磁标记BMSCs移植治疗大鼠创伤性脑损伤的在体MR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     本实验采用体外分离、培养并不同浓度的超顺磁性氧化铁(superparamagnetic iron oxid, SPIO)标记骨髓基质细胞(bone marrow stem cells, BMSCs),旨在明确不同浓度SPIO对BMSCs的活性影响;观察磁标记BMSCs在体MR成像时各序列特征,以期求得活体监测SPIO标记细胞的优选序列;动态观察创伤性脑损伤(traumatic brain injury, TBI)大鼠损伤对侧细胞移植后神经功能恢复及MR活体成像特点及规律,为临床干细胞移植治疗创伤性脑损伤的疗效观察与新方法开创提供依据。
     实验方法
     1. BMSCs的培养及鉴定:采用全骨髓贴壁法对BMSCs进行常规培养、纯化,观察细胞光镜及透射电镜下的形态;对所获得的细胞进行表面抗原(CD34、CD44、CD45、CD105)检测;采用DMSO+BHA诱导进行神经样细胞诱导分化;并用免疫组化的方法检测诱导后细胞神经元特异性烯醇化酶(neuron specific enolase, NSE)、神经胶质原纤维酸性蛋白(glial fibrillary acidiacprotein, GFAP)及神经上皮干细胞蛋白(Nestin)的表达。
     2.标记细胞的鉴定及活性分析:不同浓度SPIO (Resovist)标记BMSCs,普鲁士蓝染色及电镜下观察细胞内铁,并通过MTT法分析不同浓度Resovist对细胞活性的影响。
     3.标记细胞的脑内立体定位注射及MR活体示踪:采用Feeney's自由落体方法制备大鼠TBI模型,实验动物共分4组,A组:TBI后损伤对侧移植SPIO标记BMSCs; B组:TBI后移植未标记BMSCs; C组:TBI后移植纯培养液;D组(假手术组):仅切开头皮不进行损伤和移植。移植后不同时间点(1天、1周、2周及4周)进行MR的TSE:T1WI、T2WI,GRE:T2*WI及磁敏感加权(susceptibility weighted imaging, SWI)序列动态观察其分布及迁徙。并经神经功能评分(参照平衡木试验的评分方法)对大鼠进行功能测试,评价细胞移植的疗效,最后经组织学检查验证标记细胞在脑内的存活及迁徙。
     结果
     1.全骨髓贴壁法培养至P3代后,光镜下细胞表现为均匀分布的梭形成纤维样细胞;透射电镜下表现为两种不同的结构类型;免疫细胞化学染色检测结果显示CD34、CD45表达阴性,CD44及CD105表达阳性;神经方向诱导6h后,倒置相差显微镜下细胞呈神经元样细胞形态,免疫细胞化学染色NSE、GAFP、Nestin呈阳性表达。
     2. Resovist标记BMSCs后,光镜下可见胞浆内散在分布的棕黄色颗粒;普鲁士蓝染色胞质内可见阳性蓝色颗粒;电镜观察可见标记BMSCs胞质内含有许多包裹铁颗粒的囊泡。MTT比色试验结果显示14μg~112μg Fe/ml培养液对细胞活性没有影响。
     3. BMSCs移植后1天、1周、2周及4周的神经功能评分显示A组和C组、B组和C组评分差异有统计学意义,而A组和B组评分差异无统计学意义。MR检查结果显示A组实验动物注射区在TSE:T1WI、T2WI, GRE:T2*WI及SWI四个序列均可显示低信号,以T2*WI及SWI信号丢失明显,其中SWI最敏感。且在2周及4周时的SWI序列上更清楚的显示线样低信号沿胼胝体逐渐向损伤区迁移,组织普鲁士蓝染色亦证实标记BMSCs沿胼胝体向对侧的迁移。
     结论
     1.无需转染介质,Resovist能够高效的进入BMSCs胞浆内,并且在14μgFe/ml~112μgFe/ml范围的铁浓度下对细胞的生长活性没有明显影响。
     2.损伤区对侧脑皮质内移植细胞可以通过胼胝体向对侧迁移,并改善损伤鼠的神经功能;且MR活体示踪SPIO标记干细胞时,磁敏感加权成像序列最敏感。
Objective
     In this study, bone marrow stem cells (BMSCs) were isolated, cultured and labled with different concentration of superparamagnetic iron oxid (SPIO) in vitro, Aimed at clarifying the activity of the labled cells with different concentration of SPIO; To observe the characteristics of the labled cells in different MR sequences in vivo, aim to obtain the preferred sequence for monitoring the SPIO labled cells; Identify the SPIO labled cells dynamics in vivo when transplanted in contralateral hemisphere of TBI model. We hope to find a easy and feasible technique and methods for future clinical trials of cellular therapy in TBI.
     Methods
     1. Culture and identification of BMSCs:BMSCs were derived from bone marrow aspirates of healthy adult rats by adherent culture method. Cells were identified by light microscope and transmission electron microscope; And detected the cell surface antigens (CD34, CD44, CD45, CD105); Induced the capability of neural differentiation of BMSCs by DMSO+BHA, and detected the expression of neuronspecific enolase (NSE), Glial Fibrillary Acidic Portein (GFAP) and nestin by immunocytochemistry technique.
     2. The labeled cells' identification and activity analysis:Check the intracellular iron by Prussian blue staining and electron microscopy of different concentrations of SPIO (Resovist) labled BMSCs, and analysis the cell activity by MTT growth curves.
     3. SPIO-labeled BMSCs were grafted stereotactically in the brain and tracked by MR in vivo:The brain injury model were developed as described by Feeney et al, and all of the rats were randomly and equally divided into 4 groups.Group A: TBI rats with BMSCs labeled by SPIO; Group B:TBI rats with BMSCs unlabeled by SPIO; Group C: negative control with only medium; Group D(sham group):only cut of the epicranium of rats without injury or transplatation. MR imaging were obtained on a 3.0T MR scanner to demonstrate the location, distribution and migration of the labled BMSCs at 1 day,1,2,4 weeks after injection by measuring Turbo Spin Echo (T1、T2), T2*-weighted GRE and susceptibility weighted imaging(SWI) sequence. Neurologic examinations (balance beam test) were performed at some time-points, such as 1 day,1 week, 2 weeks, and 4 weeks after the onset of TBI until sacrifice, aim to evaluate the effect of grafted cells. Finally after histological examination verified labeled cells in the brain's survival and migration.
     Results
     1. P3 generation of rat BMSCs demonstrated uniform distribution of the spindle or fiber-like cells; And showed the morphology of two different cell types under transmission electron microscope; Immunocytochemical staining results of BMSCs' CD molecules exhibited positive expression of CD44 and CD105 and negative expression of CD34 and CD45; The BMSCs were culture in nerve-induced liquid for 6 hours, the cells showed neuron-like cell under inverted phase contrast microscope, and express NSE, GAFP and Nestin when given immunocytochemical staining.
     2. The BMSCs were labled by the Resovist,, scattered brown granules can be seen in the cytoplasm of the cells under inverted phase contrast microscope; Positive express on Prussian Blue staining; many vesicles of iron particles can be seen in the cytoplasm under transmission electron microscope. The MTT test show that 14μg~112μg Fe/ml has no damage on cell activity.
     3. Neurological function score showed that A group vs. C, B group vs. C group had statistically significant between each other 1 day,1 week,2 weeks and 4 weeks after transplantation,but A group vs. B had no statistically significant between each other at any time-point. The injected site of the experimental animals MR results showed low signal intensity on T1WI, T2WI, T2*WI and SWI sequences, the signal loss significantly on T2*WI and SWI, and the SWI is the most sensitive sequence. The SPIO labled cells can be shown more clearly to cross from the contralateral hemisphere via a transcallosal path toward the lesion site by SWI at 2w and 4w time-point, and the tissue Prussian blue staining also confirmed the labled BMSCs migrated to the opposite side via a transcallosal path.
     Conclusions
     1. Resovist can access the cytoplasm of BMSCs efficiently without the help of transfection media,and it has no significant impact on cell growth and activity in the range of 14μg/ml~112μg/ml iron concentration.
     2. SPIO labled cells have been shown to cross from the contralateral hemisphere via a transcallosal path toward the lesion site by MRI, especially the susceptibility-weighted imaging sequence, besides, the motor function of the models were improved.
引文
[1]Moussa M,Perreau C,Baril G,et al. Comparison of cell proliferation index in equine and caprine embryos using a modified BrdU incorporation assay[J]. Theriogenology,2005, 64(8):1823-1832
    [2]Pollack A, Terry NHA, WU CS, et al. Specific staing of iododeoxyuridine and bromodeoxyuridine in tumors double labelled in vivo:a cell analysis[J]. Cytometry,1995, 20(1):53-61
    [3]Zhang ZG, Jiang Q, Zhang R,et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat[J]. Ann Neurol,2003,53(2):259-263
    [4]夏鹰,江澄川,杨林,等.超顺磁氧化铁标记神经干细胞移植治疗帕金森病大鼠模型的研究[J].中华医学杂志,2006,86(17):1207-1210
    [5]Pittenger MF,Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Seience,1999,284:143-147
    [6]蔡金华,冯敢生,王新,等.大鼠骨髓间充质干细胞磁标记及MR成像研究[J].中华放射学杂志,2006,40(2):155-159Guo Z,Yang J,Liu X, et al. Biological features of mesenchymal stem cells from human bone marrow[J]. Chin Med J,2001,114(9):950-953
    [7]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8(4):315-317
    [8]肖庆,张亚卓,王红云,等.损伤脑组织诱导骨髓基质细胞向神经元方向分化[J].中华神经外科杂志,2003,19(2):132-134
    [9]牛朝诗,李健,孔杰,等.人脑组织匀浆液诱导大鼠骨髓间质干细胞分化为神经细胞[J].立体定向和功能性神经外科杂志,2005,18(2):75-78
    [10]Okabe S, Forsber G-Nilsson K, Spiro AC, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro[J]. Mech. Dev, 1996,59:89-102
    [11]Pappas IS, Parnavelas JG. Basic fibroblastgrowth factorpromotes the generation and differentiation of calretinin neurons in the rat cerebral cortex in vitro[J]. Eur J Neurosci, 1998,10:1436-1445
    [12]AlankoT, Tienari J, Lehtonen E, et al. FGF-2 inhibits apoptosis in human teratocarcinoma cells during differentiation on collagen substratum[J]. Exp Cell Res,1996,228:306-312
    [13]Schafer R, Kehlbach R, Wiskirchen J, et al. Transferrin receptor upregulation:in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide[J]. Radiology, 2007,244(2):514-523
    [14]Clement O, Siauve N, Cuenod CA,et al. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects[J]. Top Magn Reson Imaging,1998, 9(3):167-182
    [15]Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells[J]. NMR Biomed,2005,18(8):553-559
    [16]Schafer R, Kehlbach R, Muller M, et al. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability[J]. Cytotherapy,2009,11(1):68-78
    [17]Guzman R, Uchida N, Bliss TM, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI[J]. Proc Natl Acad Sci U S A,2007,104(24):10211-10216
    [18]Cohen ME, Muja N, Fainstein N, et al. Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo[J]. J Neurosci Res,2010, 88(5):936-944
    [19]Arai T, Kofidis T, Bulte JW, et al. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t[J]. Magn Reson Med,2006,55(1):203-209
    [20]Wang L, Deng J, Wang J, et al. Superparamagnetic iron oxide does not affect the viability and function of adipose-derived stem cells, and superparamagnetic iron oxide-enhanced magnetic resonance imaging identifies viable cells[J]. Magn Reson Imaging,2009,27(1): 108-119
    [21]Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications[J]. Eur Radiol,2003,13(6):1266-1276
    [22]Wersebe A, Wiskirchen J, Decker U, et al. Comparison of Gadolinium-BOPTA and Ferucarbotran enhanced three-dimensional T1-weighted dynamic liver magnetic resonance imaging in the same patient[J]. Invest Radiol,2006,41(3):264-271
    [23]Allkemper T, Bremer C, Matuszewski L, et al. Contrast-enhanced blood-pool MR angiography with optimized iron oxides:effect of size and dose on vascular contrast enhancement in rabbits[J]. Radiology,2002,223(2):432-438
    [24]Mailander V, Lorenz MR, Holzapfel V, et al. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents[J]. Mol Imaging Biol,2008, 10(3):138-146
    [25]Politi LS, Bacigaluppi M, Brambilla E, et al. Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis[J]. Stem Cells,2007,25(10),2583-2592
    [26]修俊刚,柯以铨,杨顺海,等.兔骨髓基质细胞Feridex标记及体外MR成像的实验研究[J].中华神经医学杂志,2007,6(6):601-608
    [27]郑敏文,宦怡,徐健,等.超顺磁性氧化铁纳米颗粒标记兔骨髓间充质干细胞的孵育 时间优选[J].实用放射学杂志,2006,22(8):897-900
    [28]Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stemcells in a mouse model of myocardial infarction[J]. Magn Reson Med,2004,52(5):1214-1219
    [29]Dai GH, Xiu JG, Zhou ZJ, et al. Effect of superparamagnetic iron oxide labeling on neural stem cell survival and proliferation[J]. Nan FangYi Ke Da Xue Xue Bao,2007,27(1): 49-51
    [30]Song M, Moon WK, Kim Y, et al. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells:comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO[J]. Korean J Radiol,2007, 8(5):365-371
    [31]Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques[J]. Transplantation,2003,76(7):1123-1130
    [32]蔡金华,冯敢生,刘官信,等.不同浓度菲立磁对大鼠间充质干细胞标记效率和细胞活力的影响[J].临床放射学杂志,2007,26(2):190-193
    [33]Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver[J]. Radiology,2004, 233 (3):781-789
    [34]Van den Bos EJ, Wagner A, Mahrholdt H, et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes[J]. Cell Transplant,2003,12(7):743-756
    [35]Omidkhoda A, Mozdarani H, Movasaghpoor A, et al. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay[J]. Toxicol In Vitro,2007,21(6):1191-1196
    [36]居胜红,膝皋军,毛曦.脐血间充质干细胞磁探针标记和MR成像研究[J].中华放射学杂志,2005,1(39):101-106
    [37]郑敏文.SPIO标记自体骨髓间充质细胞移植治疗心肌梗死的MR成像研究[D].[博士学位论文].西安:第四军医大学西京医院放射科,2007
    [1]Feeney DM, Boyeson MG, Linn RT. Responses to cortical injury:Ⅰ. Methodology and local effects of contusions in the rat[J]. Brain Res,1981,211(1):67-77
    [2]Venturi L, Miranda M, Selmi V, et al. Systemic sepsis exacerbates mild post-traumatic brain injury in the rat[J]. J Neurotrauma,2009,26(9):1547-1556
    [3]De Mulder G, Van Rossem K, Van Reempts J, et al.Validation of a closed head injury model for use in long-term studies[J]. Neurochir Suppl,2000,76:409-413
    [4]吴旭,王保捷,张国华,等.大鼠脑损伤分级自由落体打击模型的建立[J].中国法医学杂志,2005,20(1):1-3
    [5]张永亮,吴梅筠,廖志刚.机械性闭合性颅脑损伤动物模型建立的现状[J].法医学杂志,1998,14(4):246-248
    [6]陈治标,陈谦学,张宇蓝,等.急性闭合性脑损伤模型的建立与评估[J].中华实验外科杂志,2003,20(2):179-180
    [7]Biros MH. Experimental head trauma models: a clinical perspective[J]. Resuscitation, 1991,22(3):283-293
    [8]吾太华,余国峰.重型脑外伤后脑积水24例[J].中华创伤杂志,2000,16(2):123
    [9]王忠诚.神经外科学.第1版[M].武汉:湖北科技出版,1998.375-377
    [10]Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology,2003,228(2):480-487
    [11]Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging[J]. Neuroimage,2002, 17(2):803-811
    [12]Daldrup-Link HE, Rudelius M, Oostendorp RA, et al. Targeting of hematopoietic progenitor cells with MR contrast agents[J]. Radiology,2003,228(3):760-767
    [13]UrdzikovaL, JendelovaP, GlogarovaK, et al. Transplantation of bone marrow stem cells as well as mobilization by granulocytecolony stimulating factor promotes recovery after spinal cord injury in rats[J]. J Neurotrauma,2006,23(9):1379-1391
    [14]周斌,于春鹏,李丹,等.大鼠骨髓间充质干细胞的超顺磁氧化铁颗粒标记及MR成像[J].中国医学影像技术,2008,24(12):1879-1882
    [15]郑敏文,宦怡,徐健,等.超顺磁性氧化铁标记骨髓间充质干细胞的磁共振成像研究[J].中国医学影像技术,2006,22(8):1129-1134
    [16]葛风,朱剑虹,刘军等.纳米磁化标记神经干细胞的MRI大鼠活体示踪实验研究[J].中国临床神经科学,2005,13(2):152-155
    [17]杨正汉,冯逢,王霄英等,《磁共振成像技术指南》[M].北京:人民军医出版社,2007.1,324-326
    [18]Bowen CV, Zhang X, Saab G, et al. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells[J]. Magn Reson Med,2002,48(1):52-61
    [19]Ke YQ, Hu CC, Jiang XD,et al. In vivo magnetic resonance tracking of Feridex-labeled bone marrow-derived neural stem cells after autologous transplantation in rhesus monkey[J]. J Neurosci Methods,2009,179(1):45-50.
    [20]Jung SI, Kim SH, Kim HC, et al. In vivo MR imaging of magnetically labeled mesenchymal stem cells in a rat model of renal ischemia[J]. Korean J Radiol,2009,10(3): 277-284
    [21]Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med.2004,52(3):612-618
    [22]刘祖黎,杜玉卿,胡道予,等.超小型超顺磁性氧化铁磁共振对比剂的制备及性能研究[J].功能材料,2005,36(3):350-352
    [23]薛静,高培毅.超顺磁性氧化铁粒子标记神经干细胞与磁共振示踪成像研究进展[J].中华放射学杂志,2006,40(2):213-215
    [24]邵楠楠.磁敏感加权成像对脑微出血检测价值的实验研究[D].[硕士学位论文].河南:郑州大学第一附属医院,2009
    [25]Kidwell CS, Chalela JA, Saver JI, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage[J]. JAMA,2004,292(15):1823-1830
    [26]Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment[J]. Stroke,2004,35(8):1989-94
    [27]Reichenbach JR, Venkatesan R, Yablonskiy DA,et al.Theory and application of static field inhomogeneity effects in gradient-echo imaging[J]. J Magn Reson Imaging,1997, 7(2):266-279
    [28]Belayev Ludmila, Obenaus Andre, Zhao Wei,et al.Experimental intracerebal hematoma in the rat:characterization by sequential magnetic resonance imaging, behavior, and histopathology: effect of albumn therapy[J]. Brain Res,2007,1157:146-155
    [29]Toshi Matsushita, Daigo Anami, Tadashi Arioka, et al. Basic study of susceptibility-weighted imaging at 1.5T[J]. Acta Medica Okayama,2008,62(3):159-168
    [30]Viswanathan A, Chabriat H. Cerebral microhemorrhage[J]. Stroke,2006,37(2):550-555
    [1]Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury[J]. J Head Trauma Rehabil.2010,25(2):72-80
    [2]Engelmann CM, Siert L. Cognitive disturbances following severe traumatic brain injury[J]. Ugeskr Laeger,2007,169(3):217-219
    [3]Bryant RA, O'Donnell ML, Creamer M, et al. The psychiatric sequelae of traumatic injury[J]. Am J Psychiatry,2010,167(3):312-320
    [4]Li H, Wen Y, Luo Y,et al. Transplantation of bone marrow mesenchymal stem cells into spinal cord injury: a comparison of delivery different times[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2010,24(2):180-184
    [5]Kim BG, Hwang DH, Lee SI,et al. Stem cell-based cell therapy for spinal cord injury[J]. Cell Transplant,2007,16(4):355-364
    [6]孔杰.骨髓间质干细胞移植治疗大鼠颅脑损伤的实验研究:[D].[硕士学位论文].安徽省:安徽医科大学,2006
    [7]Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases[J]. Handb Exp Pharmacol,2007,(180):219-242
    [8]Bey E, Prat M, Duhamel P, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations[J]. Wound Repair Regen,2010,18(1):50-58
    [9]Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury[J]. Neurosci Lett,2009,456(3):120-123
    [10]Bianco P, Riminucci M, Gronthos S, Robey PG Bone marrow stromal stem cells: nature, biology, and potential applications[J]. Stem Cells,2001,19(3):180-192
    [11]Bianco P, Gehron Robey P. Marrow stromal stem cells[J]. J Clin Invest,2000,105(12): 1663-1668
    [12]Moussa M, Perreau C, Baril G, et al. Comparison of cell proliferation index in equine and caprine embryos using a modified BrdU incorporation assay[J]. Theriogenology,2005, 64(8):1823-1832
    [13]Beck H, Voswinckel R, Wagner S, et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke[J]. J Cereb Blood Flow Metab,2003, 23(6):709-717
    [14]Li Y, McIntosh K, Chen J, et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats[J]. Exp Neurol,2006,198(2):313-325
    [15]Li N, Yang H, Lu L, Duan C, et al. Comparison of the labeling efficiency of BrdU, Dil and FISH labeling techniques in bone marrow stromal cells [J]. Brain Res,2008,1215: 11-19
    [16]Challen GA, Goodell MA. Promiscuous expression of H2B-GFP transgene in hematopoietic stem cells[J]. PLoS One,2008,3(6):e2357
    [17]Gratzner HG. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication[J]. Science,1982,218(4571):474-475
    [18]Greaves JM, Russo SS, Azmitia EC. Gender-specific 5-HT1A receptor changes in BrdU nuclear labeling patterns in neonatal dentate gyrus[J]. Brain Res Dev Brain Res,2005, 157(1):65-73
    [19]许剑,徐格林,刘新峰.骨髓基质干细胞的标记示踪技术及其应用[J].中国临床神经科学,2006,14(2):197-201
    [20]Qu TY, Dong XJ, Sugaya I, et al. Bromodeoxyuridine increases multipotency of human bone marrow-derived stem cells[J]. Restor Neurol Neurosci,2004,22(6):459-468
    [21]Bertoncello I, Williams B. Hematopoietic stem cell characterization by Hoechst 33342 and rhodamine 123 staining[J]. Methods Mol Biol,2004,263:181-200
    [22]Lee GM, Fong SS, Oh DJ, et al. Characterization and efficacy of PKH26 as a probe to study the replication history of the human hematopoietic KG1a progenitor cell line[J]. In Vitro Cell Dev Biol Anim,2002,38(2):90-96
    [23]王平,王建华,颜志平,等.大鼠骨髓基质细胞分离培养和经门静脉途径移植的初步研究[J].中华放射学杂志,2004,38(2):129-132
    [24]Bian J, Nazor KE, Angers R, et al. GFP-tagged PrP supports compromised prion replication in transgenic mice[J]. Biochem Biophys Res Commun,2006,340(3):894-900
    [25]Contento AL,Xiong Y,Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein[J]. Plant J, 2005,42(4):598-608
    [26]金旭红,杨柳.骨髓间充质干细胞标记及活体示踪技术研究进展[J].中华创伤杂志,2007,23(4):311-313
    [27]Yao M, Dieterle T, Hale SL, et al. Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function[J]. J Mol Cell Cardiol,2003,35(6): 661-670
    [28]夏鹰,江澄川,杨林,等.超顺磁氧化铁标记神经干细胞移植治疗帕金森病大鼠模型的研究[J].中华医学杂志,2006,86(17):1207-1210
    [29]Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology,2003,228(2):480-487
    [30]Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging[J]. Neuroimage,2002, 17(2):803-811
    [31]Daldrup-Link HE, Rudelius M, Oostendorp RA, et al. Targeting of hematopoietic progenitor cells with MR contrast agents[J]. Radiology,2003,228(3):760-767
    [32]UrdzikovaL, JendelovaP, GlogarovaK, et al. Transplantation of bone marrow stem cells as well as mobilization by granulocytecolony stimulating factor promotes recovery after spinal cord injury in rats[J]. J Neurotrauma,2006,23(9):1379-1391
    [33]Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison[J]. Invest Radiol,2005,40(8):504-513
    [34]Schafer R, Kehlbach R, Wiskirchen J, et al. Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide[J]. Radiology, 2007,244(2):514-523
    [35]Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells[J]. NMR Biomed,2005,18(8):553-559
    [36]Schafer R, Kehlbach R, Muller M, etal. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability[J]. Cytotherapy,2009,11(1):68-78
    [37]Guzman R, Uchida N, Bliss TM, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI[J]. Proc Natl Acad SciUSA,2007,104(24):10211-10216
    [38]Cohen ME, Muja N, Fainstein N, et al. Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo[J]. J Neurosci Res,2010, 88(5):936-944
    [39]Arai T, Kofidis T, Bulte JW, et al. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t[J]. Magn Reson Med,2006,55(1):203-209
    [40]Wang L, Deng J, Wang J, et al. Superparamagnetic iron oxide does not affect the viability and function of adipose-derived stem cells, and superparamagnetic iron oxide-enhanced magnetic resonance imaging identifies viable cells[J]. Magn Reson Imaging,2009,27(1): 108-119
    [41]Wersebe A, Wiskirchen J, Decker U, et al. Comparison of Gadolinium-BOPTA and Ferucarbotran enhanced three-dimensional T1-weighted dynamic liver magnetic resonance imaging in the same patient[J]. Invest Radiol,2006,41(3):264-271
    [42]Mailander V, Lorenz MR, Holzapfel V, et al. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents[J]. Mol Imaging Biol,2008, 10(3):138-146
    [43]Politi LS, Bacigaluppi M, Brambilla E, et al. Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis[J]. Stem Cells,2007,25(10),2583-2592
    [44]郑敏文,宦怡,徐健,等.超顺磁性氧化铁纳米颗粒标记兔骨髓间充质干细胞的孵育时间优选[J].实用放射学杂志,2006,22(8):897-900
    [45]陈中灿,徐如祥,杨志军,等.大鼠骨髓源神经干细胞的Sinerem体外标记及磁共振成像研究[J].南方医科大学学报,2007,27(5):611-615
    [46]Ittrich H, Lange C, Dahnke H, et al. Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J]. Rofo,2005, 177(8):1151-1163
    [47]Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stemcells in a mouse model of myocardial infarction[J]. Magn Reson Med,2004,52 (5):1214-1219
    [48]Dai GH, Xiu JG, Zhou ZJ, et al. Effect of superparamagnetic iron oxide labeling on neural stem cell survival and proliferation[J]. Nan FangYi Ke Da Xue Xue Bao,2007,27(1): 49-51
    [49]蔡金华,冯敢生,刘官信,等.不同浓度菲立磁对大鼠间充质干细胞标记效率和细胞活力的影响[J].临床放射学杂志,2007,26(2):190-193
    [50]代广辉,修俊刚,周振军,等.超顺磁性氧化铁对大鼠神经干细胞生物学活性的影响[J].南方医科大学学报,2007,27(1):49-55
    [51]Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver[J]. Radiology,2004, 233(3):781-789
    [52]Van den Bos EJ, Wagner A, Mahrholdt H, et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes[J]. Cell Transplant,2003,12(7):743-756
    [53]Omidkhoda A, Mozdarani H, Movasaghpoor A, et al. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay[J]. Toxicol In Vitro,2007,21(6):1191-1196
    [54]居胜红,膝皋军,毛曦.脐血间充质干细胞磁探针标记和MR成像研究[J].中华放射学杂志,2005,1(39):101-106
    [55]Tate MC, Shear DA, Hoffman SW, et al. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain[J].Cell transplant,2002,11(3):283-295
    [56]Mahmood A, Lu D, Wang L, et al. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury[J]. J Neurotrauma,2002,19(12):1609-1617
    [57]Riess P, Zhang C, Saatman KE, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury[J]. Neurosurgery,2002,51(4):1043-1052
    [58]Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[J]. Proc Natl Acad Sci U S A,2002,99(25):16267-16272
    [59]Jin K, Sun Y, Xie L, et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat[J]. Neurobiol Dis,2005,18(2):366-374
    [60]Dousset V, Tourdias T, Brochet B, et al. How to trace stem cells for MRI evaluation?[J] J Neurol Sci,2008,265(1-2):122-126
    [61]Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J]. Experimental neurology,2002,174(1):11-20
    [62]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains[J]. Proc Natl Acad Sci U S A,1999,96(19):10711-10716
    [63]戴宜武,徐如样,赵春平,等.骨髓基质细胞源神经干细胞自体移植治疗脑干损伤初步观察[J],中华神经医学杂志,2003,2(1):57-60
    [64]Liu W, Jiang X, Fu X,et al. Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits[J]. Neurosci Lett,2008, 434(2):160-164
    [65]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke,2001,32(4):1005-1011
    [66]Brazelton TR, Rossi FM, Keshet GI, et al. From marrow to brain: expression of neuronal phenotypes in adult mice[J]. Science,2000,290(5497):1775-1779
    [67]Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat[J]. J Neurosci Res,2003,73(6):778-786
    [68]Mahmood A, Lu D, Wang L,et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells[J]. Neurosurgery,2001, 49(5):1196-1204
    [69]Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells[J]. Neurosurgery,2003, 53(3):697-703
    [70]Harting MT, Jimenez F, Xue H, et al.Intravenous mesenchymal stem cell therapy for traumatic brain injury[J]. J Neurosurg,2009,110(6):1189-1197
    [71]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats[J]. J Neurol Sci,2001,189(1-2): 49-57
    [72]Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice[J]. J Cereb Blood Flow Metab,2000,20(9):1311-1319
    [73]Li Y, Chen J, Wang L, et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells[J]. Neurology,2001,56(12):1666-1672
    [74]Lu D, LI Y, Wnag L, et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury[J]. J Neurotraurna,2001,18(8):813-819
    [75]Zhang ZG, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat[J]. Ann Neurol,2003,53(2):259-263
    [76]Mahmood U, Weissleder R. Some tools for molecular imaging[J]. Acad Radiol,2002,9(6): 629-631
    [77]樊娟,徐如祥,姜晓丹,等.超小超顺磁性氧化铁微粒对神经干细胞生物学活性的影响[J].中华创伤杂志,2007,23(12):885-888
    [78]Shapiro EM, Skrtic S, Sharer K, et al. MRI detection of single particles for cellular imaging[J]. Proc Natl Acad Sci U S A,2004,101(30):10901-10906
    [79]葛风,朱剑虹,刘军等.纳米磁化标记神经干细胞的MRI大鼠活体示踪实验研究[J].中国临床神经科学,2005,13(2):152-155
    [80]杨正汉,冯逢,王霄英等,《磁共振成像技术指南》[M].北京:人民军医出版社,2007.1,324-326
    [81]Bowen CV, Zhang X, Saab G, et al. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells[J]. Magn Reson Med,2002,48(1):52-61
    [82]Lee J, Kuroda S, Shichinche H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice[J]. Neuropathology,2003,23(3):169-180
    [83]Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study[J]. Neuroimage,2004,21(1): 311-317
    [84]Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury[J]. Prog Brain Res,2007,161:367-383
    [85]Hawrylak N, Ghosh P, Broadus J, et al. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants[J]. Exp Neurol,1993,121(2):181-192
    [86]Lee IH, Bulte JW, Schweinhardt P, et al. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord[J]. Exp Neurol,2004,187(2):509-16
    [87]Jendelova P, Herynek V, Urdzikova L, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord[J]. J Neurosci Res,2004,76(2):232-243
    [88]Zhu WZ, Li X, Qi JP, et al. Experimental study of cell migration and functional differentiation of transplanted neural stem cells co-labeled with superparamagnetic iron oxide and BrdU in an ischemic rat model[J]. Biomed Environ Sci,2008,21(5):420-424
    [89]薛静,高培毅,李晋,等.脑梗死大鼠脑内移植超顺磁性氧化铁颗粒标记神经干细胞后的MR示踪研究[J].中华放射学杂志,2006,40(2):122-126