离心球墨铸铁管球化率和壁厚的超声检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心铸造比其它工艺方法生产的球铁管具有管壁薄、韧性好、强度高和耐蚀等优点被广泛应用于城镇供水、供气等工程项目。因其产量在不断扩大,离心球铁管的质量检测与控制也引起了人们的重视。其中球化率和管壁厚的检测尤为重要,因为球化率直接影响球铁的机械性能;而管壁厚不均匀或局部过薄则极易引起局部承载能力下降,导致爆管事故。
     在一定的温度下,球墨铸铁的球化率和纵波声速的线性关系已经被大家所认同,长期以来,人们一直试图将超声声速法检测球化率的方法应用于离心球铁管的球化率检测,但由于管形铸件的特殊形状,在声路设置和声程的确定上受到管壁厚的影响,存在相当大的困难。
     本文利用专门设计的探头架,让主声束在管壁内弦长方向传播,对离心球铁管横波声速进行了测试,得到了室温下横波声速与球化率的线性关系,并用于离心球铁管球化率超声无损检测,该方法克服了管壁厚度对声速检测的影响。在生产现场检测过程中,各个管壁温度不均,考虑到温度对声速的影响,本研究还测试了从室温到160℃范围内声速随管壁温度的变化规律,结果表明,横波声速随着温度升高而线性降低,并且声速的温度系数基本不受球化率的影响。据此,可将各个温度下测得的横波声速换算成室温下的声速,进而排除管壁温度对球化率检测的影响。
     另外,管壁厚度也是影响球铁管质量的重要因素,而管壁厚度除了管两端外,很难用量具测量,为此,我们对在一定生产条件(相同铁液成分、相同基体状态等)下生产的球墨铸铁管的横纵波分别进行测量,得到其横纵波转化系数,将用前述方法测量的超声横波声速转化为纵波声速,用反射法测量了球铁管的厚度。
     一次将球铁管的球化率和壁厚同时测量,可以对球铁管的质量进行综合评定。通过在生产现场应用此装置对球化率和厚度进行了测量,结果表明,基本符合生产上的要求。
Centrifugal Nodular Iron Pipe has been widely used in urban water supply, gas supply etc. project for its advandages such as thiner wall, better toughness, higher strength and better corrosion resistance and so on than Iron Pipe made from other process. With the expand of production increasingly, people pay more attention to the quality inspection and control of Centrifugal Nodular Iron Pipe. It is particularly important to test nodularity and the thickness for nodularity has impact on mechanical properties of Iron Pipe directly and thickness of pipe wall is uneven or part of pipe wall is too thin will cause the partial load capacity decline, then lead to accident of explosion.
     With the temperature fixed,the linear relationship between the nodularity and ultrasonic velocity have already been identification by people. For a long time,people were trying to test the nodularity of the centrifugate spheroidal graphite iron pipe.But,there are multiple of difficulties as the special shape of the pipe in the settlement of the sound travel and the sound path.
     This paper test the ultrasonic transversal wave velocity of the centrifugate spheroidal graphite iron pipe, making the main wave transmitting through the chord of the pipe by the specific designing probe device.The linear relationship of the nodularity and the transversal velocity in room temperature is obtained,and this method is used in the ultrasonic non-destructive test of the nodularity of centrifugate spheroidal graphite iron pipe.This method againsts the influence of the pipe thickness to the test of the velocity. Considering the effect of the temperature to the velocity,this study also test the law between the velocity and the temperature from room temperature to 160°C.The result shows that,the velocity linearly declined as the rising of the temperature and the temperature coefficient of velocity seems to no relationship with the nodularity .According to this,the velocity of various temperature can be converted to the velocity of room temperature,then the nodularity without temperature effect can be obtained.
     The thickness is also a important factor of the pipe quality,but the thickness of the pipe is difficult to measure with measuring tool unless two end of the pipe. So we measure transversal wave velocity and longital wave velocity of nodular iron pipe separately which product under certain production conditions(the same ingredients of iron liquid, the same state of matrix etc.), and get its transfer coefficient of transversal wave velocity and longital wave velocity, we convert the transversal velocity to longital velocity,then measure the thickness of the pipe using the reflection method.
     So we convert the transversal velocity to longital velocity,then measure the thickness of the pipe using the reflection method.
     The nodularity and thickness are measured at the same time,then the quality of the pipe is intergrate evaluated. The results show that it meet production requirements by mesuring the nodularity and the thickness employed this device in the production field.
引文
[1] 张博,明智清,土高健编著.球墨铸铁.北京:机械工业出版社,1988.
    [2] 机械工程师学会铸造分会编著.铸造手册铸铁篇.北京:机械工业出版社.2002.
    [3] 姚朴等.奥贝球墨铸铁汽车螺旋伞齿轮国内外应用情况.铸造.1994(2):38-40.
    [4] 孔繁钢,杭星.100自动管轧机球墨铸铁辊环的离心铸造.大型铸锻件.2004(4):30-33.
    [5] 张维,李建萍,王超.球铁汽车零部件球化率超声声速检测法研究.南昌:南昌航空工业学院学报 (自然科学版).2002,(16)2:73-75.
    [6] 贾健生,彭光俊.用于自动控制生产线上的球墨铸铁无损检测.武汉汽车工业大学.汽车工艺与材料,1998(1):52-54.
    [7] 陈礼光,贾健生,彭光俊等.球化率无损检测新技术.武汉汽车工业大学.汽车工艺与材料,1998(1):42-44.
    [8] 陈礼光,贾健生,彭光俊等.内燃机球铁曲轴球化质量检测技术.内燃机,1996(3):33-35.
    [9] 谢耀成.22DL型超声波测厚仪在测定球铁球化率中的应用.无损检测,1991(8):230-232.
    [10] 夏仁凯等编译.国外超声声速法检测球铁性能.机械工业出版社.1998.
    [11] David N. Collins, W. Alcheikh. Ultrasonic non-destructive evaluation of the matrix structure and the graphite shape in cast iron. Journal of Material Processing Technology, 1995(55):85-90.
    [12] 张巧介.用超声纵波声速法评估球铁球化率的方法.无损检测,1999(3):40-41.
    [13] G. G. Gadzhiev. The Thermal and Elastic Properties of Zinc Oxide-Based Ceramics at High Temperatures. The Rmophysical Properties of Materials. 2003,41(6):111-116.
    [14] Miguel A. Rodriguez, Ramon Miralles, Luis Yergara, Signal processing for ultrasonic non-destructive evaluation: two applications, NDT&E International. 1998,31(2):93-97.
    [15] James J. Buckley, Yoichi nayashi, Neural nets for fuzzy systems. Fuzzy Sets and Systems, 1995(71):265-276.
    [16] E.P. Papadakis, J. Acoust. Am, 1961(33):16-17.
    [17] R.L. Smith, Ultrasonic, 1982(9):211-214.
    [18] A. RHccrt, Thiel, E. Neuman and E. Munday, Materials Evaluation, 1981,36(9):934-938.
    [19] G.P. Sign, F.M. Froes and D. Eylon, MPR. 1984(9):504-520.
    [20] R. Prasad Recent ultrasonic techniques for quality evaluation of casting, British J. NDT, 1989,32(8):403-405.
    [21] J. Cech. NDT International, 1990,23(8):93-103.
    [22] 许肖梅.声学基础.北京:科学出版社,2003.
    [23] 马大猷.现代声学理论基础.北京:科学出版社,2004.
    [24] 金长善.超声工程.哈尔滨:哈尔滨工业大学出版社,1989.
    [25] 应崇福.超声学.北京:科学出版社,1990.
    [26] 冯若主编.超声手册.南京:南京大学出版社,1999.
    [27] 张小飞,朱援祥,李晓梅,周有鹏,王茁.球墨铸铁的球化质量无损检测技术的研究.热加工工艺,2002(1):56.
    [28] 宋学孟编.金属物理性能分析.修订本.北京:机械工业出版社.1990.
    [29] 田莳.材料物理性能.北京:北京航空航天大学出版社.2004.
    [30] P. Li, X.M. Li, L. Wang, J.L. Tan, Ultrasonic evaluation for 20G high TEMPERATUREAGING MICROSTRUCTURE DAMAGE, 16TH World Conference on Nondestructive Testing, 2004.
    [31] Lin Li, Li Ximeng, Xu Zhihui, Lei Mingkai, Thickness Measurement Approach for Plasma Sprayed Coatings Using Ultrasonic Testing Technique, Trans. Nonferrous Met. Soc. China, 2004, 14 (2) :88-91.
    [32] David N. Collins,W.Alcheikh. Ultrasonic non-destructive evaluation of the matrix structure and the graphite shape in cast iron. Journal of Material Processing Technology ,1995(55):85-90.
    [33] Li Yue, Ying Chong-Fu. Two Signal Processing Techniques for the Flaw-to-grain Echo Ratio. Ultrasnics, 1987,25(3):90-94.
    [34] Chen Y J, Shi Y W, Lei Y P. Use of a Wavelet Analysis Technique for the Enhancement of Signal-to-noise Ratio in Ultrasonic NDE. Insight, 1996,38(11):800-803.
    [35] Fairouz Bettayeb, Tarek Rachedi, Hamid Benbartaoui, An improved automated ultrasonic NDE system by wavelet and neuron networks, Ultrasonic, 2004(41):853-858.
    [36] N. Hozumi, R. Yamashita, C.-K. Lee etc. Time-frequency analysis for pulse driven ultrasonic microscopy for biological tissue characterization, Ultrasonic, 2004(42): 717-722.
    [37] Shlomo Geva*, Kurt Malmstrom, Joaquin Sitte, Local cluster neural net: Architecture, training and applications. Neurocomputing 1998(20):35-56.
    [38] S. DOMINGUEZ, P. CAMPOY, R. ARACIL, A neural network based quality control system for steel strip manufacturing. Fuzz IFAC Artificial Intelligence in Real Time Control, Valencia. Spian, 1994.
    [39] James J. Buckley, Yoichi Hayashi, Neural nets for fuzzy systems. Fuzzy Sets and Systems, 1995(71):265-276.
    [40] 周有鹏,王茁.铸铁的质量无损检测技术的研究.热加工工艺,2003(1):56.
    [41] 姜成刚.离心球铁管超声波无损评价(NDE)研究:(硕士学位论文).大连:大连理工大学,1997.
    [42] 李喜孟主编.无损检测.北京:机械工业出版社,2001.
    [43] Haines N F, Bell J C, Mclntype P J. The application of broadhand ultrasonic spectroscopy to the study of layered media. J Acoust Soc Am, 1978,64(6):1645-1651.
    [44] 江泽涛.温度对超声波波速及应力测量的影响.无损检测.1999(6):245-248.
    [45] 马芹永等.冻结粘土纵横波声速与温度的关系.岩石力学与工程学报.2002(2):290-293.
    [46] 项东.不同温度下超声波横波声速变化的研究.山东建筑工程学院学报.2000(12):78-81.
    [47] 关卫和,阎长周,陈文虎,陶元宏.高温环境下超声波横波检测技术.压力容器.2004(2):4-6.
    [48] 吕干霖等.高温钢声速与声速滞后现象.声学学报,1992,17(6):44-51.
    [49] 谢宝琛等.高温横波探伤中温度梯度的影响.无损探伤,1986(3):42-43.
    [50] 谢宝琛等.斜探头K值随环境温度的变化.无损检测,1989,11(8):226.
    [51] 蒋危平,方京编著.超声检测学.武汉:武汉测绘科技大学出版社.1991.
    [52] David N. Collins, W. Alcheikh. Ultrasonic non-destructive evaluation of the matrix structure and the graphite shape in cast iron. Journal of Material Processing Technology,1995(55):85-90.
    [53] 谢耀成.22DL型超声波测厚仪在测定球铁球化率中的应用.无损检测,1991(8):230-232.
    [54] 中国金属学会,中国有色金属学会编.金属物理性能及测试方法.北京:冶金工业出版社:56-57.
    [55] 杜功焕,朱哲民,龚秀芬.声学基础.南京:南京大学出版社.2001.