氯化物盐冻作用下混凝土构件的耐久性评估与服役寿命设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥混凝土是土木工程最主要的结构材料,混凝土结构的耐久性和服役寿命是国际国内工程界关注的重大科技问题。国内外学术界对混凝土在除冰盐作用下耐久性问题的研究主要集中在抗盐冻剥蚀性方面,即混凝土单面受到除冰盐溶液冻融作用下的表面剥蚀性能,但是没有同时研究混凝土结构内部的冻融损伤、氯离子浓度分布、钢筋锈蚀及结构承载力等变化规律,这对混凝土结构的耐久性和寿命研究是不全面的。本文在我国严寒地区城市主要立交桥和机场高速公路混凝土结构的实地调研分析的基础上,系统进行了引气与非引气的、不掺与掺加矿物掺合料的普通混凝土、高强混凝土和高性能混凝土在3.5%NaCl溶液(除冰盐)作用下的快速冻融耐久性实验,以及在北方冬季严寒的室外自然冻融环境中的除冰盐暴露耐久性实验;研究了混凝土构件在室内快速盐冻条件及室外自然暴露盐冻条件下的相对动弹性模量变化、表面剥蚀及其损伤劣化过程与机理、氯离子扩散规律、抗弯承载力与变形等规律,建立了盐冻作用下钢筋混凝土构件的承载力计算模型和服役寿命预测模型,为混凝土工程结构的耐久性设计提供了理论参考。本文主要研究内容和结果如下:
     1、通过对沈阳市立交桥的外观检查与无损检测发现,部分立交桥即使经过多次的维修与加固,仍然发生了粗集料外露、钢筋裸露锈蚀、箍筋锈断等非常严重的盐冻耐久性破坏;施工控制不严,混凝土保护层厚度不均,偏差比较大。混凝土碳化、盐冻等环境因素作用下,混凝土的碱性和密实性降低,加速了混凝土损伤及钢筋锈蚀。对现场混凝土及钢筋锈蚀物样品的化学分析和微观结构分析表明,结构混凝土内部的氯离子浓度很高,其浓度分布规律因受到雨水的冲刷影响,在保护层厚度范围内并不符合Fick扩散定律,其寿命设计的氯离子扩散模型必须考虑表层效应,并进行参数修正;结构混凝土的总氯离子浓度和自由氯离子浓度之间成线性关系;计算得出立交桥混凝土的氯离子结合能力只有0.0687,氯盐对混凝土中钢筋的锈蚀破坏作用很大。
     2、混凝土构件及混凝土试件的快速盐冻试验表明,C30混凝土的抗盐冻性能很差,其盐冻破坏源于混凝土的表面剥蚀现象,混凝土构件由于钢筋的约束作用,将延缓其相对动弹性模量的下降速度。高性能混凝土的抗盐冻破坏能力显著提高;但是过高的粉煤灰掺量将显著地降低高性能混凝土的抗盐冻性能;掺加硅灰的引气混凝土试件具有较高的抗盐冻性能,但是其混凝土构件的抗盐冻性能因其内部自收缩微裂纹的宏观扩展,出现较严重的劣化现象,这种劣化并不因强度等级的提高而有明显的改善。因此,对于掺加硅灰的混凝土,试件的盐冻破坏性能并不能可靠地反映钢筋混凝土构件的抗盐冻性能。
     3、利用低真空扫描电子显微镜(SEM)观察了硬化混凝土中的气泡结构形貌,运用图像分析软件计算气泡结构的特征参数。研究结果表明,混凝土具有较高抗盐冻性的含气量应提高至5.0%以上;对于掺矿物掺合料的高性能混凝土,具有良好抗盐冻性所要求的气泡间距与强度等级有关,当强度等级低于C50时,平均气泡间距必须小于250μm,当强度等级提高到C60以上时,平均气泡间距可以增大到700μm。
     4、通过超声平测法研究混凝土构件的盐冻损伤层厚度,探讨了钢筋对超声波测试结果的修正方法,提出了综合描述混凝土结构盐冻破坏的损伤度新概念,当混凝土的损伤层越厚、损伤层混凝土的声速越低时,表示其盐冻损伤度越大。
     5、对盐冻损伤的混凝土构件进行力学性能研究发现,混凝土受弯构件在初始荷载作用下,截面的应力状态仍满足混凝土构件平截面假定,因此可以采用现有的钢筋混凝土结构理论,建立盐冻作用下混凝土构件的结构设计模型和计算公式。在历经不同快速冻融循环次数的盐冻作用以后,混凝土内部出现盐冻损伤、表面疏松剥蚀,弹性阶段开裂点不明显,构件的弯曲刚度也随之减小,承载力极限值降低,跨中挠度相应增加。
     6、基于材料力学的平截面假定,参照现行《混凝土结构设计规范》(GB50010—2010)中受弯构件承载力、刚度和挠度的计算方法,引进盐冻作用的耐久性特征参数,提出了采用相对动弹性模量、盐冻损伤层厚度、钢筋锈蚀率作为盐冻环境下混凝土结构的耐久性设计参数,建立了考虑盐冻作用的钢筋混凝土结构的设计公式,其计算值与实验值吻合较好,可应用于实际工程结构的耐久性设计。
     7、根据混凝土构件承载力的耐久性退化作用和可靠度理论,建立了盐冻作用下混凝土结构的3阶段服役寿命理论模型:诱导期、劣化期和失效期。基于氯离子扩散、相对动弹性模量变化和混凝土表面剥蚀程度,确立了第一阶段服役寿命的计算依据——即盐冻作用下,随服役时间的延长,混凝土结构表面开始发生剥蚀、内部开始发生冻融损伤以及钢筋表面的自由氯离子浓度开始达到锈蚀临界值的时间时,混凝土结构的承载力才开始衰减,此时对应的时间即达到t1阶段的结束;基于结构混凝土表面开始剥蚀、抗压强度等力学性能开始下降、钢筋开始锈蚀以后,导致混凝土结构承载力的退化,确立了第二阶段服役寿命的计算依据——当结构混凝土的表面剥蚀量大于1500g/m2,内部相对动弹性模量下降至80%、以及钢筋锈蚀率超过6%时,即当混凝土结构的主要材料(混凝土和钢筋)达到其材料耐久性破坏的限值时,此时对应的时间即认为混凝土构件的第二阶段服役寿命t2;当结构继续使用,混凝土结构的承载力降低到设计极限状态时,此时对应的时间即认为混凝土构件的第三阶段服役寿命t3。
     8、依据系统的耐久性试验研究结果,通过本文建立的3阶段服役寿命理论模型,获得了引气与非引气的、不掺与掺加矿物掺合料的普通混凝土、高强混凝土和高性能混凝土构件在盐冻作用下的承载力退化规律曲线,计算了其服役寿命。结果表明,C30普通混凝土结构的服役寿命计算结果与实际工程调研的结果相符。
     9、运用本文建立的盐冻作用下混凝土结构的3阶段服役寿命理论模型,对典型盐冻环境下混凝土结构桥梁的主要构件进行了耐久性设计,提供了算例,比较了按照常规设计和耐久性设计结果之间的差异。为我国盐冻作用环境下混凝土结构按照50a或者100a寿命进行耐久性设计,提供了一种可行的设计方法。
Concrete is the most important structural material in Civil Engineering, Concrete's durability andservice life are major scientific and technological issues concerned by both international and domesticengineering. Domestic and foreign research on the durability of the de-icing salt on concrete mainlyconcentrated in the anti-erosion performance under salt freezing circumstance, viz.one side' spallingproperties under freeze-thaw cycles in the de-icing salt solution. However, the freeze-thaw damage ininternal structure, chloride ion concentration, steel corrosion and changes of structural capacity havenot been systematically estimated. Therefore, the present research on the durability and service life ofstructural concrete is incomplete. In this study, based on the field research in the main airportexpressways and overpasses in the cold region of China, systematically experiments were carried outincluding various rapid freezing and thawing durability tests in ordinary concrete with gas and no gas,with admixture and no admixture, high strength concrete and high performance concrete in3.5%NaClsolution (de-icing salt). The freeze-thaw durability exposure test was also simultaneously performed inthe natural outdoor winter-cold environment. Therefore, the laws of the changes of relative dynamicelastic modulus, the process and mechanism of erosion and damage, the mechanism of diffusion ofchloride ions, bending resistance and deformation laws are presented. Furthermore, the bearingcapacity model of reinforced concrete and service life prediction model under the action of salt freezingwere established, which will provide a theoretical reference for the durability design in engineeringconcrete structures. The main contents and results in this paper are as follows:
     1. By visual inspection and nondestructive testing in some overpasses in Shenyang, some seriousdamage related to salt freezing durability, such as coarse aggregate exposure, bare steel corrosion andstirrups rust and breakage can be easily found, even in some overpasses repaired and reinforced severaltimes. Lack of strict construction control results in uneven thickness of concrete cover, inducingrelatively larger deviation. Because of carbonation, salt freezing and other environmental factors, thealkaline and density of concrete decrease. This results in accelerated steel corrosion and concretedamage. The chemical and microstructure analysis on the on-site concrete and the products of steelcorrosion indicate that the chloride ion concentration inside the structural concrete which is affected bythe erosion of rain is high. Besides, in the protective layer, the chloride ion concentration does notcomply with the Fick diffusion law. Therefore, the surface effects should be taken into account in thechloride diffusion model for life design and relative parameter should be modified. A linear relationship was found between the total and free chlorine ion concentration in structural concrete; the calculatedchloride binding capacity in overpass concrete is only0.0687, indicating that chloride salts play a keyrole in the corrosion damage of steel reinforcement in concrete.
     2. The rapid salt freezing tests on concrete structures and specimen show that the anti-salt freezingperformance of C30is poor. This damage results from the erosion on the surface of concrete. Thedeclining speed of relative dynamic elastic modulus will be delayed as the result of the restriction effectof reinforcement steel bar. The anti-salt freezing capacity of high performance concrete increasesdramatically; However, too much fly ash addition will significantly reduce the anti-salt freezingperformance of high performance concrete; Air-entrained concrete specimens with silica fume showhigher anti-salt freezing performance, but the corresponding concrete structures show seriousdeterioration due to the macro expansion of internal shrinkage cracks. And this deterioration will not beimproved as the strength grade increases. Therefore, for concrete with silica fume, the anti-salt freezingperformance of specimen will not reliably reflect the anti-salt freezing capacity of reinforced concretestructures.
     3. Low vacuum scanning electron microscopy (SEM) was used to observe the structure andmorphology of bubbles in hardened concrete. The characteristic parameters of bubble structure werecalculated by the matching image analysis software. The results show that the air content in concretewith good salt freezing tolerance should be increased to more than5.0%. For high performanceconcrete with mineral admixture, the bubble spacing required for good anti-salt freezing capacity haverelation to strength grade, i.e, when strength level is lower than the C50strength grade, the averagespacing must be less than250μm, while when the strength level increases to more than C60, theaverage spacing can be increased to700μm.
     4. The salt freezing damaged thickness of concrete structures was studied by ultrasonic levelmeasurement and a correction method reflecting the influence of reinforcement on the ultrasonic testresults. A new concept for comprehensive description of salt freezing damage in concrete structure wasproposed. The thicker the damaged layer of concrete and the lower speed of sound propagating in thedamaged layer, the greater the degree of salt freezing damage.
     5. When the mechanical properties of salt freezing damaged concrete structures were studied, itwas found that the stress state of cross section under initial load still met the plane section assumption.Therefore, the existing reinforced concrete structure theory can be used to establish the structuraldesign models and formulas under the action of salt freezing. After various rapid salt freezing circleswere conducted, the salt freezing damage and loose peeling phenomenon occured inside the concrete and in the surface, respectively. And cracking points are vague in elastic stage, the correspondingbending stiffness and capacity limits also decrease, the midspan deflection increases correspondingly.
     6. Based on plane assumption in Material Mechanics and the calculation methods in Design ofConcrete Structures(GB50010-2010) on flexural strength and stiffness and deflection, the salt freezingparameters are also introduced. The relative dynamic elastic modulus, thickness of salt freezing damageand steel corrosion rate were proposed to be design parameters of durability in the salt freezingenvironment. The design formula of reinforced concrete structures was also established, consideringthe effect of salt and freezing. The calculated values from the formula are in agreement with theexperimental values, which can be applied to the durability design for the actual engineering structures.
     7. According to the degradation of bearing capacity and the reliability theory, a three-stage servicelife theoretical model (Induction period, deterioration and expiration period) was established on theconcrete structures under the action of salt and freezing. Based on chloride ion diffusion, the changes ofrelative dynamic elastic modulus and the concrete surface's denudation degree, the basis of service lifecalculation in the first stage can be established. Viz. with the service time prolonging under the actionof salt freezing, when the concrete surface erosion begins and inside,the freeze-thaw damageoccurs,and the free chloride ion concentration on the surface of reinforcement start to arrive atthreshold value to rust, the bearing capacity of concrete structures begin to decay, then thecorresponding time is the end of t1period; Based on the facts that the degradation of bearing capacityof concrete induced by the decrease of mechanical properties such as compressive strength and the steelbeginning to rust, the basis of service life calculation in the second stage can be established. viz. Whenthe surface of structural concrete spall greater than1500g/m2, the internal relative dynamic elasticmodulus decrease to80%, and steel corrosion rate is over6%, the main material of concrete structures(concrete and steel) reaches the durability of the material damage limit value, the corresponding time isregarded as the service life time in the second stage (t2). The calculated actual bearing capacity ofconcrete structures declines to the limit design load, the corresponding time is regarded as the servicelife time in the third stage (t3).
     8. Based on the systematic experiments on durability and three-stage theoretical service life modelestablished in this paper, various bearing capacity deterioration curves and service life of mixtures withgas and no-gas, with the admixture and noimineral admixture ordinary concrete, high strength concreteand high-performance concrete under the action of the salt freezing were respectively established. Thecalculated results of C30concrete service life match the one form the practical engineering.
     9. By the use of the three-stage theoretical service life model established in this paper, thedurability of the main concrete bridge structures in typical salt freezing environment was designed to provide a numerical example. The results were also compared between the conventional design anddurability design. The results show that a feasible design method is present for the durability design ofconcrete structure in the salt freezing environment with the life expectancy of50or100years.
引文
[1]杨全兵,黄士元.受冻地区混凝土的盐冻破坏[J].公路,1998,(8):25-28.
    [2] MEHTA P K. Concrete durability: fifty year's progress [A]. Proceeding of2nd InternationalConference on Concrete Durability[C]. ACI SP126-1,1991:1-33.
    [3]金伟良,赵羽习.混凝土结构耐久性研究的回顾与发展[J].浙江大学学报,2002,36(4):371-380.
    [4]金伟良,赵羽习.混凝土结构耐久性[M].科学出版社,北京:2002.
    [5]陈肇元.混凝土结构的耐久性设计[A].见:陈肇元,陈志鹏,江见鲸等编,混凝土结构耐久性及耐久性设计论文集[C].清华大学,北京,2002.
    [6]杜应吉.地铁工程混凝土耐久性研究与寿命预测[D].南京:河海大学,2005.
    [7]干伟忠, RAUPACH M,金伟良,等.杭州湾跨海大桥混凝土结构耐久性原位监测预警系统[J].中国公路学报,2010,23(2):30-35.
    [8]张宝胜,干伟忠,陈涛.杭州湾跨海大桥混凝土结构耐久性解决方案[J].土木工学学报,2006,39(6):72-77.
    [9] B.Persson. Internal frost resistance and salt frost scaling of self-compacting concrete[J]. Cementand Concrete Research,2003,33(3):373-379.
    [10] S. Lindmark. Mechanisms of salt frost scaling of Portland cement bound materials: studies andhypotheses (TVBM-1017)[D]. Lund University, Lund, Sweden,1998.
    [11] B. Persson. Assessment of chloride migration coefficient, salt frost resistance, internal frostresistance and sulphate resistance of SCC(TVBM-3100)[D]. Lund University, Lund Sweden,2001.
    [12] A.Cwirzen, V.Penttala. Aggregate-cement paste transition zone properties affecting the salt–frostdamage of high-performance concretes[J]. Cement and Concrete Research,2005,35(4):671-679.
    [13] M.J. Setzer. Action of frost and de-icing chemicals, basic phenomena and testing[C]. RILEMProceedings,1997,30:2-22.
    [14] J. Stark, H.M. Ludwig. The influence of the type of cement on the freeze-thaw/freeze-de-icingsalt resistance of concrete[A]. Proceedings of the International Conference on Concrete UnderSevere Conditions[C]. Sapporo, Japan,1995,245-254.
    [15] O. opuro lu, A.L.A. Fraaij, J.M.J.M. Bijen. Effect of sodium monofluorophosphate treatment onmicrostructure salt scaling durability of slag cement paste[J]. Cement and Concrete Research,2006,36(8):1475-1482.
    [16] J. Stark, H.M. Ludwig. Freeze-deicing salt resistance of concrete containing blast furnace slagcement[C]. Proceeding Freeze-Thaw Durability of Concrete, E&FN Spon, Sainte-Foy, Canadaand Lund, Sweden,1997:107-120.
    [17] S. Matala. The effect of carbonation on frost-salt resistance in granulated blast furnace slagconcretes[C]. Proceeding Service Life and Maintenance of Buildings. Oulu, Finland,1994:134-143.
    [18] O. Copuroglu, A. Fraaij, J. Bijen. Effect of curing conditions on freeze-haw de-icing saltresistance of blast furnace slag cement mortars[C]. Proceeding. High Performance Structures andMaterials II, WIT press, Ancona, Italy,2004:233-241.
    [19] R.D. Hooton, Performance of HPC made with slag-silica fume ternary cementitious systemsexposed to de-icer chloride penetration[C]. Proceeding International Conference on Durability ofHigh-Performance Concrete.Essen, Germany,2004.
    [20] J. Stark, H.M. Ludwig. Freeze-deicing salt resistance of concrete containing cement rich inslag[C]. Proceeding Frost Resistance of Concrete, E&FN Spon London, Essen,1997:123-138.
    [21] Max J. Setzer. The micro ice lens model of frost attack-basics and consequences for testingandapplication[C]. The5th International SymPosium on Cement and Conerete Vol.1Oct28Nov l,2002, Shanghai, China:105-111
    [22] Marchand J, Pigeon M, Bager D. Talbot C. Influence of chloride solution concentration on deicersalt scaling deterioration of concrete[J]. ACI Materials Journal,1999,96(4):429-435.
    [23] Adam Neville. Consideration of durability of concrete structures: Past, Present, and future[J].Materials and struetures,2001,34(3):114-118.
    [24] Christiane Foy, Michel Pigeon, Nemkumar Banth a. Freeze-thaw durability and deicer saltscaling resistance of a0.25water-cement ratio concrete[J]. Cement and Concrete Research,1988,18(4):604-614.
    [25] Janssen D J, Snyder M B. Mass loss experience with ASTM C666: with and without deicing salt,FTDOC[C]. Proceedings of the international workshop in the resistance of concrete to scalingdue to freezing in the presence of de-icing salt, Quebec, Canda,1997:247-258.
    [26] Beaupre D, Talbot C, Gendreau M, et al. Dicer salt scaling resistance of dry and wet processshotcrete[J]. ACI Materials Journal,1994,91(5):487-494.
    [27]黄士元,杨全兵.我国寒冷地区李即疑十路桥结构的耐久性问题[C].土建结构工程的安全性与耐久性,北京,2001.
    [28]孙伟,余红发.混凝土结构工程的耐久性与寿命研究进展[C].工程科技论坛?土木结构工程的安全性与耐久性论文集,清华大学,北京,2001.
    [29]杨钱荣,郭保林,杨全兵.青岛海湾大桥混凝土抗冻性试验研究[J].公路交通科技,2010,27(9):98-102.
    [30]杨全兵,张树青,黄士元,等.高抗冻和抗除冰盐剥蚀性混凝土在高等级公路中的应用[J].公路,2000,11:8-11.
    [31]吴小立,张伟平,黄庆华,等.冻融和除冰盐作用下混凝土劣化试验方法评述[J].结构工程师,2009,25(4):147-152.
    [32]杨钱荣,郭保林,杨全兵.引气混凝土在青岛海湾大桥工程预应力桥梁中的应用研究[J].公路,2009,9:145-150.
    [33] Edoardo Proverbio, Giovanni Proietti, Vincenzo Venturi. A Statistical Approach for Managingvisual Inspection and In Situ Testing In Designing Rehabilitation Project Of A5KM LONGVIADUCT[C]. Life Prediction and Aging Management of Concrete Structures[M].2nd RILEMWorkshop, Paris,2003,299-307.
    [34] Weyers R.E., Fitch M.G., Larsen E.P., et.al. Concrete Bridge Protection and Rehabilitation:Chemical and Physical Techniques[A]. Service Life Estimates, Strategic Highway ResearchProgram, ational Research Council[C], Washington, DC,1994(SHRP-S-668)
    [35] Lindvall, A. Environmental actions and response-reinforced concrete structures exposed in roadand marine environment[J]. Nordic Concrete Research,2001,27(2):63-81.
    [36] Lars-Olof Nilsson, Steen Rostam. Brobyggnad-Betongteknologins spjutspets. N?r kan branschenleva upp till funktionskrav?[M]. Brobyggnadsdagen, G?teborg januari,1995.
    [37] Collepardi M.. Marcialis A., Turrizzani R. The kinetics of penetration of chloride ions into theconcrete[J]. Cemento(Italy),1970,(4):157-164.
    [38] Collepardi M., Marcialis A., Turrizzani R. Penetration of chloride ions into cement pastes andconcretes[J]. Journal of the American Ceramic Society,1972,55:534-535.
    [39]余红发,孙伟,鄢良慧,等.混凝土使用寿命预测方法的研究Ⅰ——理论模型,硅酸盐学报,2002,30(6):686-690.
    [40]余红发,孙伟,麻海燕,等.混凝土使用寿命预测方法的研究Ⅱ——模型验证与应用,硅酸盐学报,2002,30(6):691-695.
    [41]余红发,孙伟,麻海燕,等.混凝土使用寿命预测方法的研究Ⅲ——混凝土使用寿命的影响因素及混凝土寿命评价,硅酸盐学报,2002,30(6):696-701.
    [42]余红发,孙伟,麻海燕,等.盐湖地区钢筋混凝土结构使用寿命的预测模型及其应用,东南大学学报,2002,32(4):638-642.
    [43]陈浩宇.混凝土在不同氯盐环境中使用寿命的对比研究[D].沈阳建筑大学,2006.
    [44]陈浩宇,余红发,李美丹,等.高强高性能混凝土在沈阳除冰盐环境下的氯离子扩散行为[J].混凝土,2006,(1):23-26.
    [45]陈浩宇,余红发,刘连新,等.混凝土在海洋环境和除冰盐条件下的氯离子扩散行为[J].华中科技大学学报(城市科学版),2005,22(3):48-50.
    [46] Tadakatsu Hara, Yasuhiro Koda, Hirofusa Itabashi. An experimental evaluation of co-operativetest for scaling resistance of concrete with deicing salts[J]. Cement Science and ConcreteTechnology.2000,54:398-403.
    [47] Selleck S F, Landis E N, Peterson M L, et al. Ultrasonic investigation of concrete with distributeddamage [J]. ACI Materials Journal,1998,95(1):27-36.
    [48] Andrade C, Alonso C, Molina F J. Cover cracking as a function of rebar corrosion: PartI-experimental test[J]. Materials and Structures,1993,26(163):435-464.
    [49] Alonso C, Andrade C, Rodriguez J, et al. Factors controlling cracking of concrete affectedreinforcement corrosion[J]. Materials and Structures,1998,31(211):435-441.
    [50] Resheeduzzafar, Al-Sandoun S S, Al-Gahtani A S. Corrosion cracking in relation to bar diameter,cover and concrete quality[J]. Journal of Materials in Civil Engineering,1992,4(4):327-342.
    [51] Cabera J G. Deterioration of concrete due to reinforcement steel corrosion[J]. Cement andConcrete Composites,1996,18:47-59.
    [52]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,7:57-62
    [53]蒋建华,袁迎曙,李富民,等.混凝土中不同等级钢筋锈蚀行为的比较[J].建筑材料学报,2009,12(5):523-527.
    [54]袁迎曙,姬永生,牟艳君.混凝土内钢筋锈蚀层发展和锈蚀量分布模型研究[J].土木工程学报,2007,40(7):5-10.
    [55]何世钦,王海超,贡金鑫.模拟海洋环境下负载对锈蚀钢筋混凝土梁使用的影响[J].建筑结构,2008,38(7):74-77.
    [56] BALLIMY, REID J C, KEMP A R. Deflection of RC beams under simultaneous load and steelcorrosion[J]. Magazine of Concrete Research,2001,53(3):171-181.
    [57] RODRIGUEZ J, ORTEGA L M, GRACIA A M. Assessment of structural elements with corrodedreinforcement[A]. Corrosion and Corrosion Protection of Steel in Concrete[M]. SheffieldAcademic Press, Sheffied,1994:171-185.
    [58] RAZAK H A, CHOI F C. The effect of corrosion on the natural frequency and modal damping ofreinforced concrete beams[J]. Engineering Structures,2001,23(9):1126-1133.
    [59] MARK G S. Spatial variability of pitting corrosion and its influence on structural fragility andreliability of RC beams in flexure[J]. Structural Safety,2004,26(4):453-470.
    [60] DIMITRI VV, MARK G S, ROBERTEM. Effect of reinforcement corrosion on reliability ofhighway bridges[J]. Engineering Structures,1998,20(11):1010-1019.
    [61]金伟良,夏晋.坑蚀对钢筋混凝土梁抗弯承载力的影响[J].建筑结构,2009,39(4):78-81
    [62]王巧平,吴胜兴.锈蚀钢筋力学性能数字试验研究[J].浙江大学学报(工学版),2007,41(1):83-87.
    [63]孙彬,牛荻涛.锈蚀钢筋与混凝土的粘结强度模型[J].建筑结构,2009,39(2):36-38.
    [64]赵羽习.钢筋混凝土结构粘结性能和耐久性的研究[D].杭州:浙江大学,2001.
    [65]徐港,卫军,刘德富.非均匀锈蚀变形钢筋粘结性能试验研究[J].工业建筑,2009,39(1):101-104.
    [66] CONGQI FANG, KARIN LUNDGREN, LIUGUO CHEN, et al. Corrosion influence on bond inreinforced concrete[J]. Cement and Concrete Research,2004,34(11):2159-2167.
    [67] DARIO CORONELLI. Corrosion cracking and bond strength modeling for corroded bars inreinforced concrete[J]. ACI Structural Journal,2002,99(3):267-276.
    [68] LUNDGEN K. Modeling the effect of corrosion on bond in reinforced concrete[J]. Magazine ofConcrete Research,2002,54(3):165-173.
    [69] XIAOHUI WANG, XILA LIU. Modelling effects of corrosion on cover cracking and bond inreinforced concrete[J]. Magazine of Concrete Research,2004,56(4):191-199.
    [70]何世钦,王海超,贡金鑫.荷载与锈蚀共同作用下钢筋混凝土梁抗弯试验研究[J].水力发电学报,2007,26(6):46-51.
    [71]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52.
    [72]袁迎曙,余索.锈蚀钢筋混凝土梁的结构性能退化[J].建筑结构学报,1997,18(4):51-57.
    [73]吴庆,袁迎曙,李洁勇.人工气候环境下锈蚀混凝土梁的结构性能退化研究[J].中国矿业大学学报,2007,36(4):441-445.
    [74] Pritpal S Mangat, Mahmoud S Elgarf. Flexural Strength of Concrete Beams with CorrodingReinforcement[J]. ACI Structural Journal,1999,96(1):149-158.
    [75]史庆轩,李小健,牛荻涛,等.锈蚀钢筋混凝土偏心受压构件承载力试验研究[J].工业建筑,2001,31(5):14-17.
    [76]吴庆,袁迎曙,朱金,等.锈蚀钢筋混凝土压弯构件性能退化试验研究[J].中国矿业大学学报,2010,39(6):843-848.
    [77]张克波,胡俊,张建仁,等.锈蚀钢筋混凝土偏心受压构件实验及其承载力计算方法研究[J].实验力学,2010,25(6):625-632.
    [78] GIURIANI E, PLIZZARI G A. Interrelation of splitting and flexural cracks in RC beams[J].Journal of Structural Engineering,1998,124(9):1032-1040.
    [79] PLIZZARI G A, DELDOSSI M A. MASSIMO S. Transverse reinforcement effects on anchoreddeformed bars[J]. Magezine of Concrete Research,1998,50(2):161-177.
    [80]潘洪科,边亚东,杨林德.钢筋混凝土结构基于耐久性劣化度的可靠性分析[J].建筑结构学报,2011,32(1):105-109.
    [81]李学田,殷惠光.锈蚀钢筋混凝土梁抗剪能力退化机理和预计模型[J].徐州工程学院学报(自然科学版),2010,25(4):58-63.
    [82]杨全兵.混凝土盐冻破坏——机理、材料设计与防治措施[D].上海:同济大学,2006.
    [83] Litvan G G. Frost action in cement in the presence of de-icers [J]. Cement and ConcreteResearch,1976,6(3):351-356.
    [84]洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性[J].建筑技术,2000,31(2):102-104.
    [85] Lindvall A. Mapping of the chloride load around two Swedish reinforced concrete bridges[M].Publication P-02:2, Department of Building Materials, Chalmers University of Technology:G?teborg,2002.
    [86] Nilsson L.O., Andersen A., Luping T.&Utgenannt P. Chloride ingress data from field exposurein a Swedish road environment[M]. Publication P-00:5, Department of Building Materials,Chalmers University of Technology: G?teborg,2000.
    [87] Lindvall A., Andersen A., Nilsson L.O. Chloride ingress data from Danish and Swedish roadbridges exposed to splash from de-icing salt[C].2nd International Workshop on Testing andModelling the Chloride Ingress into Concrete: Paris,2000
    [88]中华人民共和国交通部标准.JTJ270-98水运工程混凝土试验规程[S].北京:人民交通出版社,1998:202-207.
    [89] Funahashi M. Predicting corrosion――free service life of a concrete structure in a chlorideenvironment [J]. ACI Materials Journal,1990,87(6):581-587.
    [90] Mohammed T.U., Hamada H.. Relationship between free chloride and total chloride contents inconcrete [J]. Cement and Concrete Research,2003,33(9):1487-1490.
    [91] Nilsson L.O., Massat M., Luping T. The effect of non-linear chloride binding on the prediction ofchloride penetration into concrete structures [A]. In: MALHOTRA V M ed. Durability ofConcrete [C]. Detroit: American Concrete Institute, ACI SP–145,1994,469-486.
    [92]中华人民共和国行业标准. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [93]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:14-17.
    [94]姬永生,袁迎曙,耿欧,等.氯盐外侵混凝土内钢筋的锈蚀特征及机理分析[J].中国矿业大学学报,2009,38(3):309-315.
    [95]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学博士学位论文,2000.
    [96]燕坤.多重因素作用下碳化混凝土的抗冻性[D].南京:南京航空航天大学硕士学位论文.2007.
    [97] J Marchand, M Pigeon, D Bager, et al. Influence of chloride solution concentration on deicer saltscaling deterioration of concrete [J], ACI Materials Journal,1999,96(4):429-435.
    [98] Beaupre D, Talbot C, Gendreau M, et al. Dicer salt scaling resistance of dry-and wet-processshotcrete [J], ACI Materials Journal,1994,91(5):487-494.
    [99] Cohen M D, Zhou Yixia, Dolch W L. Non-air-entrained concrete—is it frost resistant?[J]. ACIMaterials Journal,1992,89(2):406-415.
    [100] Stefan Jacobsen, Hans Christian Gran, Erik J.Sellevold, et al. High strength concrete freeze/thawtesting and cracking [J], Cement and Concrete Research,1995,25(8):1775-1780.
    [101] Pheeraphan T, Leung C K Y. Freeze-thaw durability of microwave cured air-entrained concrete[J], Cement and Concrete Research,1997,27(3):427-435.
    [102]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学博士学位论文.2004.
    [103]葛勇,杨文萃,袁杰.混凝土在不同盐溶液中的冻融破坏[C].超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会,广州,2008:413-418.
    [104] Ababneh AN. The coupled effect of moisture diffusion, chloride penetration andfreezing-thawing on concrete durability [D]. Denver: University of Colorado, Department ofCivil, Environmental and Architectural Engineering,2002.
    [105] Powers TC. A study of the capillarity of hardened cement paste[R]. Chicago: Portland CementAssociation,1935.
    [106] Powers TC. Freezing effects in concrete[R]. Detroit: American Concrete Institute,1975.
    [107] Fagerlund G. Prediction of the service life of concrete exposed to frost action, studies on concretetechnology [R]. Swedish: Cement and Concrete Research Institute,1979.
    [108] Powers TC. Void spacing as a basis for producing air-entrained concrete [J]. Journal of theAmerican Concrete Institute,1954,50(9):741-760.
    [109] Powers TC, Helmuth RA. Theory of volume changes in hardened Portland cement pastes duringfreezing [R]. Chicago: Portland Cement Association,1953.
    [110]毛继泽,齐辉,鲇田耕一.轻骨料含水率对混凝土吸水性及抗冻性的影响[J].建筑材料学报,2009,12(4):473-477.
    [111]张金喜,郭明洋,杨荣俊,等.引气剂对硬化混凝土结构和性能的影响[J].武汉理工大学学报,2008,30(5):38-41.
    [112]吴学礼,杨全兵,朱蓓蓉,等.混凝土抗冻性的评估[J].混凝土,1999,6:9-12.
    [113]范沈抚.硬化混凝土气泡结构性质的试验研究[J].混凝土与水泥制品,1993,2:24-26.
    [114]王异,周兆桐.混凝土手册(第一分册)[M].长春:吉林科学技术出版社,1985,307-308.
    [115] U.S. Bureau of Reclamation. The air-void systems of Highway Researth Board co-operativeconcretes[R]. Denver: Concrete Laboratory Report,1956.
    [116]杨全兵.冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响[J].硅酸盐学报,2007,35(1):96-100.
    [117]李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究[J].水利学报,1999,30(1):41-49.
    [118]刘信斌.混凝土抗冻性研究[D].成都:西南交通大学,2007.
    [119] LIM S N, WEE T H. Autogenous Shrinkage of Ground-Granulated Blast-Furnace Slag Concrete[J]. ACI Materials Journal,2000,97(5):587-593.
    [120] PERSSON B. Experimental Studies on Shrinkage of High Performance Concrete [J]. Cement andConcrete Research,1998,28(7):1023-1036.
    [121]李悦,郭毅霖,霍达.复合矿物超细粉对水泥石自收缩影响效应[J].北京工业大学学报,2008,34(3):288-291.
    [122]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:81-82.
    [123] T. Vidal, A. Castel, R. Francois. Analyzing Crack Width to Predict Corrosion in ReinforcedConcrete[J]. Cement and Concrete Research,34(1):165-174.
    [124] Pedro Montes, Theodore W. Bremner, Derek H. Lister. Influence of calcium nitrite inhibitor andcrack width on corrosion of steel in high performance concrete subjected to a simulated marineenvironment[J]. Cement&Concrete Composites,26(3):243-253.
    [125] Jean-Louis Granju, Sana Ullah Balouch. Corrosion of steel fibre reinforced concrete from thecracks[J]. Cement and Concrete Research,35(3):572-577.
    [126]杨全兵,吴学礼,黄士元.去冰盐引起的混凝土的盐冻剥蚀破坏[J].黑龙江交通科技,2000,(S1):2-9.
    [127]徐善华,牛荻涛,王庆霖.大气环境条件下混凝土保护层取值的研究[J].土木工程学报,2005,38(11):45-50.
    [128]易伟建,赵新.工业厂房柱钢筋锈胀破坏模式及半电池法现场检测分析[J].工业建筑,2005,35(12):23-26.
    [129]吴瑾,吴胜兴,和平.锈蚀钢筋混凝土保护层破坏模式[J].混凝土,2002(8):19-20.
    [130]袁迎曙,姬永生,牟艳君.混凝土内钢筋锈蚀层发展和锈蚀量分布模型研究[J].土木工程学报,2007,40(7):5-10.
    [131]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997:29-33.
    [132]王青,徐港.混凝土结构保护层作用及厚度取值分析[J].三峡大学学报(自然科学版),2007,29(4):317-320.
    [133]中国工程建设标准化协会标准. CECS21:2000《超声法检测混凝土缺陷技术规程》[S].北京,2000.
    [134]《新编混凝土无损检测技术》编写组.新编混凝土无损检测技术[M].北京:中国环境科学出版社,2002:105-107.
    [135]陈肇元.钢筋的混凝土保护层设计要求急待改善——混凝土结构设计规范的问题讨论之一[J].建筑结构,2007,37(6):108-114.
    [136]余红发,孙伟.混凝土氯离子扩散理论模型[J].东南大学学报(自然科学版),2006,36, sup(2):68-76.
    [137] Regourd M., Homani M. and Montureux B., Microstructure of concrete in aggressiveenvironments[S]. Edited by Sereda P. and Litvan J.,ASTM STO691,1978,253-268.
    [138] Mohammed T.U., Hamada H.. Relationship between free chloride and total chloride contents inconcrete [J]. Cement and Concrete Research,2003,33(9):1487-1490.
    [139] Nilsson L.O., Massat M., Luping T. The effect of non-linear chloride binding on the prediction ofchloride penetration into concrete structures [A]. In: MALHOTRA V M ed. Durability ofConcrete [C]. Detroit: American Concrete Institute, ACI SP-145,1994,469-486.
    [140] Wee T.H., Wong S.F., Swaddiwudhipong S.,et al. A prediction method for long-term chlorideconcentration profiles in hardened cement matrix materials[J]. ACI Materials Journal,1997,94(6):565-576.
    [141] Tr?tteberg A., The Mechanism of Chloride Penetration in Concrete[C]. SINTEF Report STF65A77070,1977.
    [142] Smolczyk, H.G., Chemical Reactions of Strong Chloride-Solutions with Concrete[A]. Proc.5thInter. Symp. on Chem. of Cem.[C]. Tokyo,1969, Supplementary paper III-31,274-280.
    [143] Ramachandran V.S., Materials and Structures?,1971,4(19):3-12.
    [144] Markova O.A., Physiochemical Study of Calcium Hydroxide Chlorides[J]. Zh. Fiz. Khim.,1973,47(4):1065.
    [145] Tang L., Nilsson L.-O., Chloride binding capacity and binding isotherms of OPC pastes andmortars[J]. Cement and Concrete Research,1993,23(2):247-253.
    [146] Lambert P., Page C.L. and Short N.R., Pore Solution Chemistry of the Hydrated SystemTricalcium Silicate/Sodium Chloride/Water[J]. Cement and Concrete Research,1985,15:675-680.
    [147] Babushkin V.I., Mokritskaya L.P., and Novikova S.P., et. al. Study of physico-chemical processesduring hydration and hardening of expansive cements [A].6th Inter. Con. on the Chem. ofCem.[C]. Moscow, Supplementary paper, Section III-5, Sept.1974.
    [148] Hong K., Hooton R.D. Effects of cyclic chloride exposure on penetration of concrete cover [J].Cement and Concrete Research,1999,29(9):1379-1386.
    [149]何世钦,贡金鑫,赵国藩.冻融循环下混凝土中氯离子的扩散性[J].水利水运工程学报,2004,4:32-36
    [150]张巨松,张微,邓嫔,等.掺合料、早强剂对冻融混凝土Cl-扩散系数的影响[J].沈阳建筑大学学报(自然科学版),2009,25(1):143-147.
    [151] Gérard B., Marchand J. Influence of cracking on the diffusion properties of cement-basedmaterials Part I: Influence of continuous cracks on the steady-state regime [J]. Cement andConcrete Research,2000,30(1):37-43.
    [152] Helland S. Assessment and predication of service life of marine structures—A tool forperformance based requirement?[J] Workshop on Design of Durability of Concrete[C]. Berlin,June,1999.
    [153] DuraCrete BE95-1347, General guidelines for durability design and redesign [R]. The EuropeanUnion-Brite EuRam, February2000.
    [154] Michael Thomas. Chloride Thresholds in Maiune Concrete[J]. Cement and Concrete Research,2000,26(4):513-519.
    [155]吴庆令.海洋环境钢筋混凝土受弯构件的耐久性与寿命预测[D].南京:南京航空航天大学,2011.
    [156]王正君,谭忆秋,李胜利.声参数的高性能混凝土强度推定模型[J].哈尔滨工程大学学报,2009,30(6):632-634
    [157]褚广辉,许锡宾,吴同情.声波透射法在打入桩无损检测中的应用[J].水运工程,2010,443(7):31-34.
    [158]李芬,沈成武,李永信,等.基于超声波检测技术的沥青混凝土探伤研究[J].武汉理工大学学报(交通科学与工程版),2006,30(2):293-296.
    [159]骆英,李忠芳.混凝土结构缺陷检测中的叠前偏移理论及应用[J].工程力学,2009,26(2):182-187.
    [160] Sun Wei, Mu R, Luo X, et al. The effect of chloride salt, freeze-thaw cycling and externallyapplied load on the performance of the concrete[J]. Cement and Concrete Research,2002,32(12):1859-1864.
    [161]孙伟,余红发,王晴,等.弯曲荷载对混凝土抗卤水冻蚀性的影响[J].武汉理工大学学报,2005,27(7):46-49.
    [162] Ru Mu, Changwen Miao, Xin Luo, et al. Interaction between loading, freeze-thaw cycles, andchloride salt attack of concrete with and without steel fiber reinforcement[J]. Cement andConcrete Research,2002,32(7):1061-1066.
    [163]季家林,李慧剑,闫国亮,等.基于损伤理论的某钢筋混凝土梁疲劳寿命预测[J].武汉理工大学学报(交通科学与工程版),2009,33(1):95-98
    [164]滕智明.钢筋混凝土基本构件[M].北京:清华大学出版社,1985.
    [165]中华人民共和国国家标准. GB50010-2010混凝土结构设计规范[S].北京:中华人民共和国建设部,2010.
    [166] BS8110-2:1985Structural Use of Concrete–Part2: Code of parctice for specialcircumstances[S].
    [167]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1992.
    [168]黄振国,李健美,郭乐工,等.受腐蚀钢筋混凝土材料基本性能与受弯构件的试验研究[J].建筑结构,1998,(12),18-20.
    [169]阎西康.盐腐蚀钢筋混凝土构件力学性能试验研究[D].天津:天津大学,2005.
    [170]范颖芳.受腐蚀钢筋混凝土构件性能研究[D].大连:大连理工大学,2002.
    [171]吴庆,袁迎曙.锈蚀钢筋力学性能退化规律试验研究[J].土木工程学报,2008,41(12):42-47.
    [172]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构,2002,32(10):14-17.
    [173]中国工程建设标准化协会标准. CECS220:2007混凝土结构耐久性评定标准[S].北京:中国建筑工业出版社,2007.
    [174]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.
    [175]龙驭球,包世华.结构力学教程I[M].北京:高等教育出版社,2001.
    [176]李田,刘西拉.钢筋锈蚀和混凝土冻融破坏的可靠性分析及防范措施[J].建筑结构学报,1995,16(2):43-50.
    [177]王增忠,吴广珊.混凝土中钢筋锈蚀及其可靠性分析[J].上海应用技术学院学报,2003,3(3):176-179.
    [178] Frangopol, D. M., Lin, K. Y., and Estes, A. C. Reliability of reinforced concrete girders undercorrosion attack[J]. Journal of Structural Engineering, ASCE,1997,123(3):286-297.
    [179]中华人民共和国国家标准. GB50153-2008工程结构可靠性设计统一标准[S].中国建筑工业出版社,2008
    [180] Hiroyuki Kameda, Takeshi Koike. Reliability theory of deterioration structures[J]. Journal of thestructural division,1975,101(1):295-310.
    [181] Geidl V, Saunders S. Calculation of reliability for time-varying loads and resistances[J].Structural safety,1987,4(4):285-292.
    [182]王光远.结构服役期间的动态可靠度及其维修理论初探[J].哈尔滨建筑工程学院学报,1990,23(2):1-9.
    [183] Mori Y, Ellingwood R. Time-dependent system reliability analysis adaptive importancesampling[J]. Structural safety,1993,12(1):59-73.
    [184] Li C Q. A case study on the reliability analysis of deteriorating structures[A]. Proceedings of theinstitution of civil engineers[C]. Structures and Buildings,1995,110(8).
    [185]何世钦.氯离子环境下钢筋砼构件耐久性能试验研究[D].大连:大连理工大学,2004.
    [186]江大虎.盾构隧道混凝土管片的耐久性退化规律及其寿命预测[D].南京,南京航空航天大学,2011.
    [187]李金玉,邓正刚,曹建国,等.混凝土抗冻性的定量化设计[A].见:王媛俐,姚燕,主编,重点工程混凝土耐久性的研究与工程应用[C].北京:中国建材工业出版社,2001,265-272.
    [188]林宝玉,蔡跃波,单国良.保证和提高我国港工混凝土耐久性措施的研究与实践[A].见:阎培渝,姚燕,主编,水泥基复合材料科学与技术[C].北京:中国建材工业出版社,1999,16-23.
    [189]欧兴进,朱涵,于新文. CRC抗氯离子侵蚀研究及其使用寿命评估[J].武汉理工大学学报,2007,29(2):29-32.
    [190]王信刚.跨江海隧道功能梯度混凝土管片的研究与应用[D].武汉:武汉理工大学,2007,127-131.
    [191]马保国,杨雷,高英力.盾构隧道功能梯度混凝土管片保护层设计及性能[J].东南大学学报,2006,36(S2):274-278.
    [192]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J].武汉理工大学学报,2005,27(6):45-47.
    [193]鄢良慧,余红发,孙伟等.海洋和除冰盐条件下混凝土结构的Cl-扩散行为及耐久性设计,华中科技大学学报(城市科学版)[J].2002,19(4):54-57.
    [194] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improvedchloride-induced corrosion models[J]. Structural safety,2000,22(4):313-333.
    [195]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [196]赵国藩.工程结构可靠度[M].北京:水利水电出版社,1984.
    [197]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [198]李田,刘西拉.混凝土结构的耐久性设计[J].土木工程学报,1994,27(2):47-55.
    [199]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社,1993.
    [200]马亚丽,张爱林.基于规定可靠指标的混凝土结构氯离子侵蚀耐久寿命预测[J].土木工程学报,2006,39(2):36-41.