski H, Sung HW, Li RK.The use of cationic microbubbles to improve ultrasound-targeted gene delivery to theischemic myocardium.Biomaterials,2013;34(8):2107-2116.
    12.汪朝霞,王志刚,许川山,任建丽.一种载基因及多聚赖氨酸的脂质超声微泡造影剂制备的实验研究.中国超声医学杂志,2009;25(2):101-105.
    13.李巧,王志刚,冉海涛,钟世根,汪朝霞,朱叶锋,李兴升.载重组腺病毒Ad-EGFP/HIF-1α的超声造影剂的制备及其特性检测.中国超声医学杂志,2009;25(12):1105-1108.
    14. Ren JL,Wang ZG, Zhang Y, Zheng YY, Li XS, Zhang QX, Wang ZX, Xu CS.Transfection efficiency of TDL compound in HUVEC enhanced by ultrasound-targetedmicrobubble destruction. Ultrasound Med Biol,2008;34(11):1857-1867.
    15. Kheirolomoom A, Dayton PA, Lum AF, Little E, Paoli EE, Zheng H, Ferrara KW.Acoustically-active microbubbles conjugated to liposomes: characterization of aproposed drug delivery vehicle. J Control Release,2007;118(3):275-284.
    16. Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC,Sanders NN. Ultrasoundassisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release,2008;126(3):265-273.
    17. Suzuki R, Maruyama K. Effective in vitro and in vivo gene delivery by the combinationof liposomal bubbles (bubble liposomes) and ultrasound exposure.Methods Mol Biol,2010;605:473-486.
    18. Jones JM, Koch WJ. Gene therapy approaches to cardiovascular disease. Methods MolMed,2005;112:15-35.
    19. Hynynen K. Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev,2008;60(10):1209-1217.
    20. Nomikou N, McHale AP. Exploiting ultrasound-mediated effects in delivering targeted,site-specific cancer therapy. Cancer Lett,2010;296(2):133-143.
    21. Ziadloo A, Xie J, Frenkel V.Pulsed focused ultrasound exposures enhance locallyadministered gene therapy in a murine solid tumor model. J Acoust Soc Am,2013;133(3):1827-1834.
    22. Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, Chen A. Smad7gene therapyameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol,2007;18(6):1777-1788.
    23. Wang ZX, Wang ZG, Ran HT, Ren JL, Zhang Y, Li Q, Zhu YF, Ao M. The treatmentof liver fibrosis induced by hepatocyte growth factor-directed, ultrasound-targetedmicrobubble destruction in rats. Clin Imaging,2009;33(6):454-461.
    24. Chen S, Shimoda M, Wang MY, Ding J, Noguchi H, Matsumoto S, Grayburn PA.Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy. Gene Ther,2010;17(11):1411-1420.