超声微泡靶向增强基因转染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分子生物学及生物技术的迅速发展,近年来基因治疗的基础研究与应用得到了长足的进步。在基因疗法的研究中,基因传输方法是成功进行基因治疗的一个关键步骤,其中非侵袭、靶向的基因输送系统因其诸多优点成为基因疗法研究中的一个热点,在临床上具有重要的潜在应用价值。虽然传统的病毒基因载体具有较高的基因转染效率,但该类方法的安全性和长期疗效受到质疑,限制了其临床应用。近几年,非病毒基因载体引起了研究者的关注并得到了广泛研究。但目前的研究表明,单纯的非病毒载体基因转染率不高,导致基因治疗效果明显受限。超声靶向微泡破坏技术(Ultrasound-targetedmicrobubble destruction,UTMD)是一种靶向、高效、有广阔应用前景的非病毒基因输送新策略,其通过诱发细胞膜声孔作用,增加膜通透性,进而有效促进大分子物质的胞内传输,且可避免其他基因传输方法的副作用。在该类方法的研究中,UTMD的参数设置与优化组合对基因转染效率有至关重要的影响。本论文将对UTMD的参数进行详细分析与优化,为靶向、高效、无创的基因治疗研究提供一种可行的实验方案;同时尝试将物理(UTMD)和化学(PEI)的基因转染策略有机地结合起来,探究一种有效的基因传输与基因转染方法;尝试运用UTMD转染靶向Survivin基因的短发夹状RNA干扰质粒,分析基因沉默效应、凋亡诱导及增殖抑制作用,开创癌症基因治疗的新篇章。本文包括以下三部分:
     第一部分超声靶向微泡破坏参数设置与优化增强基因转染的研究
     目的①探讨不同超声及转染参数、细胞培养方式对细胞活力、基因传输和声孔作用的影响,优化超声靶向微泡破坏(UTMD)参数,减少对细胞活力利质粒完整性的影响;②比较不同声学微泡对体外基因转染的作用及其安全性;③探讨优化的UTMD参数对裸鼠人宫颈癌(Hela)皮下移植瘤基因的靶向传输效率。方法体外研究:①悬浮培养或贴壁培养Hela细胞,设置不同超声强度、占空比及辐照时间,比较其对细胞活力及红色荧光蛋白基因(DsRed)表达效率的影响;②显微镜和扫描电镜观察细胞形态及细胞膜表面的超微结构;③系统比较不同转染参数组合、不同质粒[DsRed利荧光素酶质粒(pCMV-LUC)]对细胞活力及基因表达效率的影响,分析UTMD对基因转染的增强作用,琼脂糖凝胶电泳分析质粒完整性;④分析脂质体微泡(LM)的增效作用,对微泡浓度、超声参数进行优化,运用最优参数对不同细胞系(HepG_2、Ishikawa、MCF-7和B16-F10)行超声处理,并与Sono Vue微泡、聚乙烯亚胺(PEI)介导的基因转染进行比较。体内研究:将两种报告质粒(EGFP、DsRed)经裸鼠尾静脉注入,对基因表达持续时间(1~7 d)、质粒用量(20~50μg)、靶向性和安全性进行分析。结果体外研究:①高声强和高占空比显著降低细胞存活率(P<0.01),导致细胞脱离。细胞培养方式和三种超声参数均有显著的交互作用(P<0.01);贴壁培养时,细胞活力随着占空比的增加、辐照时间的延长而逐步降低。悬浮培养时,经相同超声参数转染的细胞数目明显增加,存活率无明显下降;②电镜结果显示,适当条件的超声辐照能导致细胞表面出现可逆性孔道。悬液培养的细胞经1.0 W/cm~2、20%占空比的辐照3 min后,声孔作用最强;③当质粒浓度达到30μg/孔时,两种质粒转染率均最高。与单纯超声辐照相比,UTMD可显著提高基因转染效率(P<0.01)。④电泳结果表明,质粒DNA结构的完整性不受优化参数影响;⑤超声辐照联合LM处理后基因转染率显著增加(P<0.01);当培养细胞暴露于最优条件时,不同细胞类型对超声的反应性不同。体内研究:P+UTMD组内荧光表达显著高于P组、P+US组或P+LM组,差异均有统计学意义(p<0.01),基因表达的最佳时间是第3 d(P<0.01),两种不同报告基因的转染率较一致,非靶向器官未见明显基因表达且未观察到明显的组织损伤,结论①不同超声和转染参数、培养方式对细胞活力和基因传输效率有较大影响,对其优化后可产生较强的声孔作用,减少细胞损伤;②声学微泡超声介导基因转染有显著的增效作用,UTMD是一种有效的体外基因输送方法;③UTMD能显著增加体内报告基因转染,是一种高效、非侵袭性的基因转染方法。
     第二部分超声靶向微泡破坏联合聚乙烯亚胺增强基因转染的研究
     目的①分析UTMD联合PEI增强癌细胞基因转染的最优体外条件及协同作用;②探讨UTMD联合PEI增强裸鼠移植瘤基因输送的可行性和应用价值。方法体外研究:①制备PEI/pCMV-LUC复合物用于乳腺癌细胞(MCF-7)基因转染,以不同方式孵育微泡/转染复合物,通过荧光素酶活性和细胞存活率测定,对超声辐照参数进行优化,对质粒浓度、孵育时间、血清、溶媒类型、培养基体积等因素进行分析。②将不同质粒DNA(DsRed、pCMV-LUC)与不同分子量PEI(25 kDa、750 kDa)以不同的N/P比制备PEI/DNA复合物,利用凝胶阻滞实验分析PEI/DNA复合物的混合比例,MTT法测定PEI的细胞毒性,评价不同分子量PEI对基因转染的影响及超声辐照的增强作用。体内研究:经荷瘤裸鼠尾静脉分别注入PBS、质粒、质粒+Sono Vue微泡、PEI/DNA复合物+SonoVue微泡,仅对一侧肿瘤行超声辐照,另一侧肿瘤作为对照,对基因转染和组织学检查进行分析。结果体外研究:①适当条件的超声辐照可促进PEI/DNA复合物转染,UTMD联合PEI的转染效率显著高于单纯超声辐照和PEI转染(P<0.01)。超声辐照前细胞与PEI/DNA复合物共孵育2 h时,荧光素酶活性显著增强(P<0.01)。②琼脂糖凝胶电泳显示,N/P比≥3时,PEI可有效地缩合质粒DNA,两种PEI及两种质粒DNA的电泳情况相似。细胞毒性与PEI浓度相关。②单独超声辐照能提高裸质粒和PEI/DNA复合物的荧光素酶活性(P<0.05),但前者的增加幅度显著小于后者(P<0.05),25 kDa显著优于750 kDa(P<0.01)。体内研究:UTMD联合PEI可显著增强基因转染,受辐照移植瘤的荧光素酶活性增加了10倍(P<0.01);与非联合PEI时比较,荧光素酶表达增加了111倍(P<0.01)。无论有否超声照射,裸鼠其他器官组织中均无明显的基因表达(P>0.05),且未观察到明显的组织损伤。结论①UTMD联合PEI对基因转染有协同作用,是一种增强质粒DNA基因表达简单而有应用前景的方法,优化的超声和转染参数能显著提高体外癌细胞的基因表达效率。②UTMD联合PEI可显著增强报告基因在肿瘤组织的靶向传输利转染,是一种很有前景、新型而安全的体内基因输送方法,为基因治疗提供一种高效的新方法。
     第三部分超声靶向微泡破坏联合RNAi沉默Survivin表达及诱导细胞凋亡的研究
     目的①构建靶向Survivin基因的shRNA真核表达质粒,研究RNA干扰技术(RNAi)对凋亡抑制因子Survivin的降调节作用;②通过UTMD联合RNAi,观察体内外Survivin基因的沉默效应、细胞凋亡的诱导效应和增殖抑制作用。方法①构建三个靶向Survivin基因的shRNA真核表达质粒(pSIREN/S1/S2/S3)和对照质粒(pSIREN/con)。②体外研究:通过UTMD或脂质体转染筛选,将最优重组质粒进行详细研究,应用FITC-annexin V和7-AAD双染、DNA ladder分析细胞凋亡,RT-PCR和蛋白质印迹检测mRNA及蛋白表达的变化。③体内研究:将荷瘤裸鼠分三组:质粒+超声辐照组(P+US),质粒+微泡+超声辐照组(P+UTMD),对照组(C)。对组织样本行冰冻切片、组织学检查、采用免疫组化检测移植瘤Survivin、增殖细胞核抗原(PCNA)、Bcl-2、Bax、Caspase-3、Ki-67、核干细胞因子(NS)、p53蛋白在各组肿瘤标本中的表达,采用CD34标记、测定微血管密度(MVD),应用TUNEL法分析凋亡指数(AI)。结果①酶切和测序分析证实重组质粒构建成功。②体外研究:RT-PCR和蛋白质印迹法表明,pSIREN/S3的抑制效果最显著。流式细胞分析显示,P+L组的细胞凋亡率(31.58%±3.12%)显著高于各对照组(P<0.01),但仍低于P+UTMD组(43.86%±4.44%,P<0.01);DNA ladder显示,脂质体或UTMD转染处理后可检测到明显凋亡条带;P+UTMD组的Survivin mRNA及蛋白表达抑制率为83.33%±2.73%和79.67%±3.55%,均显著高于其他各组(P<0.01)。③体内研究:P+UTMD组的PCNA、Ki-67、Bcl-2、Survivin及NS蛋白表达下降,而Bax、Caspase-3和P53蛋白表达明显上调,MVD明显减少,AI明显增加,与C组及P+US组比较,差异均有统计学意义(P<0.05)。结论Survivin可作为癌症基因治疗的理想靶标,UTMD联合shRNA干扰技术能显著阻抑靶基因Survivin的表达,有效诱导体内外细胞凋亡,抑制细胞增殖,为肿瘤基因治疗及研究提供有前景的新方法。
Developments of techniques in molecular biology have led to the progress of genetherapy which is mainly dependent on the development of the methods of gene delivery.Meanwhile,noninvasive delivery systems that could target specific anatomical sites wouldbe hotspot for gene therapy and would be valuable clinical tools.Viral vector has beendeveloped as highly efficient methods for gene delivery to a variety of tissues,but thesafety of this kind of delivery method and immune responses are still concerned in theclinical applications.The effectiveness of nonviral gene vectors for delivering genes intocells has attracted a great deal of attention in recent years.Nonviral vectors are safer,butthe transfection efficiencies are too low to be of clinical value.Among non-viral techniques,ultrasound-targeted microbubble destruction (UTMD)has evolved as a new promising toolfor organ-specific gene delivery in in vitro and in vivo targeting delivery via a processwhich is called sonoporation,allowing for the macromolecule transfering into the cellsefficiently.To make such technology suitable to the clinical setting,parameters of UTMDtechnique should be optimized systematically.Moreover,we assessed whether the novelcombination of UTMD and polyethylenimine (PEI)was available and useful tool for genedelivery and transfection.Furhtermore,a detailed study of the combination of UTMD andshRNA targeting human Survivin gene in vitro and in vivo was carried out in this work andelucidated the effects of gene silencing cell apoptosis and proliferation,laying thefoundation for cancer gene therapy.This study includes three parts as follows.Part 1 Optimization of Ultrasound-targeted Microbubble Destruction Enhanced GeneTransfection In Vitro
     Objective 1.To investigate different parameters of ultrasound andtransfectionas well as culture conditions that would affect cell viability,sonoporation andtransfection rate of gene in cancer cells.2.To establish the optimal parameters ofultrasound-mediated microbubble destruction (UTMD)which enhanced gene transfection,3.To evaluate the transfection efficiency and safety of different acoustic microbubbles invitro in order to obtain higher transfection efficiency with minimal effect on cell viabilityand structural integrity of plasmid DNA.4.To evaluate the feasibility of delivery andlocalization of plasmid in subcutaneous transplantation tumors of human cervicalcarcinoma (Hela)in nude mice facilitated by UTMD and to optimize the correlatedparameters in vivo.Methods HeLa cells were cultured in vitro using two different protocolsin two groups,Group A:24 hrs culture for complete adherence;Group S:cell suspension.Subsequently,cells were transfected by different ultrasound intensity,duty cycle andexposure time.Gene transfection (DsRed)and cell viability were evaluated.Usingmicroscope and scanning electron microscopy (SEM),the changes of shape and thesonoporation on cell membrane induced by UTMD were observed.The influence ofparameters on transfection efficiency and cell viability of different cell lines (Hela andIshikawa)using two different DNA plasmids,DsRed and luciferase recombinant plasmid(pCMV-LUC),were studied.The different parameters of UTMD were systematicallystudied to optimize gene transfection,i.e.such as DNA concentration,duty cycle and theduration of exposure.The enhancement of SonoVue microbubble under UTMD conditionwas analyzed.The effects of sonication on plasmid DNA were investigated.Enhancedeffects of liposome microbubble (LM)under UTMD conditions were studied.Differentconcentrations of LM and ultrasound parameters were optimized.Treatment parametersoptimized in HeLa cells were applied in 4 other cell lines (HepG_2,Ishikawa,MCF-7 andB 16-F10)and compared with the transfection of PEI.In transplanted tumors in vivo study,LM and two different plasmids (EGFP and DsRed)were injected by tail vein into the nudemice followed by ultrasound exposure.Duration of gene expression (1~7 d),plasmid usage(20~50μg),localization and safety were evaluated.Results Low intensity and duty cyclehave no great impact on cell viability.Cell injury were found to increase progressively withhigh intensity and duty cycle (P<0.01),and cell detachment was significantly accompaniedby ultrasound exposure in adherent HeLa cells.Results of factorial design showed that the culture conditions and the ultrasound parameters had interaction between them (P<0.01).SEM demonstrated that the phenomenon of transient pores in the cell membrane undersuitable ultrasound irradiation was observed in details.The ideal sonoporation conditionsthat cell viability was above 80% and more membrane holes were noted to be at 1.0 W/cm~2exposured 3 min with a duty cycle of 20% in cell suspension.The increased transfectionefficiency was related to plasmid concentration and the highest transfection efficiency wasobtained when DNA concentration was 30μg/well.Compared with the ultrasoundirradiation alone,transfection efficiency of optimal UTMD was significantly increased(P<0.01).The results of agarose gel electrophoresis indicated that the structural integrity ofplasmid DNA was unaffected by the optimal ultrasound parameters.LM and ultrasoundexposure increased transfection efficiency in cultured Hela cells significantly (P<0.01).Transfection efficiency was the most prominent under the condition of 6% LM.Noapparent cell damage was found in the all groups.These experiments also revealed thatresponses to ultrasound treatment were different for all tested cell lines,dead andtransfected cells in the treated groups were different from the non-irradiated groupssignificantly.In in vivo study,strong fluorescence expression was seen in P+UTMD groupin which gene expression was significantly higher than that in any other groups (P<0.01).Gene expression level at third day post ultrasound exposure was significantly higher thanany other time points (P<0.01).There was not significantly expression level between twodifference reporter genes (P=I.000).No tissue damage was seen histologically.Conclusions Ultrasound and transfection parameters,culture conditions have a greatimpact on gene delivery efficiency and cell viability.The optimized parameters andconditions could decrease the cell injury and have a great impact on the sonoporation.Acoustic microbubbles by UTMD could enhance effectively without apparently adverseeffect in vitro and in vivo.UTMD would be an effective,noninvasive gene transfectionmethod and provide a novel,safe non-viral alternative to current gene therapy.
     Part 2 Study of Ultrasound-Targeted Microbubble Destruction Enhanced GeneDelivery Accompanied with PEI
     Objective 1.To study the optimized condition of transfection efficiency enhanced by UTMD combined with PEI.2.To observe whether the combination can have asynergistic effect to increase gene transfection.3.To determine whether it could enhancegene delivery in vivo in tumor xenografts.Methods In in vitro study,MCF-7 cells weretransfected with the compounds prepared by the plasmids encoding luciferase(pCMV-LUC)and PEI.SonoVue microbubble was added to the cell suspension or culturedwith PEI/DNA before ultrasound irradiation.The strategy of ultrasound irradiation wasoptimized.The luciferase expression and cell viability were evaluated.Furthermore,theinfluencing factor,such as the plasmid concentration,incubation time,serum,the type ofsolvent and the volume of culture media,were examined.Moreover,two differentmolecular weights (MWs,25 kDa,750 kDa)of PEI were incubated with two differentplasmids (DsRed,pCMV-LUC)to prepare the cationic compounds (PEI/DNA),accordingto the N/P ratio (nitrogen/phosphate ratio).Formation of PEI/DNA complexes wereconfirmed by the gel retardation assay.Cell viability was assessed by MTT Assay.Theeffects of different MWs on their gene expression and the enhancement of ultrasound wereevaluated.In in vivo study,Hela cells were planted subcutaneously in both flanks of femalenude mice.Tumor-bearing mice were administered by tail vein with PBS,plasmid,plasmidand SonoVue microbubble,PEI/DNA and SonoVue microbubble.One tumor was exposedto ultrasound irradiation,while the other served as control.The feasibility of targeteddelivery and tissue specificity facilitated by UTMD and PEI was investigated.Geneexpressions and histology analysis were detected.Results Ultrasound irradiation under anappropriate condition could enhance the gene transfection of PEI/DNA complexes.Incontrast to the PEI/DNA complex alone without ultrasound irradiation or ultrasoundirradiation alone,the combination of UTMD and PEI had a significantly enhancedluciferase activity (P<0.01).The 2 h pre-irradiation incubation with PEI/DNA complexexhibited a significantly enhanced luciferase activity (P<0.01).Besides,serum,type ofsolvent and the volume of culture media could affect the transfection efficiency.Electrophoresis experiments revealed that PEI could condense plasmid DNA efficientlywhen the N/P ratio was 3 or higher,and two different plasmids were similar in thiscondition.Cytotoxicity was related to the concentration of PEI.Ultrasound irradiation,evenwithout microbubbles,could significantly enhance luciferase activity of naked plasmid orcationic compound (P<0.05).The enhancement was significant for the PEI/DNA compound when compared with the naked plasmid (P<0.05).Gene transfection of 25 kDawas significantly better than 750 kDa (P<0.01).In in vivo study,the increase of transgeneexpression was related to UTMD with the presence of PEI dramatically.At least 10-foldincrease of luciferase gene transfer was obtained in irradiated tumors compared tonon-irradiated controls (P<0.01),111-fold increase compared to UTMD alone (P<0.01).There was not significantly gene expression in other organs or tissues regardless ofultrasound exposure (P>0.05).No tissue damage was seen histologically.ConclusionsThese results suggest that the combination of UTMD and PEI has a synergistic effect ongene transfection and optimized ultrasound and transfection parameters provide efficientgene delivery in cancer cells.This is a simple and promising method to enhance the geneexpression.Meanwhile,the novel combination can enhance targeted gene delivery andreporter gene expression in tumors at intravenous administration.It is a promising,new andsafe method for gene therapy in vivo.
     Part 3 Study of UTMD Associated with RNAi Techniques to Silence SurvivinExpression and Induce Cell Apoptosis
     Objective 1.To construct the recombinant expression vectors targetedSurvivin gene and to analyze the silencing effect by RNAi in cervical cancer (HeLa)cellline.2.To investigate the gene silencing,apoptosis induction and the suppression ofproliferation in vitro and in vivo transfected by UTMD techniques associated with RNAiTechniques.Methods Three survivin-shRNA expression vectors (pSIREN/S1/S2/S3)and anegative control vector was constructed (pSIREN/con)were constructed.The shRNAvectors were added to Hela cells transfected by Lipofectamine or mediated by UTMD.Theoptimal recombinant plasmid was used in the systematic optimization study of UTMD,while plasmid group (P),ultrasound exposure group (US),SonoVue microbubble group (S),plasmid and SonoVue microbubble group (P+S),plasmid and ultrasound exposure group(P+US)were used as controls,respectively.Moreover,the cells were transfected byLipofectamine (P+L).The expressions of Survivin mRNA and protein were detected byRT-PCR and western blot analysis,respectively.Apoptosis index of transfected cells wasquantified by flow cytometry marked with FITC-annexin V/FITC and 7-AAD.In the in vivo study,nude mice were randomly arranged into 3 groups:control group,plasmidinjection and ultrasound (P+US),P+UTMD group.Frozen section,transfection efficiencyand histological examination were evaluated.Protein expressions of Survivin andproliferating cell nuclear antigen (PCNA),Bcl-2,Bax,Caspase-3,Ki-67,nucleostemin(NS)、p53 were investigated by immunohistochemistry.Furthermore,microvessel density(MVD)was detected by CD34 protein expressions and apoptotic index (AI)was measuredby TUNEL method.Results Three recombinant plasmids were successfully constructed.Inthe in vitro study,the plasmids were showed to efficiently and specifically inhibit theexpression levels of Survivin gene mRNA and protein except for the pSIREN/con,whilepSIREN/S3 was significantly higher than other recombinant plasmids (P<0.05).Theapoptosis rate of P+L group [(31.58±3.12)%] was higher than control groups,but remainedlower than P+UTMD group [(43.86±4.44)%].Apoptosis index in P+UTMD group wassignificantly increased as compared with other groups (P<0.01).There were apparentapoptosis and DNA ladder in P+UTMD and P+L group.After transfected with pSIREN/S3for 48 h,the inhibition ratio of survivin mRNA and protein in P+UTMD group were83.33%±2.73% and 79.67%±3.55%,respectively.The differences were significant whencompared with other groups (P<0.01).In transplanted tumors experiment,comparing withthose in C and P+US groups,protein expressions of PCNA,Ki-67,Bcl-2,Survivin,NSwere down-regulated markedly,while those of Bax,Caspase-3 and P53 were up-regulatedsignificantly (P<0.05).MVD decreased significantly,whereas AI increased remarkably(P<0.05).Conclusions We suggest that Survivin can be regarded as an ideal target foranticancer therapy.UTMD combined with shRNA technique can induce apoptosis andinhibit proliferation significantly,without causing any apparently adverse effect,representing a new,promising technology that can be used in the tumor gene therapy andresearch.
引文
1.Chuah MK, Collen D, VandenDriessche T. Biosafety of adenoviral vectors. Curr Gene Ther, 2003,3(6): 527-543.
    2.Pouton CW, Seymour LW. Key issues in non-viral gene delivery. Adv Drug Deliv Rev, 2001,46(1-3): 187-203.
    3.Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 1995,92(16):7297-7301.
    4.Mehier-Humbert S, Guy RH. Physical methods for gene transfer: improving the kinetics of gene delivery into cells.Adv Drug Deliv Rev, 2005, 57(5):733-753.
    5.Murphy RC, Messer A. Gene transfer methods for CNS organotypic cultures: a comparison of three nonviral methods. Mol Ther,2001, 3(1): 113-121.
    6.Mayer CR, Geis NA, Katus HA, et al. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin Drug Deliv, 2008, 5(10): 1121-1138.
    7.Bekeredjian R, Katus HA, Kuecherer HE Therapeutic use of ultrasound targeted microbubble destruction: a review of non-cardiac applications. Ultraschall Med, 2006, 27(2): 134-140.
    8.Meijering BDM, Juffermans LJM, van Wamel A, et al. Ultrasound and microbubble-targeted Delivery of maeromoleeules is regulated by induction of endocytosis and pore formation. Circ Res,2009, 104:doi:10.1161/CIRCR ESA HA.108.183806.
    9.Unger EC, Matsunaga TO, McCreery T, et al. Therapeutic applications of microbubbles. Eur J Radiol,2002,42(2):160-168.
    10.Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev, 2008, 60(10): 1153-1166.
    11.Harmon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature,2004,431(7006): 371-378.
    12.Suzuki T, Nishida k, Kakutani k, et al. Sustained long-term RNA interference in nucleus pulposus cells in vivo mediated by unmodified small interfering RNA. Eur Spine J, 2009, doi:10.1007/s00586-008-0873-9.
    13.Liu Q, Fu H, Xing R, et al. Survivin knockdown combined with apoptin overexpression inhibits cell growth significantly. Cancer Biol Ther, 2008, 7(7): 1053-1060.
    1 Gao X,Kim KS,Liu D.Nonviral gene delivery:what we know and what is next.AAPS J,2007,9(1):92-104.
    2 Wells DJ.Gene therapy progress and prospects:electroporation and other physical methods.Gene Ther,2004,11(8):1363-1369.
    3 Mehier-Humbert S,Guy RH.Physical methods for gene transfer:improving the kinetics of gene delivery into cells.Adv Drug Deliv Rev,2005,57(5):733-753.
    4 Li SD,Huang L.Gene therapy progress and prospects:non-viral gene therapy by systemic delivery.Gene Ther,2006,13(18):1313-1319.
    5 Chen S,Ding JH,Bekeredjian R,et al.Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology.Proc Natl Acad Sci USA,2006,103(22):8469-8474.
    6 Liang HD,Lu QL,Xue SA,et al.Optimisation of ultrasound-mediated gene transfer(sonoporation)in skeletal muscle cells.Ultrasound Med Biol,2004,30(11):1523-1529.
    7 Fischer AJ,Stanke JJ,Omar G,et al.Ultrasound-mediated gene transfer into neuronal cells.Journal of Biotechnology,2006,122(4):393-411.
    8 Lee YH,You JO,Peng CA.Retroviral Transduction of Adherent Cells in Resonant Acoustic Fields.Biotechnol Prog,2005,21(2):372-376.
    9 Chumakova OV,Liopo AV,Evers BM,et al.Effect of 5-fluorouracil,Optison and ultrasound on MCF-7 cell viability.Ultrasound Med Biol,2006,32(5):751-758.
    10 Lawrie A,Brisken AF,Francis SE,et al.Microbubble-enhanced ultrasound for vascular gene delivery.Gene Ther,2000,7(23):2023-2027.
    11 Feril LB Jr,Ogawa R,Tachibana K,et al.Optimized ultrasound-mediated gene transfection in cancer cells.Cancer Sci,2006,97(10):1111-1114.
    12 Leong-Poi H,Kuliszewski MA,Lekas M,et al.Therapeutic arteriogenesis by ultrasound-mediated VEGF_(165) plasmid gene delivery to chronically ischcmic skeletal muscle. Circ Res, 2007,101(3):295-303.
    13 Sonoda S, Tachibana K, Uchino E, et al. Gene Transfer to Corneal Epithelium and Keratocytes Mediated by Ultrasound with Microbubbles. Invest Ophthalmol Vis Sci, 2006, 47(2):558-564.
    14 Zarnitsyn VG, Prausnitz MR. Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med Biol, 2004, 30(4):527-538.
    15 Duvshani-Eshet M, Baruch L, Kesselman E, et al. Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Ther, 2006,13(2):163-172.
    16 Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation, 2002, 105(10): 1233-1239.
    17 Hashiya N, Aoki M, Tachibana K, et al. Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem Biophys Res Commun, 2004, 317(2):508-514.
    18 Feril LB Jr, Kondo T. Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res (Tokyo), 2004,45(4):479-489.
    19 Akowuah EF, Gray C, Lawrie A, et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther,2005, 12(14):1154-1157.
    20 Bekeredjian R, Chen S, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation, 2003, 108(8):1022-1026.
    21 Kodama T, Tan PH, Offiah I, et al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol, 2005,31(12):1683-1691.
    22 Li T, Tachibana K, Kuroki M, et al. Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice-initial results. Radiology, 2003, 229(2):423-428.
    23 Nishida K, Doita M, Takada T, et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine, 2006, 31(13): 1415-1419.
    24 Junge L, Ohl CD,Wolfrum B, et al. Cell detachment method using shock-wave-induced cavitation.Ultrasound Med Biol, 2003, 29(12):1769-1776.
    25 Ohl CD, Arora M, Ikink R, et al. Sonoporation from Jetting Cavitation Bubbles. Biophysical J,2006, 91(11):4285-4295.
    26 Takahashi M, Kido K,Aoi A, et al. Spinal gene transfer using ultrasound and microbubbles. Journal of Controlled Release, 2007, 117(2):267-272.
    27 Taniyama Y,Tachibana K,Hiraoka K,et al.Development of safe and efficient novel nonviral gene transfer using ultrasound:enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle.Gene Ther,2002,9(6):372-380.
    28 Suzuki R,Takizawa T,Negishi Y,et al.Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology.Int J Pharm,2008,354(1-2):49-55.
    29 Vandenbroucke RE,Lentacker I,Demeester J,et al.Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles.J Control Release.2008,126(3):265-273.
    30 Negishi Y,Endo Y,Fukuyama T,et al.Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound.J Control Release,2008,132(2):124-130.
    31 谭开彬,高云华,刘平,等.机械振荡法制备脂膜超声造影剂的初步实验研究.中国超声医学杂志,2006,22:561-563.
    32 Boussif O,Lezoualc'h F,Zanta MA,et al.A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine.Proc Natl Acad Sci USA,1995,92(16):7297-7301.
    33 Miller L,Pislaru SV,Greenleaf JE.Sonoporation:Mechanical DNA delivery by ultrasonic cavitation.Somat Cell Mol Genet,2002,27(1-6):115-134.
    34 Pan H,Zhou Y,Izadnegahdar O,et al.Study of sonoporation dynamics affected by ultrasound duty cycle.Ultrasound Med Biol,2005,31(6):849-856.
    35 Fang HY,Tsai KC,Cheng WH,et al.The effects of power on-offdurations of pulsed ultrasound on the destruction of cancer cells.Int J Hyperthermia,2007,23(4):371-380.
    36 Chen S,Shohet RV,Bekeredjian R,et al.Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J Am Coll Cardiol,2003,42(2):301-308.
    37 Rahim AA,Taylor SL,Bush NL,et al.Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound.J Gene Med,2006,8(11):1347-1357.
    38 Amarzguioui M.Improved siRNA-mediated silencing in refractory adherent cell lines by detachment and transfection in suspension.Biotechniques,2004,36(5):766-770.
    39 Kinoshita M,Hynynen K.A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound.Biochem Biophys Res Commun,2005,335(2):393-399.
    40 Duvshani-Eshet M,Adam D,Machluf M.The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound.J Control Release,2006,112(2):156-166.
    41 Sakakima Y,Hayashi S,Yagi Y,et al.Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents.Cancer Gene Therapy,2005,12(11):884-889.
    42 Wang X,Liang HD,Dong B,et al.Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice:Comparison between commercially available microbubble contrast agents.Radiology,2005,237(1)224-229.
    43 Meijering BD,Henning RH,Van Gilst WH,et al.Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells.Journal of Drug Targeting,2007,15(10):664-671.
    44 Larina IV,Evers BM,Esenaliev RO.Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation.Anticancer Res,2005,25(1A):149-156.
    45 冉海涛,任红,王志刚,等.超声波空化效应对体外培养细胞细胞膜作用的实验研究.中华超声影像学杂志,2003,12:499-501.
    46 Mehier-Humbert S,Bettinger T,Yan F,et al.Plasma membrane poration induced by ultrasound exposure:implication for drug delivery.J Control Release,2005,104(1):213-222.
    47 赵应征,罗渝昆,唐杰,等.脂质体利脂质微泡对细胞膜的声孔作用比较.药学学报,2006, 41:1176-1179.
    48 Kinoshita M,Hynynen K.Key factors that affect sonoporation efficiency in in vitro settings:The importance of standing wave in sonoporation.Biochem Biophys Res Commun,2007,359(4):860-865.
    49 Nie Y,Zhang ZR,Duan YR.Combined use of polycationic peptide and biodegradable macromolecular polymer as a novel gene delivery system:a preliminary study.Drug Deliv,2006,13(6):441-446.
    50 Kuo JH,Jan MS,Sung KC.Evaluation of the stability of polymer-based plasmid DNA delivery systems after ultrasound exposure.International Journal of Pharmaceutics,2003,257(1-2):75-84.
    51 张群霞,王志刚,冉海涛,等.不同超声强度及微泡对基因和组织作用的实验研究.中华超声影像学杂志,2005,14(4):304-306.
    52 Koynova R,Wang L,MacDonald RC.Synergy in lipofection by cationic lipidmixtures:superior activity at the gel-liquid crystalline phase transition.J Phys Chem B,2007,111(27):7786-7795.
    53 Huang SL,MacDonald RC.Acoustically active liposomes for drug encapsulation and ultrasound-triggered release.Biochim Biophys Acta,2004,1665(1-2):134-141.
    54 Suzuki R,Takizawa T,Negishi Y,et al.Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound.J Control Release,2007,117(1):130-136.
    55 Siu T,Rohling RN,Chiao M.Power density requirement of a 4 MHz micro-ultrasonic transducer for sonodynamic therapy.Biomed Microdevices,2008,10(1):89-97.
    56 Yamashita T,Sonoda S,Suzuki R,et al.A novel bubble liposome and ultrasound-mediated gene transfer to ocular surface:RC 1 cells in vitro and conjunctiva in vivo.Exp.Eye Res,2007,85(6):741-748.
    1 Felgner PL,Gadek TR,Holm M,et al.Lipofection:a highly efficient,lipid-mediated DNA-transfection procedure.Proc Natl Acad SCi USA,1987,84(21):7413-7417.
    2 Filion MC,Phillips NC.Toxicity immunomodulatory and activity of liposomal vectors formulated with cationic lipids toward immune effect or cells.Biochim Biophys Acta,1997,1329(2):345-356.
    3 Wagner E,Ogris M,Zauner W.Polylysine-based transfection systems utilizing receptor-mediated delivery.Adv Drug Deliv Rev,1998,30(1-3):97-113.
    4 Lungwitz U,Breunig M,Blunk T,et al.Polyethylenimine based non-viral gene delivery systems.Eur J Pharm Biopharm,2005,60(2):247-266.
    5 Neu M,Fischer D,Kissel T.Recent advances in rational gene transfer vector design based on poly(ethylene imine)and its derivatives.J Gene Med,2005,7(8):992-1009.
    6 Zaitsev S,Cartier R,Vyborov O,et al.Polyelectrolyte nanoparticles mediate vascular gene delivery.Pharm Res,2004,21(9):1656-1661.
    7 Thomas M,Klibanov AM.Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells.Proc Natl Acad Sci,2002,99(23):14640-14645.
    8 Hauff P,Seemann S,Reszka R,et al.Evaluation of gas-filled microparticles and sonoporation as gene delivery system:feasibility study in rodent tumor models.Radiology,2005,236(2):572-578.
    9 Chappell JC,Song J,Burke CW,et al.Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis.Small,2008,4(10):1769-1777.
    10 Müller OJ,Schinkel S,Kleinschmidt JA,et al.Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats.Gene Ther,2008,15(23):1558-1565.
    11 Chen S,Ding J,Yu C,et al.Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1. Gene Ther, 2007, 14(14):1102-1110.
    12 Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Ther, 2005, 12( 17): 1305-1312.
    13 Chen YC, Liang HD, Zhang QP, et al. Pluronic block copolymers: novel functions in ultrasound-mediated gene transfer and against cell damage. Ultrasound Med Biol, 2006,32(1):131-137.
    14 Ren JL, Wang ZG, Zhang Y, et al. Transfection efficiency of TDL compound in HUVEC enhanced by ultrasound-targeted microbubble destruction. Ultrasound Med Biol, 2008, 34(11):1857-1867.
    15 Lawrie A, Brisken AF, Francis SE, et al. Microbubble enhanced ultrasound for vascular gene therapy. Gene Therapy, 2000, 7(23):2023-2027.
    16 Anwer K, Kao G, Proctor B, et al. Ultrasound enhancement of cationic lipid mediated gene transfer to primary tumors following systemic administration. Gene Ther 2000, 7(21):1833-1839.
    17 Zhou QH, Miller DL, Carlisle RC, et al. Ultrasound-enhanced transfection activity of HPMA-stabilized DNA polyplexes with prolonged plasma circulation. J Control Release, 2005,106(3):416-427.
    18 Lee YH, Peng CA. Nonviral transfection of suspension cells in ultrasound standing wave fields.Ultrasound Med Biol, 2007, 33(5):734-742.
    19 Xenariou S, Griesenbach U, Liang HD, et al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther, 2007, 14(9):768-774.
    20 Huber PE, Pfisterer P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther, 2000, 7(17):1516-1525.
    21 Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation, 2003, 108(8): 1022-1026.
    22 Chen S, Shohet RV, Bekeredjian R. et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound targeted microbubble destruction. J Am Coll Cardiol, 2003, 42(2):301-308.
    23 Chumakova OV, Liopo AV, Andreev VG, et al. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett, 2008,261(2):215-225.
    24 Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 1995,92(6):7297-7301.
    25 Choosakoonkriang S, Lobo BA, Koe GS, et al. Biophysical characterization of PEI/DNA complexes. J Pharm Sci, 2003, 92(8):1710-1722.
    26 Yadava P, Roura D, Hughes JA. Evaluation of two cationic delivery systems for siRNA.Oligonucleotides, 2007, 17(2):213-222.
    27 Jeong JH, Kim SW, Park TG. Biodegradable Triblock Copolymer of PLGA-PEG-PLGA Enhances Gene Transfection Efficiency. Pharmaceutical Research, 2004, 21(1):50-54.
    28 Blokpoel MC, Murphy HN, O'Toole R, et al. Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 2005; 33(2):e22.
    29 Snewin VA, Gares MP, Gaora PO, et al. Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun. 1999; 67(9):4586-4593.
    30 Ogris M, Walker G, Blessing T, et al. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release, 2003, 91(1-2):173-181.
    31 Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther, 2001,8(1):28-40.
    32 Feril LB Jr, Ogawa R, Kobayashi H, et al. Ultrasound enhances liposome-mediated gene transfection. Ultrason Sonochem, 2005, 12(6):489-493.
    33 Kuo JH, Jan MS, Sung K.C. Evaluation of the stability of polymer-based plasmid DNA delivery systems after ultrasound exposure.Int J Pharm, 2003, 257(1-2):75-84.
    34 Kichler A, Leborgne C, Coeytaux E, et al. Polyethyleneimine mediated gene delivery: a mechanistic study. J Gene Med, 2001, 3(2):135-144.
    35 Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 1995,92(16):7297-301.
    36 Oh S, Pluhar GE, McNeil EA, et al. Efficacy of nonviral gene transfer in the canine brain. J Neurosurg, 2007. 107(1): 136-44.
    37 Xiang L, Bin W, Huali J, et al. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med, 2007, 9(8):679-90.
    38 Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem, 2003, 278(45):44826-31.
    39 Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly(ethylenimine)-mediated cytotoxicity:implicateons for gene transfer/therapy. Molec Ther, 2005, 11(6):990-995.
    40 Bertschinger M, Backliwal G, Schertenleib A, et al. Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. J Control Release,2006, 116(1):96-104.
    41 Matsuura M, Yamazaki Y, Sugiyama M, et al: Polycation liposome-mediated gene transfer in vivo. Biochim Biophys Acta, 2003, 1612(2): 136-43.
    42 Lu QL, Liang HD, Partridge T, et al. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther, 2003,10(5):396-405.
    43 Schlicher RK, Radhakrishna H, Tolentino TP, et al. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol, 2006, 32(6):915-924.
    44 Feril LB Jr, Kondo T. Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res, 2004, 45(4):479-489.
    45 Tang GP, Zeng JM, Gao SJ, et al. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials, 2003, 24(13):2351-2362.
    46 Deshpande MC, Prausnitz MR. Synergistic effect of ultrasound and PEI on DNA transfection in vitro. J Control Release, 2007, 118(1): 126-135.
    47 Nie F, Xu HX, Lu MD, et al. Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: an in vivo experimental study. J Drug Target, 2008,16(5):389-395.
    48 Hosseinkhani H, Kushibiki T, Matsumoto K, et al. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther, 2006, 13(5):479-489.
    49 Haag P, Frauscher F, Gradl J, et al. Microbubble-enhanced ultrasound to delivery an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J Steroid Biochem Mol Biol, 2006, 102(1-5): 103-113.
    50 Dittmar KM, Xie J, Hunter F, et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: Initial Experience. Radiology,2005, 235(2):541-546.
    51 Howard CM, Forsberg F, Minimo C, et al. Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents. J Cell Physiol, 2006,209(2):413-421.
    52 Chen S, Ding JH, Bekeredjian R, et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA, 2006, 103(22):8469-8474.
    53 Yanagisawa K, Moriyasu F, Miyahara T, et al. Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound Med Biol, 2007, 33(2):318-325.
    54 Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. MolPharm, 2004, 1(4):317-330.
    55 Bekeredjian R, Kroll RD, Fein E, et al. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol, 2007, 33(10): 1592-1598.
    1.Mayer CR, Bekeredjian R. Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev, 2008, 60(10): 1177-1192.
    2.Brujan EA. The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol, 2004, 30(3):381-387.
    3.Iwanaga K, Tominaga K, Yamamoto K, et al. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther, 2007, 14(4):354-363.
    4.Bekeredjian R, Katus HA, Kuecherer HF. Therapeutic use of ultrasound targeted microbubble destruction: A review of non-cardiac applications. Ultraschall Med, 2006, 27(2): 134 -140.
    5.Aoi A, Watanabe Y, Mori S, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med Biol, 2008, 34(3):425-434.
    6.Azuma H, Tomita N, Sakamoto T, et al. Marked regression of liver metastasis by combined therapy of ultrasound-mediated NF kappa B-decoy transfer and transportal injection of paclitaxel, in mouse.Int J Cancer, 2008, 122(7): 1645-1656.
    7.Duvshani-eshet M, Benny O, Morgenstern A, et al. Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol Cancer Ther, 2007, 6(8):2371-2382.
    8.Li YS, Davidson E, Reid CN, et al. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett, 2009, 273(1):62-69.
    9.Li X, Wang Z, Ran H, et al. Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats. J Ultrasound Med, 2008, 27(3):453-460.
    10.Gianani R, Jarboe E, Orlicky D, et al. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum Pathol, 2001, 32(1): 119-125.
    11.Dong K, Wang R, Wang X, et al. Tumor-specific RNAi targeting eIF4E suppresses tumor growth,induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat, 2009, 113(3):443-456.
    12.Jiang G, Li J, Zeng Z, et al. Lentivirus-mediated gene therapy by suppressing survivin in BALB/c nude mice bearing oral squamous cell carcinoma. Cancer Biol Ther, 2006, 5(4):435-440.
    13.Caplen NJ. Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther, 2004, 11(16): 1241 -1248.
    14.Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836):494-498.
    15.Harmon GJ.RNA interfrence. Nature, 2002, 418(6894):244-251.
    16.Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nature biotechnol, 2002, 20(5):505-508.
    17.Caplen NJ, Taylor JP, Statham VS, et al. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet, 2002, 11(2)175-184.
    18.Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21(37):5716-5724.
    19.Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence specific silencing in mammalian cells. Genes Dev, 2002, 16(8):948-958.
    20.Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296(5567): 550-553.
    21.Ling X, Li F. Silencing of antiapoptotic Survivin gene by multiple approaches of RNA interference technology. BioTechniques, 2004, 36(3):450-460.
    22.Kinoshita M, Hynynen K. A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun, 2005, 335(2):393-399.
    23.Vandenbroucke RE, Lentacker I, Demeester J, et al. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release, 2008, 126 (3):265-273.
    24.Gan HZ, Zhang GZ, Zhao JS, et al. Reversal of MDR1 gene-dependent multidrug resistance using short hairpin RNA expression vectors. Chin Med J (Engl), 2005, 118(11):893-902.
    25.Czauderna F, Fechtner M, Ayg(?)n H, et al. Functional studies of the PI(3)-kinase signalling pathway employing synthetic and expressed siRNA. Nucleic Acid Res, 2003, 31(2): 670-682.
    26.Zhen HN, Li LW, Zhang W, et al. Short hairpin RNA targeting survivin inhibits growth and angiogenesis of gliomaU251 cells. Int J Oncol, 2007, 31(5):1111-1117.
    27.Gu CM, Zeng M, Ma YH, et al. Survivin-an attractive target for RNAi in non-Hodgkin's lymphoma,Daudi cell line as a model. Leuk Lymphoma, 2006, 47 (9):1941-1948.
    28.Kappler M, Bache M, Bartel F, et al. Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther, 2004, 11(3): 186-193.
    29.Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004, 22(3):326-330.
    30.Shariat SF, Ashfaq R, Roehrborn CG, et al. Expression of survivin and apoptotic biomarkers in benign prostatic hyperplasia. J Urol, 2005, 174(5):2046-2050.
    31.Hinnis AR, Luckett JC, Walker RA. Survivin is an independent predictor of short-term survival in poor prognostic breast cancer patients. Br J Cancer, 2007, 96(4):639-645.
    32.Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol, 1995,147(1):9-19.
    33.Minchinton AI, Tannock IF. Drug penetration in solid tumors. Nat Rev Cancer, 2006, 6(8):583-592.
    34.McDonald DM, Choyke PL. Imaging of angiogenesis: from microscopic to clinic. Nat Med, 2003,9(6):713-725.
    35.Wang Y, Yuan F. Delivery of viral vcctors to tumor cells: extracellular transport, systemic distribution, and strategies for improvemcnt. Ann Biomed Eng, 2006, 34(1): 114-127.
    36.McGuire S, Zaharoff D, Yuan F. Nonlinear dependence of hydraulic conductivity on tissue deformation during intratumoral infusion. Ann Biomed Eng, 2006, 34(7): 1173-1181.
    37.Shukla GS, Krag DN. Selective delivery of therapeutic agents for the diagnosis and treatment of cancer.Expert Opin Biol Ther, 2006, 6(1):39-54.
    38.Holen T, Amarzguioui M, Wiiger MT. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 2002, 30(8)1757-1766.
    39.Hommel JD, et al. Local gene knockdown in the brain using viral mediated RNA interference. Nat Med, 2003, 9(12): 1539-1544.
    40.Xia H, Mao Q, Paulson HL, et al. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol, 2002, 20(10): 1006-1010.
    41.Lewis DL et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet, 2002, 32(1): 107-108.
    42.Mousses S, et al. RNAi microarray analysis in cultured mammalian cells. Genome Res, 2003,13(10): 2341-2347.
    43.Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA, 2001, 98(17)9742-9747.
    44.Aoki Y, Cioca D, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol, 2003, 30:96-102.
    45.Yu JY, Deruiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(9):6047-6052.
    46.Cashman SM, Bowman L, Christofferson J, et al. Inhibition of choroidal neovascularization by adenovirus-mediated delivery of short hairpin RNAs targeting VEGF as a potential therapy for AMD. Invest Ophthalmol Vis Sci, 2006, 47(8):3496-3504.
    47.Chen YC,Shen SC, Lee WR, et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase-3 cascade but independent of reactive oxygen species production. Biochem Pharmacol, 2002, 64(12)1713-1724.
    48.Caldas H, Holloway MP, Hall BM, et al. Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo. J Med Genet, 2006, 43(2):119-128.
    49.Saito M, Mazda O, Takahashi KA, et al. Sonoporation mediated transduction of pDNA/siRNA into joint synovium in vivo. J Orthop Res, 2007, 25(10):1308-1316.
    50.Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995, 267(5203):1456-1462.
    51.Honda H, Zhao QL, Kondo T. Effects of dissolved gases and an echo contrast agent on apoptosis induced by ultrasound and its mechanism via the mitochondria-caspase pathway. Ultrasound Med Biol, 2002, 28(5):673-682.
    52.Peril LB Jr, Kondo T, Zhao QL, et al. Enhancement of hyperthermia-induced apoptosis by non-thermal effects of ultrasound. Cancer Lett, 2002, 178(l):63-70.
    53.Takeuchi S, Udagawa Y, Oku Y, et al. Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure. Ultrasonics, 2006, 44 Suppl 1 :e345-348.
    54.Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther, 2002;9(24): 1647-1652.
    55.Hauff P, Seemann S, Reszka R, et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology, 2005, 236: (2)572-578.
    56.Kennedy JE, ter Haar GR, Wu F, et al. Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound. Ultrasound Med Biol, 2004, 30(6): 851-854.
    57.Tevenson M. Therapeutic potential of RNA Interference. N Engl J Med, 2004, 351(17):1772-1777.58. Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mo Genet, 2002, 27(1-6): 115-134.
    59.Newman CM, Lawrie A, Brisken AF, et al. Ultrasound gene therapy: on the road from concept to reality. Echocardiography, 2001, 18(4): 339-347.
    60.Duvshani-Eshet M, Machluf M. Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Release, 2005, 108(2-3):513-528.
    61.Yu T, Wang Z, Mason TJ. A review of research into the uses of low level ultrasound in cancer therapy. Ultrason Sonochem, 2004, 11(2):95-103.
    62.Tomizawa M, Ebara M, Saisho H, et al. Irradiation with ultrasound of low output intensity increased chemosensitivity of subcutaneous solid tumors to an anti-cancer agent. Cancer Lett, 2001,173(1):31-35.
    63.Nie F, Xu HX, Lu MD, et al. Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: an in vivo experimental study. J Drug Target, 2008,16(5):389-395.
    64.Juffermans LJ, Kamp O, Dijkmans PA, et al. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK (Ca) channels. Ultrasound Med Biol, 2008, 34(3):502-508.
    65.Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev, 2004, 56(9): 1291 -1314.
    1 Kimmel E.Cavitation bioeffects.Crit Rev Biomed Eng,2006,34(2):105-161.
    2 Miller DL,Pislaru SV,Greenleaf JE.Sonoporation:mechanical DNA delivery by ultrasonic cavitation.Somat Cell Mol Genet,2002,27(1-6):115-134.
    3 Schlicher RK,Radhakrishna H,Tolentino TP,et al.Mechanism of intracellular delivery by acoustic cavitation.Ultrasound Med Biol,2006,32(6):915-924.
    4 van Wamel A,Kooiman K,Harteveld M,et al.Vibrating microbubbles poking individual cells:drug transfer into cells via sonoporation.J Control Release,2006,112(2):149-155.
    5 van Wamel A,Bouakaz A,Versluis M,et al.Micromanipulation of endothelial cells:ultrasound-microbubble-cell interaction.Ultrasound Med Biol,2004,30(9):1255-1258.
    6 Juffermans L,Dijkmans PA,Musters R J,et al.Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide.Am J Physiol Heart Circ Physiol,2006,291(4):1595-1601.
    7 Husseini GA,Runyan CM,Pitt WG.Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles.BMC Cancer,2002:1-6.
    8 Dijkmans PA,Juffermans LJ,Musters RJ,et al.Microbubbles and ultrasound:from diagnosis to therapy.Eur J Echocardiogr,2004,5(4):245-256.
    9 van Wamel A,Bouakaz A,Bernard B,et al.Radionuclide tumour therapy with ultrasound contrast microbubbles.Ultrasonics,2004,42(1-9):903-906.
    10 Yu T,Huang X,Hu K,et al.Treatment of transplanted adriamycin-resistant ovarian cancers in mice by combination of adriamycin and US exposure.Ultrason Sonochem,2004,11(5):287-291.
    11 Yu T,Wang Z,Mason TJ.A review of research into the uses of low level US in cancer therapy.Ultrason Sonochem,2004,11(2):95-103.
    12 Abe H. et al. Targeted sonodynamic therapy of cancer using a photosensitizer conjugated with antibody against carcinoembryonic antigen. Anticancer Res. 2002, 22(3):1575-1580.
    13 Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release, 2006, 114(1):889-922.
    14 Kodama T, Tomita Y, Koshiyama K, et al. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble. Ultrasound Med Biol, 2006, 32(6): 905-914.
    15 Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Adv. Drug delivery Rev, 2004, 6(9): 1291-1314.
    16 Hallow DM, Mahajan AD, Prausnitz MR. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release, 2007, 118(3):285-293.
    17 Sonoda S, Tachibana K, Uchino E, et al. Inhibition of melanoma by ultrasound-microbubble -aided drug delivery suggests membrane permeabilization. Cancer Biol Ther, 2007, 6(8):1276-1283.
    18 Bekeredjian R, Kroll RD, Fein E, et al. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol, 2007, 33(10): 1592-1598.
    19 Korosoglou G, Hardt SE, Bekeredjian R, et al. Ultrasound exposure can increase the membrane permeability of human neutrophil granulocytes containing microbubbles without causing complete cell destruction. Ultrasound Med Biol, 2006, 32(2):297-303.
    20 Frenkel PA, Chen S, Thai T, et al. DNA-loaded albumin microbubbles enhance ultrasound mediated transfection in vitro. Ultrasound Med Biol, 2002, 28(6):817-822.
    21 Lawrie A, Brisken AF, Francis SE, et al. Microbubble enhanced ultrasound for vascular gene therapy. Gene Therapy, 2000, 7(23):2023-2027.
    22 Lawrie A, Brisken AF, Francis SE, et al. Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med. Biol, 2003, 29(10):1453-1461.
    23 Huber PE, Pfisterer P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumour R3327-AT1 is enhanced by focused ultrasound. Gene Therapy, 2000, 7(17):1516-1525.
    24 Miller DL, Dou C, Song J. DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro. Ultrasound Med Biol, 2003, 29(4):601-607.
    25 Miao CH, Brayman AA, Loeb KR, et al. Ultrasound enhances gene delivery of human factor Ⅸ plasmid. Hum. Gene Ther. 2005, 16(7):893-905.
    26 Taniyama Y, Tachibana K, Hiraoka K, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Therapy, 2002, 9(6):372-380.
    27 Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using Ultrasound. Circulation 2002, 105( 10): 1233-1239.
    28 Azuma H, Tomita N, Kaneda Y, et al. Transfection of NFκB-decoy oligodeoxynucleotides using efficient US-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts.Gene Ther. 2003, 10(5): 415-425.
    29 Takahashi M, Kido K, Aoi A, et al. Spinal gene transfer using ultrasound and microbubbles. J Control Release, 2007, 117(2):267-272.
    30 Kodama T, Tan PH, Offiah I, et al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol, 2005, 31 (12): 1683-1691.
    31 Tsunoda S, Mazda O, Oda Y, et al. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochcm Biophys Res Commun, 2005, 336(1): 118-127.
    32 Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation, 2003, 108 (8):1022-1026.
    33 Chen SY, Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. JACC, 2003, 42(2):301-308.
    34 Amabile PG, Waugh JM, Lewis TN, et al. High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol, 2001, 37(7): 1975-1980.
    35 Zen K, Okigaki M, Hosokawa Y, et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol, 2006, 40(6):799-809.
    36 Iwasaki M, Adachi Y, Nishiue T, et al. Hepatocyte growth factor delivered by ultrasound-mediated destruction of microbubbles induces proliferation of cardiomyocytes and amelioration of left ventricular contractile function in doxorubicin-induced cardiomyopathy. Stem Cells, 2005, 23(10):1589-1597.
    37 Bekeredjian R, Chen SY, Pan WT, et al. Effects of ultrasound targeted microbubble destruction on cardiac gene expression. Ultrasound in Medicine and Biology, 2004, 30(4):539-543.
    38 Vannan M, McCreery T, Li P, et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr,2002, 15(3):214-218.
    39 Beeri R, Guerrero JL, Supple G, et al. New efficient catheter-based system for myocardial gene delivery. Circulation, 2002, 106(14): 1756-1759.
    40 Imada T, Tatsumi T, Mori Y, et al. Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response.Arterioscler Thromb Vasc Biol, 2005, 25(10):2128-2134.
    41 Miura S, Tachibana K, Okamoto T, et al. In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem Biophys Res Commun, 2002, 298(4):587-590.
    42 Hashiya N, Aoki M, Tachibana K, et al. Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem Biophys Res Commun, 2004, 317(2):508-514.
    43 Anwer K, Kao G, Proctor B, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Therapy, 2000, 7(21): 1833 -1839.
    44 Hosseinkhani H, Tabata Y. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Control Release 2005; 108: 540-556.
    45 Hauff P, Seemann S, Reszka R, et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology, 2005, 236(2):572-578.
    46 Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst, 2007, 99(14): 1095-1106.
    47 Duvshani-Eshet M, Machluf M. Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent: from in vitro to in vivo setting. Cancer Gene Ther,2007, 14(3):306-315.
    48 Iwanaga K, Tominaga K, Yamamoto K, et al. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther, 2007, 14(4):354-363.
    49 Lu QL, Liang HD, Partridge T, et al. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy, 2003, 10 (5):396-405.
    50 SChratzberger P, Krainin JG, Schratzberger G, et al. Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Molecular Therapy, 2002, 6(5):576-583.
    51 Leong-Poi H, Kuliszewski MA, Lekas M, et al. Therapeutic arteriogenesis by ultrasound -mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res, 2007, 101(3):295-303.
    52 Kusumanto YH, Mulder NH, Dam WA, et al. Improvement of in vivo transfer of plasmid DNA in muscle: comparison of electroporation versus ultrasound. Drug Deliv, 2007, 14(5):273-277.
    53 Sonoda S, Tachibana K, Uchino E, et al. Gene Transfer to Corneal Epithelium and Keratocytes Mediated by Ultrasound with Microbubbles. Invest Ophthalmol Vis Sci, 2006, 47(2):558-564.
    54 Shimamura M, Sato N, Taniyama Y, et al. Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles. J Gene Med, 2005, 7(11): 1468-1474.
    55 Manome Y, Nakayama N, Nakayama K, et al. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol, 2005,31(5):693-702.
    56 Chen S, Ding J, Yu C, et al. Reversal of streptozotocin-induced diabetes in rats by gene therapy with beta cellulin and pancreatic duodenal homeobox-1. Gene Ther, 2007, 14(14): 1102-1110.
    57 Emoto M, Tachibana K, Iwasaki H, et al. Antitumor effect of TNP-470, an angiogenesis inhibitor,combined with ultrasound irradiation for human uterine sarcoma xenografts evaluated using contrast color Doppler ultrasound. Cancer Sci, 2007, 98(6):929-935.
    58 Yoshida T, Kondo T, Ogawa R, et al. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemother Pharmacol, 2008, 61(4):559-567.
    59 Fechheimer M, Boylan JF, Parker S, et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA, 1987, 84(23):8463-8467.
    60 Campbell P, Prausnitz MR. Future directions for therapeutic ultrasound. Ultrasound Med Biol, 2007,33(4):657.
    61 Ng K.Y, Liu Y. Therapeutic ultrasound: its application in drug delivery. Med Res Rev, 2002, 22(2):204-223.
    62 Feril LB Jr, Kondo T. Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res (Tokyo), 2004, 45(4):479-489.
    63 Vancraeynest D, Havaux X, Pasquet A, et al. Myocardial injury induced by ultrasound-targeted microbubble destruction: Evidence for the contribution of myocardial ischemia. Ultrasound Med Biol, 2009, 35(4):672-679.
    64 Miller DL, Quddus J. Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci USA, 2000, 97(18): 10179-10184.
    65 Miller DL. Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol, 2007, 93(1-3):314-330.
    66 Vancraeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction. Eur Heart J, 2006, 27(2):237-245.
    67 Chen S, Ding JH, Bekeredjian R, et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA, 2006, 103(22): 8469-8474.
    68 Taylor SL, Rahim AA, Bush NL, et al. Targeted retroviral gene delivery using ultrasound. J Gene Med, 2007, 9(2):77-87.
    69 Howard CM, Forsberg F, Minimo C, et al. Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents. J Cell Physiol, 2006, 209(2):413-421.
    70 Duvshani-Eshet M, Machluf M. Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Release, 2005, 108(2-3):513-528.
    71 Duvshani-Eshet M, Adam D, Machluf M. The effects of albumin coated microbubbles in DNA delivery mediated by therapeutic ultrasound. J Control Release, 2006, 112(2):156-166.
    72 Duvshani-Eshet M, Baruch L, Kesselman E, et al. Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Therapy, 2006, 13(2):163-172.
    73 Zarnitsyn VG, Prausnitz MR. Physical parameters influencing optimization of ultrasound -mediated DNA transfection. Ultrasound Med Biol, 2004, 30(4):527-538.
    74 Larina IV, Evers BM, Esenaliev RO. Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation. Anticancer Res, 2005, 25(1A): 149-156.
    75 Rahim AA, Taylor SL, Bush NL, et al. Physical parameters affecting ultrasound/microbubble mediated gene delivery efficiency in vitro. Ultrasound Med Biol, 2006, 32(8): 1269-1279.
    76 Rahim AA, Taylor SL, Bush NL, et al. Spatial and acoustic pressure dependence of microbubble mediated gene delivery targeted using focused ultrasound. J Gene Med, 2006, 8(11):1347-1357.
    77 Meijering BD, Henning RH, Van Gilst WH, et al. Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells. J Drug Target, 2007, 15(10):664-671.
    78 Pislaru SV, Pislaru C, Kinnick RR, et al. Optimization of ultrasound-mediated gene transfer:comparison of contrast agents and ultrasound modalities. Eur Heart J, 2003, 24( 18): 1690-1698.
    79 Feril LB Jr, Ogawa R, Tachibana K, et al. Optimized ultrasound-mediated gene transfection in cancer cells. Cancer Sci, 2006, 97(10): 1111-1114.
    80 Shen ZP, Brayman AA, Chen L, et al. Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther, 2008, 15(16):1147-1155.
    81 Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev, 2008, 60(10): 1167-1176.
    82 Lentacker I, De Geest BG, Vandenbroucke RE, et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 2006, 22(17): 7273-7278.
    83 Christiansen JP, French BA, Klibanov AL, et al. Targeted tissue transfection with ultrasound destruction of plasmid bearing cationic microbubbles. Ultrasound Med Biol, 2003, 29 (12): 1759-1767.