超声造影剂介导下增强腺病毒相关病毒心肌靶向转染率的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究旨在探讨超声造影剂介导下增强标记有GFP报告基因的腺相关病毒载体(rAAV2-GFP)心肌内靶向转染的转染效率。本研究探讨经系统输入法,超声介导下rAAV2-GFP心肌转染的重组腺相关病毒的最佳滴度;探讨超声造影剂介导下增强rAAV2-GFP心肌靶向转染前后心功能的变化;探讨超声造影剂介导下rAAV2-GFP在心肌内的靶向转染效率。方法:将同种属同窝别同年龄雌雄不限SD大鼠,体重为250~350克,随机分为7组,每组3只,共21只。包括6个实验组和1个对照组。根据rAAV2-GFP滴度不同将实验组分为以下6组:1组滴度为1.5×109vg/ml;2组滴度为3.0×109vg/ml;3组滴度为1.5×1010vg/ml;4组滴度为3.0×1010vg/ml;5组滴度为1.5×1011vg/ml;6组滴度为3.0×1011vg/ml。苯巴比妥钠50mg/kg腹腔麻醉。各实验组通过尾静脉注入携带上述不同滴度rAAV2-GFP的SonoVue微泡造影剂1.2ml。对照组通过尾静脉注入1.2ml的SonoVue。首先使用GE Vivid 7 Dimension超声诊断仪所配备的i13L线阵探头,探头频率为10~14MHz,经左胸壁进行心脏超声心动图检查。仪器设置为低机械指数MI﹦0.4(mechanical index,MI)。当心肌组织内见微泡造影剂充盈时立即换成M3S探头,探头频率为2.0~3.5MHz,启用二次谐波功能,发射频率为1.3MHz,接收频率为2.6MHz并进入反向编码实时心肌造影模式,使机械指数调至1.02,利用FLASH(fast low-angle shot,FLASH)功能破坏心腔及心肌组织中的造影剂微泡,并进行心电触发,每三到六个心动周期触发一次,以达到定点爆破造影剂微泡的目的。每触发一次间隔2~5秒,以利于下一心动周期有足够的超声造影剂进入心肌组织内。14天后,麻药过量处死大鼠。取心脏组织做冰冻切片,切片厚度为5μm以下。荧光显微镜下观察心肌内荧光的表达量代表腺相关病毒载体的转染量;将同种属同窝别同年龄雌雄不限SD大鼠,体重250~350克,随机分为2组,每组10只,共20只。采用苯巴比妥钠50mg/kg腹腔麻醉。对照组给予单纯尾静脉注射超声造影剂SonoVue并于体表心脏部位进行超声照射破坏造影剂微泡(不携带rAAV2-GFP);实验组给予尾静脉注射携带有rAAV2-GFP的微泡造影剂SonoVue并于体表心脏部位进行超声照射。使用i13L线阵变频探头,探头频率为10~14MHz,仪器设置为低机械指数MI=0.4,行超声心动图实时监测,当超声微泡进入心肌组织内时,立即换成M3S探头,参数设置同前,爆破微泡微泡完全消失,从而达到定点爆破造影剂微泡、定点释放rAAV2-GFP、促进腺相关病毒载体定点转染至心肌组织内的目的。分别于实验前及实验后14天由同一名有经验的超声心动图医师完成心功能数据的采集。分别采集大鼠二尖瓣水平短轴、乳头肌水平短轴及心尖短轴二维灰阶动态图(帧频为92~123frames/s)各3个心动周期,保持心率一致,储存于EchoPAC工作站。使用EchoPAC工作站做后处理分析。应用2DS分析软件,对每一动态图像分别于收缩末期手动勾画左室心内膜边界,软件自动生成感兴趣区(ROI),调整ROI宽度使其包纳心肌全层。运行程序后软件自动逐帧追踪ROI内心肌运动,并将室壁划分为6个节段,得出各节段及左室整体的应变、应变率、旋转角度、扭转角度、达峰时间等参数:乳头肌水平短轴切面测量左室周向应变(SC)、收缩期周向应变率(SrcSYS)、舒张早期周向应变率(SrcE)舒张晚期周向应变率(SrcA)。二尖瓣水平短轴及心尖水平短轴测量心底整体最大收缩期旋转角度(RotMV)、心尖整体最大收缩期旋转角度(RotAP)。逆时针方向旋转角度定义为正值,顺时针方向旋转角度定义为负值。左室扭转角度(LVtor)定义为:LVtor=RotMV-RotAP。对不同大鼠间心率差异进行时间校标,将主动脉瓣关闭时间点(AVC)设定为收缩期末,下一个心动周期的R波顶点设定为舒张期末,测量扭转峰值角度、达峰时间。采用二维及M型超声心动图分别记录心率(HR)、左室舒张末期容积(EDV)、左室收缩末期容积(ESV)、左室射血分数(EF)、短轴缩短率(FS);将同种属同窝别同年龄体重相近雌雄不限的SD大鼠随机分为6组,每组10只,共60只,体质量为250~350克。给予苯巴比妥钠50mg/kg腹腔麻醉。分别采用以下方法给予干预:第一组给予单纯经尾静脉注射超声造影剂SonoVue并同时进行体表心脏部位超声照射爆破微泡造影剂(不携带rAAV2-GFP);第二组给予单纯经鼠尾静脉注射rAAV2-GFP,但不进行超声照射;第三组给予尾静脉注射rAAV2-GFP并进行体表心脏部位超声照射爆破微泡造影剂;第四组先给予尾静脉注射超声造影剂后进行体表心脏部位超声照射爆破造影剂微泡,再给予尾静脉注射rAAV2-GFP;第五组只给予尾静脉注射携带rAAV2-GFP超声造影剂但不进行超声照射;第六组给予造影剂携带rAAV2-GFP尾静脉注射,当心肌内见微泡造影剂充盈时于体表心脏部位进行超声照射,爆破微泡造影剂。进行超声照射的所有实验组,首先用i13L线阵探头,探头频率为10~14MHz,仪器设置为低机械指数MI=0.4进行超声心动图实时观察。当心肌组织内可见造影剂微泡充盈时立即更换探头为M3S,参数设定同前,爆破心脏内的微泡造影剂,至心肌内微泡完全消失。14天后麻药过量处死动物,取心脏、肝脏、脑组织做冰冻切片荧光显微镜下进行荧光表达情况的观察。结果:各实验组中均见不同程度的荧光表达,而对照组中心肌内未见荧光表达。实验组中注入rAAV2-GFP的滴度为1.5×109vg/ml和3.0×109vg/ml组心肌内荧光表达量极少;注入rAAV2-GFP滴度为1.5×1010vg/ml和3.0×1010vg/ml组心肌内有荧光表达,但表达量亦较少;注入滴度为1.5×1011vg/ml组荧光的表达量较低滴度组有了大幅度的增加,近12倍,差异有统计学意义(P<0.01),且荧光亮度清晰可见,完全可以满足研究中对rAAV2-GFP转染情况的观察。虽然随着注入滴度增加心肌内荧光表达量亦有增加,注入rAAV2-GFP滴度为3.0×1011vg/ml组心肌内荧光的表达量更多,然而只比注入1.5×1011vg/ml滴度组增加了一倍,且增加了经济成本。因而认为经尾静脉注入1.5×1011vg/ml的rAAV2-GFP为超声介导下增强rAAV2-GFP心肌转染的最佳滴度;对照组与实验组大鼠的心率、左室舒张末期容积、左室收缩末期容积、左室射血分数、短轴缩短率、左室周向应变、收缩期周向应变率、舒张早期周向应变率、舒张晚期周向应变率、左室扭转角度,各项心功能指标处理前后比较均无明显变化,差异无统计学意义(P>0.05)。并且处理后对照组与实验组心功能的上述指标亦均无明显变化,差异无统计学意义(P>0.05);给予尾静脉注射携带rAAV2-GFP的超声微泡造影剂并进行体表心脏部位超声爆破微泡造影剂组,心肌内荧光的表达量较其它组明显增加,差异有统计学意义(P<0.01)。先给予尾静脉注射造影剂微泡再给予体外心脏部位超声照射,而后再给予rAAV2-GFP尾静脉注射组,心肌内荧光表达较单纯尾静脉注射rAAV2而不给予超声照射组明显增加,差异有统计学意义(P<0.01)。尾静脉注射rAAV2-GFP并同时进行超声照射组心肌内荧光的表达量较给予造影剂携带rAAV2-GFP注射而不给予超声照射组明显增加,差异有统计学意义(P<0.05)。只给予rAAV2-GFP不行超声照射组与给予携带rAAV2-GFP的微泡造影剂注射而不予超声照射组相比心肌内荧光表达量差异无统计学意义(P>0.05)。单纯给予尾静脉注射超声造影剂并超声爆破造影剂微泡组心肌内未见荧光表达。除只给予尾静脉注射超声造影剂并进行超声照射组,肝脏内未见荧光表达外,其他各组肝脏内均见荧光表达。但肝脏内荧光表达量各组间相比差异均无统计学意义(P>0.05)。而给予尾静脉注入携带rAAV2-GFP超声造影剂并进行超声照射组心肌内荧光表达量较肝脏中增多,差异有统计学意义(P<0.01)。其它各组中心肌内荧光的表达与肝脏中荧光的表达差异无统计学意义。脑组织冰冻切片内未见荧光表达。结论:超声及超声造影剂介导下同时在体表心脏部位进行定点爆破可以高效安全地促进腺相关病毒载体在心肌内的靶向转染。经尾静脉输入法超声介导下增强腺病毒相关病毒心肌靶向转染的腺病毒相关病毒的最佳滴度为1.5×1011vg/ml;超声介导下增强腺病毒相关病毒心肌靶向转染对大鼠左心功能无影响。该方法安全可靠;超声介导微泡破裂法可以实现腺病毒相关病毒心肌靶向转染且可提高其在心肌内的转染效率。
Objective: The achievement of organ-specific delivery of gene/drug represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst non-viral techniques have the disadvantage of lack of efficiency and longevity of gene expression. Ultrasound-targeted microbubble destruction (UTMD) has been newly developed for destructing the bubbles carrying drugs or genes, and thus for achieving the local release of these target molecules. The aim of this study was to evaluate the potential for achieving to the effective, local delivery of recombinant adeno-associated virus serotypes 2 (rAAV2) transgene into rat myocardium by UTMD. This study involves three parts. The aim of the first part is to study the best titer of rAAV2 delivered to myocardium by targeted ultrasound microbubbles and being infused into tail vein. The aim of the second part is to study the changes of left ventricular function before and after rAAV2-GFP targeted to myocardium by the ultrasound mediated microbubbles. The aim of the third part is to evaluate the potential for achieving to the effective, local delivery of recombinant adeno-associated virus serotype-2 (rAAV2) transgene into rat myocardium by UTMD. Methods: The methods of the fist part: Twenty one adult SD rats were divided into seven groups. SonoVue attached with different titers (1.5×109vg/mL ;3.0×109vg/mL;1.5×1010 vg/mL;3.0×1010vg/mL; 1.5×1011vg/mL; 3.0×1011vg/mL) of rAAV2-GFP was infused into the tail vein of rats, following ultrasound mediated microbubbles destruction, as experiment groups. Normal saline was infused into the tail vein of rats as the control group (without rAAV2). Rats were killed after 14 days and hearts were harvested. GFP protein expression which showed rAAV2 transfer was observed under fluorescence microscope in frozen section. The methods of second part: The rats were divided into 2 groups of 10 rats. Control group: Echocardiographic destruction of microbubbles without rAAV2-GFP. Experimental group: Echocardiographic destruction of microbubbles containing rAAV2-GFP. The mean value of Left ventricular rotation of rats was obtain in apical and base plane using speckle tracking imaging (STI). LV twist was defined as apical rotation relative to the base. Circumferential strain; systolic and diastolic circumferential strain rate E and A; torsion and time to peak were measured using STI, before and after 14 days of experiments. Rats were killed after 14 days and hearts were harvested. GFP protein expression which showed rAAV2 transfer was observed under fluorescence microscope in frozen section. The methods of the third part: Recombinant adenovirus vector marked with Green Fluorescent Protein (GFP) was attached to the surface of the SonoVue, sulphur hexafluoride-filled microbubbles. These bubbles were infused into the tail vein of rats with or without simultaneous echocardiography. Rats were divided into six groups of 10: Group 1 echocardiographic destruction of microbubbles without rAAV2-GFP; Group 2 infusion of rAAV2-GFP (no microbubbles) without echocardiography; Group 3 echocardiography during infusion of rAAV2-GFP (no microbubbles); Group 4: echocardiographic destruction of microbubbles followed by rAAV2-GFP infusion; Group 5: microbubbles containing rAAV2-GFP without echocardiography; Group 6: echocardiographic destruction of microbubbles containing rAAV2-GFP. Group 6 was the experimental target; the remaining groups were controls. We administered infusions (1.2 mL) over 5~8 minutes because of the risk of volume overload. Results: The results of the first part: When the titer of rAAV2 was 1.5×1011 vg/ml infused into the tail vein of rats there was much more GFP expression in myocardium than lower titers (P<0.01) However the 3.0×1011 vg/ml group also showed a large quantity of GFP expression, the GFP expression in the 1.5×1011 vg/ml group is clear and enough to observe the rAAV2 transfection rate. The results of the second part:There is no significant difference of left ventricular myocardial function of rats between before and after rAAV2-GFP targeted to myocardium by the ultrasound mediated microbubbles. The results of the third part: The hearts of all 10 rats in the experimental groups showed luciferase activity, indicating rAAV2-GFP expression. All of the treatment groups that received the virus showed less luciferase activity in the myocardium than the group of echocardiographic destruction of microbubbles containing rAAV2-GFP. This confirmed that destruction of the microbubbles containing the virus was responsible for the observed GFP expression in the myocardium of rats. The livers of all rats that received the virus showed extensive GFP activity, whereas none of the brains showed GFP activity. GFP expression was 2.2-fold higher in the group treated with echocardiographic destruction of microbubbles (group 6) containing rAAV2-GFP than in the controls (P, 0.001). The group that underwent microbubble destruction followed by an infusion of rAAV-GFP had a 1.6-fold increase in GFP expression, suggesting that disruption of the endothelial barrier is an important factor in viral transduction. There is significant difference of GFP activity only in group of echocardiographic destruction of microbubbles containing rAAV2-GFP, between liver and heart (P<0.01), however other groups showed no significant difference (P>0.05). Conclusion: Ultrasound-mediated destruction of SonoVue is a promising method for the delivery of rAAV2 to the heart in vivo. And it is safe invasive and convenient and efficient way for gene transfection. 1) The first part of conclusion is that 1.5×1011 vg/ml is the best titer of rAAV2-GFP delivered to myocardium by being infused into tail vein and ultrasound mediated microbubbles destruction. The second part of conclusion is that the left ventricular function between before and after the experiment had not significant difference. It means the method of enhancement of rAAV2 delivered to the myocardium by ultrasound mediated microbubbles destruction is safe and efficient. The third part of conclusion is that ultrasound-mediated destruction of microbubbles is a promising method for the delivery of rAAV2 to the heart in vivo.
引文
[1] Chirmule N, Propert KJ, Magosin SA, et al. Immune responses to adenovirus and adeno2associated virus in hu2mans[J]. Gene Ther, 1999, 6:1574-1583.
    [2] Grimm D, Kleinschmidt J A. Progress in adeno-associated virus type 2 vector production:promises and prospects for clinical use[J]. Hum Gene Ther, 1999, 10:2445-2450.
    [3] Li J, Dressman D, Tsao YP, et al. rAAV vector-mediated sarcoglycan gene transfer in a hamster model for limb girdle muscular dystrophy[J], Gene Ther, 1999, 6:72-82.
    [4] Gao GP, Alvira MR, Wang LL, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy[J]. Proc Natl Acad Sci USA, 2002, 99(18):11854-11859
    [5]徐敏,张伟.腺病毒相关病毒载体的研究进展[J].国外医学分子生物学分册, 2002, 24(5): 308-310.
    [6] Rosenzweig A. Vectors for cardiovascular gene therapy[J]. J Mol Cell Cardiol, 2003, 35:731-733.
    [7] Joshua C. Grieger·Richard J. Samulski. Adeno-associated Virus as a Gene Therapy Vector:Vector Development, Production and Clinical Applications[J]. Adv Biochem Engin/Biotechnol, 2005, 99:119–145.
    [8] Manno CS, Chew AJ, Hutchison S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B [J]. Blood, 2003, 101(8): 2963-72.
    [9] Flotte TR, Brantly ML, Spencer LT, et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin(rAAV2-CB-hAAT)gene vector to AAT-deficient adults [J]. Hum Gene Ther. 2004, 15(1):93-128.
    [10] McPhee SW, Janson CG, Li C, et al. Immune responses to AAV in a phase I study for Canavan disease [J]. J Gene Med. 2006, 8(5):577-88.
    [11] Lee B, Lee H, Nam YR, et al. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models [J]. Gene Ther, 2005, 12(15): 1215-1222
    [12] Vincent KA, York-Higgins D, Quiroga M, et al. Host sequences flanking the HIV provirus[J]. Nucleic Acids Res, 1990, 18(20): 6045-6047.
    [13] Melo LG, Agrawal R, Zhang L, et al. Gene therapy strategy for long-term myocardialprotection using adeno-associated virus-mediated delivery of heme oxygenase- gene[J]. Circulation, 2002, 105: 602–607.
    [14] Kawada T, Nakazawa M, Nakauchi S, et al. Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters[J]. Proc Natl Acad SciUSA, 2002, 99: 901–906.
    [15] Hoshijima M, Ikeda Y, Iwanaga Y, et al. Chronic suppression of heart-failure progression by a pseudo phosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery [J]. Nat Med, 2002, 8:864–871.
    [16] Su H, Joho S, Huang Y, et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts[J]. Proc Natl Acad Sci USA, 2004, 101:16280–16285.
    [17] Shimpo M, Ikeda L, Maeda Y, et al. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hind limb ischemia model [J]. Cardiovasc Res, 2002, 53:993-1001.
    [18] Chang DS, Su H, Tang GL, et al. Adeuo-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygentensio n and induces arteriogeuesis in ischemic rat hindlimb [J]. Mol Ther, 2003, 7:44-51.
    [19]于雪,龚艳君,蒋捷,等.重组腺病毒相关病毒携带人血管内皮生长因子165诱导家兔缺血心肌血管生成的研究[J].中华老年心脑血管病杂志, 2003, 5: 403-405.
    [20] Wright MJ, Wightman LM, Lilley C, et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors [J]. Basic Res Cardiol, 2001, 96:227–236.
    [21] French BA, MazurW, Geske RS, et al. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors [J]. Circulation, 1994, 90:2414–2424.
    [22] Chu D, Sullivan CC, Weitzman MD, et al. Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors [J]. Thorac Cardiovasc Surg, 2003, 126:671–679.
    [23] Svensson EC, Marshall DJ, Woodard K, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adenoassociated virus vectors [J]. Circulation, 1999, 99:201–205.
    [24] Lamping KG, Rios CD, Chun JA, et al. Intrapericardial administration of adenovirus for gene transfer [J]. Am J Physiol, 1997, 272: H310-H317.
    [25] March KL, Woody M, Mehdi K, et al. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors[J]. Clin Cardiol, 1999, 22(1 Suppl 1):I23–I29.
    [26] Muhlhauser J, Jones M, Yamada I, et al. Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors [J]. Gene Ther, 1996, 3:145–153.
    [27] Donahue JK, Kikkawa K, Johns DC, et al. Ultrarapid highly efficient viral gene transfer to the heart [J]. Poc Natl Acad Sci U S A, 1997, 94:4664–4668.
    [28] Donahue JK, Kikkawa K, Thomas AD, et al. Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin[J]. Gene Ther, 1998, 5:630–634.
    [29] Hajjar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo[J]. Proc Natl Acad Sci U S A, 1998, 95:5251–5356.
    [30] Ikeda Y, Gu Y, Iwanaga Y, et al. Restoration of deficient membrane proteins in the cardiomyopathichamster by in vivo cardiac gene transfer [J]. Circulation, 2002, 105: 502–508.
    [31] Ding Z, Fach C, Sasse A, et al. A minimallyinvasive approach for efficient gene delivery to rodent hearts [J]. GeneTher 2004, 112:60–65.
    [32] Iwanaga Y, Hoshijima M, Gu Y, et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats [J]. Clin Invest, 2004, 113:727–736.
    [33] Iwatate M, GuY, Dieterle T, et al. In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart [J]. Gene Ther, 2003, 10:1814–1820.
    [34] Davidson MJ, Jones JM, Emani SM, et al. Cardiac gene delivery with cardiopulmonary bypass [J]. Circulation, 2001, 104:131–133.
    [35] Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart [J]. Circulation, 2003, 108:1022–1026.
    [36] Beeri R, Guerrero JL, Supple G, et al. New efficient catheter-based system for myocardial gene delivery [J]. Circulation, 2002, 106:1756–1759.
    [37] Gregorevic P, Blankinship MJ, Allen JM, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors [J]. Nat Med 2004;10:828–834.
    [38] Logeart D, Hatem SN, Heimburger M, et al. How to optimize in vivo gene transfer tocardiac myocytes: mechanical or pharmacological procedures? [J]. Hum Gene Ther 2001, 12:1601–1610.
    [39] Champion HC, Georgakopoulos D, Haldar S, Wang L, Wang Y, KassDA. Robust adenoviral and adeno-associated viral gene transfer to thein vivo murine heart: application to study of phospholambanphysiology [J]. Circulation, 2003, 108: 2790–2797.
    [40] Hayase M, Del Monte F, Kawase Y, et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade [J]. Am J Physiol Heart CircPhysiol, 2005, 288: H2995–H3000.
    [41] Boekstegers P, von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressureregulatedretroinfusion of coronary veins [J]. Gene Ther, 2000, 7:232–240.
    [42] Raake P, von Degenfeld G, Hinkel R, et al. Myocardial gene transfer by selective pressure regulated retroinfusion of coronary veins:comparison with surgical and percutaneous intramyocardial gene delivery [J]. J Am Coll Cardiol, 2004, 44:1124–9.
    [43] Fechheimer M, Denny C, Murphy RF, Taylor DL. Measurement of cytoplasmic Ph in dictyostelium discoideum by using a new method for introducing macromolecules into living cells [J]. Eur J Cell Biol, 1986, 40(2):242–247.
    [44] Tachibana K, Tachibana S, Okabe M, etal. Local delivery of naked plasmid DNA into arterial smooth muscles using an intravascular transducer-tipped ultrasound catheter [J]. Circulation, 1999, 100(9):900-909
    [45] Miller DL, Bao SP, Gies RA, et al. Ultrasonic enhancement of gene transfection in murine melanoma tumors [J]. Ultrasound Med Biol, 1999, 25(9):1425-1430.
    [46] Schratzberger P, Krainin JG, SchratzbergerG, et al. Ultrasound enhances gene expression following transfection of skeletal myocytes in vive [J]. Circulation, 1999, 100(2):145.
    [47] Anwer K, Kao G, Proctor1 B, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration [J]. Gene Therapy, 2000, 7(24):1833-1839.
    [48] Gramiak R, Shah PM. Echocardiography of the aortic root [J]. Invest Radiol, 1968, 3(5): 356-66.
    [49] Willard G. Ultrasonically induced cavitation in water:a step-by-step process [J]. Acoust Soc Am, 1953, 25:669–686.
    [50] Wang Wei, Bian Zheng-zhong, Wu Yong-jie, et al. Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control [J]. J Ultrasound Med, 2004, 23(12):1569-1582.
    [51] Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles [J]. Nature, 2003, 423(6936):153-156.
    [52] Wu J, Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells [J]. Ultrasound Med Biol, 2002, 28(1):125–129.
    [53] Suzuki R, Takizawa T, Negishi Y, et al. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology [J]. Int J Pharm, 2008, 354(1-2): 49-55.
    [54] Ward M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration on sonoporation in vitro [J]. Ultrasound Med Biol, 2000, 26(7):1169–1175.
    [55] Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound [J]. Circulation, 2002, 5(10):1233–1239.
    [56] Mukherjee D, Wong J, Griffin B, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration [J]. J Am Coll Cardiol, 2000, 35(6):1678–1686.
    [57] Deng CX, Sieling F, Pan H, et al. Ultrasound-induced cell membrane porosity [J]. Ultrasound Med Biol, 2004, 30(4):519–526.
    [58] Skyba DM, Price RJ, Linka AZ, et al. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue [J]. Circulation, 1998, 98(4):290–293.
    [59] Price RJ, Skyba DM, Kaul S, et al. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound [J]. Circulation, 1998, 98(13):1264–1267.
    [60] Unger EC, Hersh E, Vannan M, et al. Gene delivery using ultrasound contrast agents [J]. Echocardiography, 2001, 18(4):355-361.
    [61] Hamilton A, Huang SL, Warnick D, et al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: studies in a new experimental model [J]. Circulation, 2002, 105(23):2772-2778.
    [62] Lindner JR, CogginsMP, Kaul S, et al. Microbubble persistence in the microcirculation during ischemia-reperfusion and inflammation is caused by integrin-and complement-mediated adherence to activated leukocytes [J]. Circulation,2000, 101(6): 668-675.
    [63] Christiansen JP, Leong PH, Klibanov AL, et al. Noninvasive imaging of myocardialreperfusion injury using leukocyte-targeted contrast echocardiography [J].Circulation, 2002, 105(15):1764-1767.
    [64] Lindner JR, Song J, Xu F, et al. Noninvasive ultrasound imaging of inflammationusing microbubbles targeted to activated leukocytes [J]. Circulation, 2000, 102(22):2745-750.
    [65] Forsberg F, Goldberg BB, Liu JB, et al. Tissue-specific US contrast agent forevaluation of hepatic and splenic parenchyma[J]. Radiology, 1999, 210(1):125-132.
    [66] Bauer A, Blomley M, Leen E, et al. Liver-specific imaging with SHU563A:diagnosticpotential of a new class of ultrasound contrast media [J]. Eur Radiol, 1999,9(Supple): S349-352
    [67] Weller GE, Villanueva FS, Klibanov AL, et al. Modulating targeted adhesion of anultrasound contrast agent to dysfunctional endothelium[J]. Ann Biomed Eng, 2002,30(8):1012-1019.
    [68] Fisher NG, Christiansen JP, Klibanov A, et al. Influence ofmicrobubble surface chargeon capillarytransit andmyocardial contrast enchancement [J]. J Am Coll Cardiol,2002, 40(4): 811-819.
    [69] Kapturczak MH, Flotte T, Atkinson MA. Adeno-associated virus (AAV)as a vehiclefor therapeutic gene delivery:improvements in vector design and viral productionenhance potential to prolong graft survival in pancreatic islet cell transplantation forthe reversal of type 1 diabetes.[J]. Curr Mol Med, 2001, 1(2):245-258
    [70] SonoVue, a new ultrasound contrast agent [J]. Eur Radiol, 1999, 9(Suppl 3):S34Schneider M 7-S348.
    [71] Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albuminmicrobubble directs gene delivery to the myocardium [J]. Circulation, 2000,101(22):2554-2556.
    [72] Juffermans LJ, Kamp O, Dijkmans PA, et al. Low-intensity ultrasound-exposedmicrobubbles provoke local hyperpolarization of the cell membrane via activation ofBKCa channels [J]. Ultrasound Med Biol, 2008, 34(3): 502-508.
    [73] Arruda VR, Stedman HH, Nichols TC, et al. Regional intravascular delivery ofAAV-2-F. IX to skeletal muscle achieves long-term correction of hemophilia B in alarge animal model [J]. Blood, 2005;105:3458-365.
    [74] Bankiewicz K, Eberling J, Kohutnicka M, et al. Convection-enhanced delivery ofAAV vector in parkinsonian monkeys;in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach [J]. Exp Neurol, 2000, 164(1):2-14.
    [75] Ding Z, Georgiev P, Tho ny B, Administration-route and gender-independent long term therapeutic correction of phenylketonuria (PKU)in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer[J]. Gene Therapy 2006, 13(7): 587-593.
    [76]汤明芳,陆晓和,高基民,等. 1型重组腺相关病毒介导增强型绿色荧光蛋白基因转染人脐静脉内皮细胞的体外研究[J].南方医科大学学报, 2008, 28(5): 739-745.
    [77]米亚非,李小鹰,王教辰,等.重组1和2型腺相关病毒载体在小鼠心脏转导研究[J].中华老年心脑血管病杂志, 2007, 9(4): 255-257
    [78] Christina AP, Cathryn SM, Bijoy D. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo [J]. Circulation Research, 2006, 99:e3-e9.
    [79] Mu ller OJ, Schinkel1 S, Kleinschmidt JA, et al. Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats[J]. Gene Therapy, 2008, 15, 1558–1565.
    [80] Vassalli G, Büeler H, Dudler J, et al. Adeno-associated virus(AAV)vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo:a comparative study with adenovirus vectors[J]. Int J Cardiol, 2003,90(2-3):229- 238.
    [81]于雪,龚艳君,蒋捷,等.重组腺病毒相关病毒携带人血管内皮生长因子165诱导家兔缺血心肌血管生成的研究[J].中华老年心脑血管病杂志, 2003, 5(6): 403-405.
    [82] Zheng Z, Liu Z. CD151 gene delivery activates PI3K/Akt pathway and promotes neovascularization after myocardial infarction in rats [J]. Mol Med, 2006, 12(9-10):214-220.
    [83] Pacak C, Mah C, Thattaliyath B, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo [J]. Circ Res 2006, 99(4): e3-e9.
    [84]邓晓莉,吴小兵,蒋捷,等.重组腺相关病毒2型载体-血管内皮生长因子165改善小型猪慢性心肌缺血的研究[J].中华心血管杂志, 2005, 33(8):732-737.
    [85]郑振中,刘正湘,重组腺相关病毒介导的CD151基因转移对大鼠心肌梗死后血流动力学的影响[J].中国急救医学, 2006, 26(12): 915-916.
    [86]陈栋,沈世乾,李锦文,等.重组腺相关病毒载体介导CTLA4Ig转染延长同种大鼠心脏移植存活时间[J].中华器官移植杂志, 2005, 26(2):68-71.
    [87] Amundsen BH, Helle-Valle T, Edvardsen T, etal. Noninasive myocardial strain measurement by speckle tracking echocardiography:validation against sonomicrometry and tagged magnetic resonance imaging [J]. J Am Coll Cardiol, 2006, 47(4): 789-793
    [88] Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging [J]. J Am Coll Cardiol, 2005, 45(12): 2034-2041.
    [89] Qian Z, Sangers RD, Pitt WG.. Investigations of the mechanism of the biocoustic effect [J]. Biomed Mater Res, 1999, 44(2):198-205.
    [90] Miller DL, Quddus J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies [J]. Ultrasound Med Biol, 2000, 26(4): 661-667.
    [91] Mehiei-Humbert S, Bettinger T, Feng Yan et al. Ultrasound-mediated gene delivery: Kinetics of plasmid internalization and gene expression [J]. Journal of Controlled Release, 2005, 104(1): 203-211.
    [92]冉海涛,任红,王志刚,等.超声波空化效应对体外培养细胞细胞膜作用的实验研究[J].中华超声影像学杂志, 2003, 12(8): 499-501.
    [93]凌智瑜,王志刚,冉海涛,等.超声微泡造影剂介导VEGF基因治疗大鼠心肌缺血的实验性研究[J].中国超声医学杂志, 2002, 18(7): 502-504.
    [94] Torrent-Guasp F, Ballester M, Buckberg GD, et al. Spatial orientation of the ventricular muscle band:physiologic contribution and surgical implications[J]. Thorac Cardiovasc Surg, 2001, 122(2):389-392.
    [95] Becher M, Hoffmann R, Ku hl HP, et al. Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction [J]. Eur Heart J, 2006, 27(21): 2560-2566.
    [96] Song ZZ, Ma J. Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction [J]. Eur Heart J. 2007, 28(9):1173-1174.
    [97] Zhao W, Choi JH, Hong G-R, et al. Left Ventricular Relaxation [J]. Heart Failure Clin, 2008, 4(1):37-46.
    [98] Fernandez-Teran MA, Hurle JM, Myocardial fiber architecture of the human heart ventricles [J]. Anat Rec, 1982, 204(2):137-147
    [99] Buckberg GD, Basic science review: the helix and the heart1 J Thorac Cardiovasc Surg[J]. 2002, 124(5):863-883
    [100]Foster E, Lease KE. New untwist on diastole: what goes around comes back [J]. Circulation, 2006, 113(21):2477-2479.
    [101]Young AA, Kramer CM, Ferrari VA, et al. Three-dimensional left ventricular deformation in hypertrophic cardimyopahty[J]. Circulation, 1994, 90(2):854-867.
    [102]文利,高云华,郑嘉荣,等.斑点追踪成像技术对扩张型心肌病患者左心室长轴二维应变的初步研究[J].中华超声影像学杂志, 2008, 17(1): 5-9.
    [103]Spotnitz HM, Macro design, structure and mechanics of the left ventricle [J]. J Thorac Cardiovasc Surg, 2000, 119(5):1053-1077
    [104]Takeuchi M, Nakai H, Kokumai M, et al. Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging [J]. J Am Soc Echocardiogr, 2006, 19(9): 1077-1084.
    [105]Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of leftventricular rotation: speckle tracking echocardiography[J]. Circulation, 2005, 112(20):3149-3156
    [106]郑嘉荣,高云华,谭开彬,等.斑点追踪成像技术对扩张型心肌病左心室扭转运动的初步研究[J].中华超声影像学杂志, 2008, 17(1): 14-18.
    [107]Langeland S, D’hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle [J]. Circulation, 2005, 112(14):2157-2162.
    [108]宋家琳,黎春雷,童春,等.斑点追踪显像对房间隔缺损患者左心旋转和扭转运动的初步研究[J].中华超声影像学杂志, 2008, 17(4): 277-280.
    [109]Gjesdal O, Hopp E, Vartdal T, et al. Global longitudinal strain measured by two dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease [J]. Clin Sci(Lond), 2007, 113(6): 287-296.
    [110]Park YH, Kang SJ, Song JK, et al. Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction [J]. J Am Soc Echocardiogr, 2008, 21(3):262-267.
    [111]Winter R, Jussila R, Nowak R, et al. Speckle tracking echocardiography is a sensitive tool for the detection of myocardial ischemia:a pilot study from the catheterization laboratory during percutaneous coronary intervention [J]. J AmSocEchocardiogr, 2007, 20:974-981.
    [112]Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection [J]. Gene Ther, 1999, 6:683– 688
    [113]Mah C, Cresawn KO, Fraites TJ, Pacak CA, Lewis MA, Zolotukhin I, Byrne BJ. Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors [J]. Gene Ther, 2005, 12:1405–1409.
    [114]Duan, D. Sharma P, Yang Jet a l.. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence inmuscle tissue [J]. Virol, 1998, 72:8568–8577.
    [115]Duan D, Yan Z, Yue Y, et al. Structural analysis of adeno-associated virus transduction circular intermediates [J]. Virology, 1999, 261:8–14
    [116]Vincent-Lacaze N, Snyder RO, Gluzman R, et al. 1999). Structure of adeno-associated virus vector DNA followingtransduction of the skeletal muscle [J]. Virol, 1999, 73(3): 1949-1955
    [117]Yang J, Zhou W, Zhang Y, et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination[J]. Virol, 1999, 73(11): 9468-9477
    [118]Hansen J, Qing K, Srivastava A. Infection of purified nuclei by adeno-associated virus 2 [J]. Mol Ther, 2001, 4:289–296.
    [119]Laughlin CA, Tratschin JD, Coon H, Carter BJ: Cloning of infectious adeno-associated virus genomes in bacterial plasmids [J]. Gene, 1983, 23(1):65-73.
    [120]Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factorIX in haemophilia B patients treated with an AAV vector [J]. Nat Genet, 2000, 24(3):257-261.
    [121]Song J, Chappell J, Qi M, et al. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle [J]. J Am Coll Cardiol, 2002, 39(4):726-731.
    [122]Yang YW, Chao CK. Incorporation of calcium phosphate enhances recombinant adeno-associated virus-mediated gene therapy in diabetic mice [J]. J Gene Med, 2003, 5(5):417-424.
    [123]Matalon R, Rady P, Platt K, et al. Knock-out mouse for Canavan disease:a model for gene transfer to the central nervous system[J]. J Gene Med, 2000, 2(3):165-175.
    [124]Excler JL. AIDS vaccine development: perspectives, challenges and hopes[J]. Indian J Med Res, 2005, 121(4):568-581.
    [125]Loeb, JE, Cordier WS, Harris M E, et al. Enhanced expression of transgenes from adeno-associated virus vectors with the wood chuck hepatitus virus posttranscriptional regulatory element: implications for gene therapy [J]. Hum Gene Ther, 1999, 10:2295–2305.
    [126]Mah C, Fraites TJ, Zolotukhin I, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy [J]. Mol Ther, 2002, 6(1):106-112.
    [127]Kaludov N, Brown K E, Walters, R W, et al. Adenoassociated virus serotype 4(AAV4)and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity [J]. J Virol, 2001, 75:6884–6893.
    [128]Dijkmans PA, Juffermans LM, Musters RJ, et al. Microbubbles and ultrasound: from diagnosis to thearapy[J]. European J Echocardiography, 2004, 5(4):245-256.
    [129]Kondo I, Ohmori K, Oshita A, et al. Leukocyte-targeted myocardial contrast echocardiography can assess the degree of acute allograft rejection in a rat cardiac transplantation model [J]. Circulation, 2004, 109(8):1056-1061.
    [130]Hashiya N, Aoki M, Tachibana K, et al, Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent(Optison)inhibits intimal hyperplasia after balloon injury in rat carotid artery model [J]. Biochem Biophys Res Commun, 2004, 317(2):508-514.
    [131]Shimamura M, Sato N, Taniyama Y, et al. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound [J]. Gene Therapy, 2004, 11(20):1532-1539.
    [132]Yoshinobu Manome, Naoto Nakatama, Kiyoshi Nakayama, et al. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect [J]. Ultrasound in Med & Biol, 2005, 31(5): 693-702.
    [133]Klibanov AL, Targeted delivery of gas-filled microspheres, contrasts agents for ultrasound imaging. Adv Drug Deliv Rev, 1999 37(1-3):139-157.
    [134]Christiansen J P, French BA, Klibanov AL, et al. Targeted tissue transfection with ultrasound destruction of plasmid bearing cationic microbubbles[J]. Ultrasound Med Biol, 2003, 29(12):1759-1767.
    [135]Frenkel PA, Chen S, Thai T, et al. DNA loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro[J]. Ultrasound Med Biol, 2002, 28(6):817-822.
    [136]Guzmann RJ, Lemarchand P, Crystal RG, et al. Efficient gene transfer into the myocardium by direct injection of adenovirus vectors [J]. Circ res, 1993, 73(6): 1202-1207
    [137]Vale PR, Losordo DW, Tkebuchava T, et al. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping [J]. J Am CoLL Cardiol, 1999, 34(1):246-254.
    [138]Franz WM, Rothmann T, Frey N, et al. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters[J]. Cardiovasc Res. 1997, 35(3):560-566.
    [139]Giordano FJ, Ping P, McKirnan MD et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart [J]. Nat Med. 1996, 2(5):534-539.
    [140]Kaplitt MG, Xiao X, Samulski RJ, et al. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector [J]. Ann Thorac Surg, 1996, 62(6):1669-1676.
    [141]Beeri R, Guerrero JL, Supple G, et al. New efficient catheter-based system for myocardial gene delivery [J]. Circulation, 2002, 106:1756-1759.
    [142]Bridges CR, Horvath KA, Nugent WC, et al. The Society of Thoracic Surgeons practice guideline series: transmyocardial laser revascularization[J]. Ann Thorac Surg. 2004, 77(4):1494-502.
    [143]Stafford-Perricaudet LD, Makeh I, Perricaudet M, et a1. Wide spread long-term gene transfer to mouse skeletal muscles and heart [J]. J Clon Invest, 1992, 90(2):626-630.
    [144]Monahan PE, Jooss K, S SM, Safety of adeno-associated virusgene therapy vectors:a current evaluation [J]. Expert Opin Drug Saf, 2002, 1(1):79-91.
    [145]Misteli T, Spector DL. Application of the green fluorescent protein in cell biology and biotechnology [J]. Nature Biotechnol, 1997, 15:961-964.
    [1] Wells PNT. Physics and engineering: milestones in medicine[J]. Med Eng Phys 2001, 23(3):147–153.
    [2] Wells PNT. Current status and future technical advances of ultrasonic imaging[J]. IEEE Engineering in Medicine and Biology, 2000, 19(5):14-20.
    [3] Forsberg F. Ultrasonic biomedical technology. Marketing versus clinical reality[J]. Ultrasonics, 2004, 42(1-9):17-27.
    [4] Liang HD, Blomley MJ. The role of ultrasound in molecular imaging[J]. British Journal of Radiology, 2003, 76(2):S140-S150.
    [5] Gramiak R, Shah PM. Echocardiography of the aortic root[J]. Invest Radiol, 1968 3(5): 356-66.
    [6]高上凯.医学成像系统[M].北京:清华大学出版社, 2000. 60-85.
    [7]王艳丹高上凯超声成像新技术及其临床应用[M]..北京生物医学工程, 2006 25, (5):553-560.
    [8] Abd-Elmoniem KZ, Youssef AB, Kadah YM. Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion[J]. IEEE Trans Biomed Eng, 2002, 49(9):997-1014.
    [9]翟栋材,赵玉珍.组织谐波成像及其临床应用[J].中华超声影像学杂志, 2002, 11(4): 250-251.
    [10]王新房,张青萍.超声诊断学[M].北京:人民卫生出版社, 2002, 75-80.
    [11]周永昌,郭万学.超声医学[M].北京:科学技术文献出版社, 2002, 118-120.
    [12]侯秀昆,谢峰,李建蓉,等.自然组织谐波成像临床应用的研究[J].中国超声医学杂志, 2000, 16(2): 88-90.
    [13]杨海云,罗葆明,文艳玲,等. C3超声造影对肝内小肿瘤鉴别诊断价值的初步评价[J].中华超声影像学杂志, 2004, 13(2): 145-146.
    [14]吴雪英,舒先红,潘翠珍,等.经静脉注射Levovist心肌声学造影间隙显像评价心梗患者心肌存活性:与心脏核素的对比研究[J].中国超声医学杂志, 2001, 17(1): 29-32.
    [15] Barr RG.. Breast ultrasound:a bright future[J]. Medica Mundi, 2001, 45: 8-13.
    [16] Ten Cate FJ. Usefulness of ultrasound contrast for image enhancement during stress echocardiography[J]. Echocardiography, 2002, 19(7 Pt 2): 621-625.
    [17] Shi WT, Forsberg F, Bautista R, et al. Image enhancement by acoustic conditioning of ultrasound contrast agents[J]. Ultrasound Med Biol, 2004, 30(2):191-198.
    [18]赵新宇,陈敏,鄂占森.宽景超声成像技术临床应用的研究[J]. 2008, 14(8): 1257-1259.
    [19] Routh HF, Skyba DM. Functional imaging with ultrasound[J]. Medica Mudi, 2002, 46:59-64.
    [20]罗葆明,欧冰,冯霞,等.乳腺疾病实时组织弹性成像与病理对照的初步探讨[J].中国超声医学杂志, 2005, 21(9):662-664.
    [21] Bree RL, Arnold RJ, Pettit KG, et al. Use of a dedcision-analyticmodel to support the use of a new oral US contrast agent in patients with abdominal pain[J]. Acad Radiol, 2001, 8(3):234-242.
    [22] Wright WH, mccreery TP, Krupinski EA, et a. l. Evaluation of new thrombus-specific ultrasound contrast agent[J]. Acad Radiol, 1998, 5(Suppl 1): S240-S242.
    [23]魏建平,杜联芳.超声造影剂研究进展及其在肝移植中的应用.国际外科学杂志[J]. 2006, 33(3):164-167.
    [24] Kono Y, Steinbach GC, Peterson T, et al. Mechanism of parenchymal enhancement of the liver with a microbubble-based US contrast medium:an intravital microscopy study in rats[J]. Radiology, 2002, 224:253–257.
    [25]徐智章.超声造影成像[J].上海医学影像, 2005, 14(1):75-79.
    [26] Burns PN, Powers JE, Simpson DH, et al. Harmonic imaging:principles and preliminary results[J]. Clin Radiol, 1996, 51(SI):50-55.
    [27]穆玉明.超声心动图入门.[M].北京:人民卫生出版社, 2007. 16-19.,
    [28]董宝玮,唐杰,于晓玲,等.能量谐波成像在肝占位病变检查中的临床应用[J].中国超声医学杂志, 1999, 15(1): 14-17.
    [29] Huber S, Steinbach R, Sommer O, et al. Contrast Enhanced Power Doppler Harmonic Imaging Influence on Visualization of Renal Vasculature[J]. Ultrasound Med Biol, 2000, 26(7):1109-1115.
    [30]吴凤林,龚渭冰,侯连兵.间歇二次谐波成像声学造影鉴别肝肿瘤的初步研究[J].中华超声影像学杂志, 2000, 9(11): 674-676.
    [31]吕珂,姜玉新,朱庆莉,等.肝局灶性病变超声造影反向脉冲谐波显像的临床研究[J].中华超声影像学杂志, 2003, 12(6): 351-354.
    [32] Solbiati L, Tonolini M, Cova L, et al. The Role of Contrast Enhanced Ultrasound in the Detection of Focal Liver Lesions[J]. Eur Radiol, 2001, 11(Suppl 3): S15-26.
    [33]郭徐林,徐政新. Leovist心肌对比超声临床应用进展[J].岭南心血管病杂志, 2000, 6(1):67-68.
    [34] Lindner JR, Coggins MP, Kaul S, Klibanov AL, et al. Microbubble persistence in themicrocirculation during ischemia/reperfusion and inflammation is caused by integrin-and complement-mediated adherence to activated leukocytes[J]. Circulation, 2000, 101(6):668–675.
    [35] Blomley MJK, Cooke JC, Unger EC, et al. Science, medicine, and the future-microbubble contrast agents:a new era in ultrasound[J]. Br Med J 2001, 322:1222–225.
    [36]赵应征,张彦,梅兴国.微泡超声造影剂的研究进展[J].国外医学药学分册, 2003, 30(5):298-302.
    [37] Kono Y, Steinbach GC, Peterson T, et al. Mechanism of parenchymal enhancement of the liver with a microbubble-based US contrast medium: an intravital microscopy study in rats[J]. Radiology, 2002, 224(1):253–257.
    [38] Forsberg F, Goldberg BB, Liu JB, et al. Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma[J]. Radiology, 1999, 210(1):125–132.
    [39] Blomley MJK, Sidhu PS, Cosgrove DO, et al. Do different types of liver lesions differ in their uptake of the microbubble contrast agent SHU 508A in the late liver phase? Early experience[J]. Radiology, 2001, 220(3):661–667
    [40] Scott Grier, Adrian KP Lim, Nayna Patel, et al. Role of microbubble ultrasound contrast agents in the non-invasive assessment of chronic hepatitis C-related liver disease[J]. World J Gastroenterol, 2006, 12(22):3461-3465.
    [41] Villanueva FS, Jankowski RJ, Manaugh C, et al. Albumin microbubble adherence to human coronary endothelium: implications for assessment of endothelial function using myocardial contrast echocardiography[J]. J Am Coll Cardiol, 1997, 30(3):689–693.
    [42] Lindner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles[J]. Circulation, 2000, 102(5): 531–538.
    [43] Lindner JR, Song J, Xu F, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes[J]. Circulation, 2000, 102(22): 2745–2750.
    [44] Villanueva FS, Jankowski RJ, Klibanov S, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells[J]. Circulation, 1998, 98(1):1–5.
    [45] Lindner JR, Song J, Christiansen J, Klibanov AL, et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin[J].Circulation, 2001, 104(17): 2107–2112.
    [46] Weller GE, Villanueva FS, Klibanov AL, et al. Modulating targeted adhesion of an ultrasound contrast agent to dysfunctional endothelium[J]. Ann Biomed Eng, 2002, 30(8):1012-1019.
    [47] Barbarese E, Ho SY, Darrigo JS, et al. Internalization of microbubbles by tumor-cells in-vivo and in-vitro[J]. J Neurooncol, 1995, 26(1): 25–34.
    [48] Ellegala DB, Poi HL, Carpenter JE, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta(3)[J]. Circulation 2003, 108(3):336–341.
    [49] Patel D, Dayton P, Gut J, et al. Optical and acoustical interrogation of submicron contrast agents[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2002, 49:1641– 1651.
    [50] Weller GE, Wong MK, Modzelewski RA, et al Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine[J]. Cancer Res, 2005, 15, 65(2):533-539.
    [51] Schumann PA, Christiansen JP, Quigley RM, et al. Targeted-microbubble binding selectively to gpiib iiia receptors of platelet thrombi[J]. Invest Radiol 2002, 37(11):587–5893.
    [52] Kondo I, Ohmori K, Oshita A, et al Leukocyte-targeted myocardial contrast echocardiography can assess the degree of acute allograft rejection in a rat cardiac transplantation model[J]. Circulation, 2004, 109(8):1056-61.
    [53] Jakobsen J?, Oyen R, Thomsen HS. Safety of ultrasound contrast agents[J]. Eur Radiol, 2005, 15: 941–945.
    [54] Mulvagh SL, demaria AN, Feinstein SB, et al. Contrast Echocardiography: Current and Future Applications[J]. Journal of the American Society of Echocardiography, 2000, 13(4): 331-342.
    [55] Porter TR, Iversen PL, Li S, et al. Interaction of diagnostic ultrasound with synthetic oligonucleotide labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles[J]. J Ultrasound Med. 1996, 15(8):577–584.
    [56] Main ML, Grayburn PA. Clinical applications of transpulmonary contrast echocardiography[J]. Am Heart J. 1999, 137(1):144–153.
    [57] Wei K, Skyba DM, Firschke C, et al. Interactions between microbubbles and ultrasound:in vitro and in vivo observations[J]. J Am Coll Cardiol. 1997, 29(5):1081–1088.
    [58] Unger EC, mccreery TP, Sweitzer RH, et al Acoustically active lipospheres containing paclitaxel:a new therapeutic ultrasound contrast agent[J]. Invest Radiol, 1998, 33(12): 886–892.
    [59] Fechheimer M, Denny C, Murphy RF, et al. Measurement of cytoplasmic Ph in dictyostelium discoideum by using a new method for introducing macromolecules into living cells[J]. Eur J Cell Biol, 1986, 40(2):242–247.
    [60] Willard G. Ultrasonically induced cavitation in water:a step-by-step process[J]. J Acoust Soc Am, 1953, 25:669–686.
    [61] Richardson ES, Pitt WG, Woodbury DJ. The role of cavitation in liposome formation[J]. Biophys J, 2007, 93(12):4100-4107.
    [62] May DJ, Allen JS, Ferrara KW. Dynamics and fragmentation of thick-shelled microbubbles[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2002, 49(10):1400–1410.
    [63] Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro[J]. Ultrasound Med Biol, 1997, 23(6):953–959.
    [64] Liang HD, Blomley MJ. The role of ultrasound in molecular imaging[J]. British Journal of Radiology, 2003, 76(2): S140-S150.
    [65] Wang Wei, Bian Zheng-zhong, Wu Yong-jie, et al. Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control[J]. Ultrasound Med, 2004, 23:1569-1582.
    [66] Wu J. Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells[J]. Ultrasound Med Biol 2002, 28(1): 125–129.
    [67] Chomas JE, Dayton P, Allen J, et al. Mechanisms of contrast agent destruction[J]. IEEE Trans Ultrason Ferroelectr Freq Control. 2001, 48(1): 232-48
    [68] Chomas JE, Dayton P, May D, et al. Threshold of fragmentation for ultrasonic contrast agents[J]. J Biomed Opt, 2001, 6(2):141-150.
    [69]钟文景,罗葆明,超声和超声造影剂在基因转染中的应用[J].国外医学内科学分册, 2006, 33(6): 272-274.
    [70] Ward M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration on sonoporation in vitro[J]. Ultrasound Med Biol, 2000, 26(7): 1169–1175.
    [71] Song J, Chappell JC, Qi M, et al. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle[J]. J Am Coll Cardiol, 2002, 39(4):726–731.
    [72] Skyba DM, Price RJ, Linka AZ, et al. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue[J]. Circulation, 1998, 98(4):290–293.
    [73] Price RJ, Skyba DM, Kaul S, et al Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound[J]. Circulation, 1998, 98(13):1264–1267.
    [74] Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation, 2002, 105(10):1233–1239.
    [75] Mukherjee D, Wong J, Griffin B, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration[J]. J Am Coll Cardiol, 2000, 35(6):1678–1686.
    [76] Pan H, Zhou Y, Izadnegahdar O. Study of sonoporation dynamics affected by ultrasound duty cycle[J]. Ultrasound Med Biol, 2005, 31(6):849-56.
    [77] Taniyama Y, Tachibana K, Hiraoka K, et al, Development of safe and efficient novel nonviral gene transfer using ultrasound:enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle[J]. Gene Ther, 2002, 9(6):372-380.
    [78] Takahashi M, Kido K, Aoi A, Spinal gene transfer using ultrasound and microbubbles[J]. Journal of Controlled Release, 2007, 117:267–272.
    [79] Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery by ultrasonic cavitation.[J]. Somat Cell Mol Genet, 2002, 27(1-6):115-134.
    [80] Porter TR, Xie F, Therapeutic ultrasound for gene delivery[J]. Echocardiography, 2001, 18(4):349-53.
    [81] Lu QL, Liang HD, Partridge T et al, Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage[J]. Gene Ther, 2003, 10(5): 396-405.
    [82] Teupe C, Richter S, Fisslthaler B, et al, Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase(S1177D)using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity[J]. Circulation, 2002, 105(9):1104-1109.
    [83] Tranquart F, Bouakaz A, Serriere S. Ultrasound contrast agents in an in vivo murine melanoma model[J]. J Acoust Soc Am, 2008, 123(5):3112.
    [84] Choi J, Wang S, Tung YS, et al. Trans-blood-brain barrier delivery of compounds at pharmacologically relevant molecular weights in the hippocampus of mice using focused ultrasound[J]. J Acoust Soc Am. 2008, 123(5):3217.
    [85] Unger EC, Hersh E, Vannan M, et al, Gene delivery using ultrasound contrast agents[J]. Echocardiography, 2001, 18(4):355-361.
    [86] Vannan M, mccreery T, Li P, et al, Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA[J]. J Am Soc Echocardiogr, 2002, 15(3):214-218.
    [87] Unger EC, mccreery TP, Sweitzer RH. Ultrasound enhances gene expression of liposomal transfection[J]. Invest Radiol, 1997, 32(12):723-727.
    [88] Suzuki R, Takizawa T, Negishi Y, et al. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology[J]. International Journal of Pharmaceutics, 2008, 354:49–55.
    [89] Zharov VP, Mercer KE, Galitovskaya EN, et al. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles[J]. Biophys J, 2005, 90:619–627.
    [90] Li XS, Wang ZG, Ran HT, et al. Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats[J]. J Ultrasound Med, 2008, 27(3):453-60
    [91] Amabile PG, Waugh JM, Lewis TN, et al. High-efficiency endovascular gene delivery via therapeutic ultrasound[J]. J Am Coll Cardiol, 2001, 37(7): 1975-1980.
    [93] Hosseinkhani H, Aoyama T, Ogawa O, et al, Ultrasound enhances the transfection of plasmid DNA by nonviral vectors[J]. Curr. Pharm. Biotechnol, 2003, 4(2): 109–122.
    [93] Fecheimer M, Boylan J, Parker S, et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading[J]. Proc Natl Acad Sci USA, 1987, 84(23): 8463-8467.
    [94] Wyber JA, Andrews J, Demanuele A. The use of sonication for the efficient delivery of plasmid DNA into cells[J]. Pharm Res, 1997, 14(6): 750-756.
    [95] Mu ller OJ, Schinkel1 S, Kleinschmidt JA, et al. Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats[J]. Gene Therapy, 2008, 15: 1558–1565.
    [96] Lawire A, Brisken AF, Francis S, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro[J]. Circulation, 1999, 99(20):2617-2620.
    [97] Hai-Dong Liang, Qi Long Lu, Shao An Xue, et al.[J]. Ultrasound in Med Boil, 2004, 30(11): 1523-1529.
    [98] Wei W, Zheng-zhong B, Yong-jie W, Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control [J]. Ultrasound Med.2004, 23(12): 1569-1582.
    [99] Lawrie A, Brisken AF, Francis SE, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro[J]. Circulation, 1999, 99(20):2617-2620
    [100]Fontana G, Maniscalco L, Schillaci D, et al. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity[J]. Drug Deliv, 2005, 12:385–392.
    [101]Newman CM, Lawrie A, Brisken AF, et al, Ultrasound gene therapy:on the road from concept to reality[J]. Echocardiography. 2001, 18(4): 339-347.
    [102]Amabile PG, Waugh JM, Lewis TN, ea al. High-efficiency endovascular gene delivery via therapeutic ultrasound[J]. J Am Coll Cardiol, 2001, 37(7): 1975-1980.
    [103]Hosseinkhani H, Aoyama T, Ogawa O, et al, Ultrasound enhances the transfection of plasmid DNA by nonviral vectors[J]. Curr Pharm Biotechnol, 2003, 4(2): 109– 122.
    [104]Sandra Koch, Peter Pohl, Ulrich Cobet, et al.[J]. Ultrasound in Med & Biol, 2000, 26(5): 897-903.
    [105]Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery[J]. Genetherapy, 2000, 7(23): 2023-2027.
    [106]Kim HJ, Greenleaf JF, Kinnick RR, et al. Ultrasound mediated-transfection of mammalian cells[J]. Hum Gene Ther, 1996, 7(11):1339-1346.
    [107]Greenleaf WJ, Bolander ME, Sarakar G, et al. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection[J]. Ultrasound in Med & Biol, 1998, 24(4): 587-595.
    [108]Nie F, Xu HX, Tang Q, et al. Microbubble-enhanced ultrasound exposure improves gene transfer in vascuar endothelial cells[J]. World J Gastroenterol, 2006, 12(46):7508-7513.
    [109]Duvshani-Eshet M, Adam D, Machluf M. The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound[J]. Control Release, 2006, 112(2):156-166.
    [110]Aoi A, Watanabe Y, Mori S, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound[J]. Ultrasound Med Biol, 2008, 34(3): 425-434.
    [111]Anwer K, Kao G, Proctor B, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration[J]. Gene Therapy, 2000, 7(24):1833-1839.
    [112]Price RJ, Skyba DM, Kaul S, et al. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destructionwith ultrasound[J]. Circulation, 1998, 98(13):1264-1267.
    [113]Schratzberger P, Krainin JG, Schratzberger G, Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle[J]. Molecular Therapy, 2002, 6(5): 576-583.
    [114]Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albumin microbubble directs gene delivery to the myocardium[J]. Circulation, 2000, 101(22): 2554-2556.
    [115]Bekeredjian R, Kroll R,. Fein, E. Et al. Ultrasound Targeted Microbubble Destruction Increases capillarypermeability in Hepatomas[J]. Ultrasound in Medicine & Biology, 2007, 33(10):1592-1598.
    [116]Hashiya N, Aoki M, Tachibana K, et al, Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model Biochem Biophys Res Commun[J]. 2004, 317(2):508-514.
    [117]Shimamura M, Sato N, Taniyama Y, et al. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound[J]. Gene Therpy, 2004, 11(20):1532-1539.
    [118]Yoshinobu Manome, Naoto Nakatama, Kiyoshi Nakayama, et al. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect[J]. Ultrasound in Med &Biol, 2005, 31(5): 693-702.
    [119]Masahiko Takahashi, Kanta Kido, Atsuko Aoi. Spinal gene transfer using ultrasound and microbubbles[J]. Controlled Release, 2007, 117(2): 267–272.
    [120]Nishida K, Doita M, Takada T. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy[J]. Spine, 2006, 31(13): 1415-1419.
    [121]Shimamura M, Sato N, Taniyama Y, Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles[J]. J Gene Med, 2005, 7(11): 1468-1474.
    [122]Meijering BDM, Henning RH, Gilst WHV, et al. Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells[J]. Journal of Drug Targeting , 2007, 15(10): 664–671.
    [123]Taylor SL, Rahim AA, Bush NL et altargeted retroviral gene delivery using ultrasound[J]. Gene Med, 2007, 9(2): 77–87.
    [124]Feril LB Jr, Kondo T, Zhao QL, et al Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents[J]. Ultrasound Med Biol, 2003, 29(2): 331-337.
    [125]Zarnitsyn VG, Prausnitz MR. Physical parameters influencing optimization of ultrasound-mediated DNA transfectiton[J]. Ultrasound Med Biol, 2004, 30(4):527-538.
    [126]Liu J, Lewis TN, Prausnitz MR. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization[J]. Pharm Res, 1998, 15(6): 918–924.
    [127]Deng CX, Sieling F, Pan H, et al Ultrasound-induced cell membrane porosity[J]. Ultrasound Med Biol, 2004, 30(4): 519-26.
    [128]Zhou Y, Cui J, Deng CX. Dynamics of sonoporation correlated with acoustic cavitation activities[J]. Biophys J, 2008, 94(7): L51-L53.
    [129]Mehier-Humbert S, Bettinger T, Yan F, Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression[J]. Control Release. 2005, 104(1): 203-211.
    [130]Chen S, Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targetedmicrobubble destruction[J]. J Am Coll Cardiol, 2003, 42(2):301–308.