亚加载面粘弹塑性力学及其对金属材料的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般说来,所有材料的变形都与所经历的时间历程有关,在非弹性变形中总有时间带来的影响。在这篇论文中,对亚加载面模型的扩展研究可推导出一个能够描述在广应力范围内时间依赖性的材料变形,这是对前人研究的继续发展。
     本研究是以亚加载面模型理论为基础,在对历来典型的粘弹塑性模型分析的基础上,提出了金属材料的时间依赖性—亚加载面模型。它是采用分离型模型的概念,提出考虑金属材料高温条件下时间倚赖性变形特性的蠕变方程结构函数,从而推导出具体的本构方程式。
     亚加载面模型能合理地表现单调和重复负载的弹塑性变形特性,而且能较好的表现Masing效果。对2 1/4Cr-1Mo钢在高温(600摄氏度)下的不同应变速率的实验结果进行数值模拟解析,初步验证了此本构方程模型的合理性。
     本文扩展了亚加载面模型的应用范围,可用来描述亚加载面不断膨胀直到达到标准屈服面的时间依赖性变形行为,而且引入了随时间变化而变化的蠕变方程式,这就是时间依赖性的亚加载面模型的形成过程。它在弹塑性蠕变结构方程的基础上更进一步,在这个基础上,可得出金属的各向同性结构方程、蠕变方程等。将此引入有限元法中,开发金属机械构造物的粘弹塑性模型的数值解析程式,与实验数值进行模拟比较,对不完善的方面进行修正、补充,从而完成实用程序。
Generally speaking,characteristics of all materials have something to do with the time history they have experienced,there are always impact caused by time in inelastic deformation.In this paper,the continuing study of subloading surface model can deduce a material deformation described by time-dependent in the range of extensive stress,which is the continuous development based on previous research.
     The research is based on the subloading surface model theory,and typical analysis history of elasto-viscoplatic model are considered simultaneously,propose a time-dependent subloading surface model of metal materials.It adopts the concept of separated type model,presents the structural function in creep equation of deformation which takes into account the time-dependent when metal materials are under high temperature condition,thus obtains the specific constitutive equations. Subloading surface model can reasonably represent the elastic- plastic deformation characteristic of both the changeless and repeated load,and also Masing Effect.The paper analyze the numerical simulation of test results presenting different strain rates obtained by putting 2 1/4 Cr-1Mo steel under high temperature(600 degree centigrade),which serves as a preliminary identification for the reasonability of above constitutive equations.
     This paper expands the application range of subloading surface model,and it can also be used to describe the time-dependent deformation behaviors of subloading surface during its continuous expansion until reaching normal-yield surface,meanwhile introduces the creep equations which varies with time,that is the forming process of time-dependent Subloading surface model.It steps further on the basis of elastic-plastic creep structure equations,then obtains metals' isotropy structure equations,creep equations.etc.Introduce the above into finite element method,develop numerical analysis equations of elasto-viscoplatic model for metal mechanical structures,make simulation comparisons with experimental data in order to do some correction and supplement to imperfect places,thus complete the whole practical program.
引文
[1]夏志皋.塑性力学[M].上海:同济大学出版社,1991.40-53
    [2]余同希.塑性力学[M].北京:高等教育出版社,1989.64-81
    [3]桥口公一.最新弹塑性学[M].日本东京:朝仓书店,1990.95-139
    [4]岳珠峰,陶仙德,吕震宙.镍基单晶超合金的剪切强度研究[J].稀有金属材料与工程,2000:221-224
    [5]罗迎社,罗凯文,胡云贵.金属流变成形的理论与实践[J].锻压技术,1997
    [6]杨绪灿,杨桂通,徐秉业.粘塑性力学概论[M].北京:中国铁道出版社,1985
    [7]梁乃刚,程品三.有限弹塑性变形的三维组集式本构模型[J].力学学报,1992
    [8]冯明珲,吕和祥,郭宇峰.一种弹塑性统一本构模型[J].力学学报,2001
    [9]应富强,张更超,潘孝勇.金属塑性成形中的三维有限元模拟技术探讨[J].锻压技术,2004
    [10]朱有利.有限变形超弹性-塑性本构关系及有限变形弹塑性有限元[D]:[博士学位论文].北京科技大学
    [11]申鸿恩.粘弹性理论应用一例[J].力学与实践,1984
    [12]黄克智.非线性连续介质力学[M].北京:清华大学出版社,1989
    [13]岳珠峰,吕震宙,郑长卿.镍基定向结晶合金蠕变损伤的细观模型[J].应用数学与力学,1999,20:175-18
    [14]Yukio Tachibana.Erhard Krempl.Modeling of High Homologous Temperature Deformation Behavior Using The Viscoplasticity Theory Based on Overstress:Part 1-Creep and Tensile Behavior[J].Mechanics of Materials Laboratory,Rensselaer Polytechnic Institute.Troy,NY 12180-3590
    [15]W.Olszak and P.Perzyna.The Condstitutive Equations the Folw Theory for a Non-stationary Condition[J].Stationary and Nonstationary Viscoplasticity.1999.53-75
    [16]David I.Bigio,Foam Extrusion Principles and Practice[M],2000
    [17]Professor Zenon Mroz.Time-dependent Elastoplastic Constitutive Equation[J].Arch.Mech.,4-5,2000.609-628,
    [18]Tetsuyuli Hiroe and Toshihide Igari.The viscoplasticity theory applied to the inelastic analysis at elevated temperatures[J].Nuclear Engineering and Design,1992.225-238
    [19]Hill R.Some basic principles in the mechanics of solids without a nature time[J],Mech.Phys.Solids,1959,7:20%220
    [20]Anand L,on H.Hencky's approximate strain energy function for moderate deformations[J].ASME J.Appl.mech,1979,46:78-82
    [21]Liang N G,Cheng PS.A consititutive model of elasto-plasticmaterials based on fibrereinforcing and sliding mechanisms[J].Science in China,1993,A 36(6):692-706
    [22]T.Inoue,N.Ohno,a.Suzuki and T.Igari,Nucl.Engrgdes.1989,295-297
    [23]K.Hashiguchi and T.Yoshimaru.A generalized formulation of the concept of nonhardening region[J].International journal of plasticity,Vol.11,No.4,1995,347-365
    [24]K.Hashiguchi.Plastic constitutive equations of granular materials[M],Proc.US-Japan Seminar Countinuum Mech.Stast.Appr.Mech.Granular materials,Tokyo,JSSMFE,1977,73-82
    [25]K.Hashiguchi and T.Okayasu,Time-dependent elastoplastic constitutive equation based on the subloading surface model and its application to soils,Soils and Foundations[J],2000,19-36
    [26]K.Hashiguchi.The extended flow rule in plasticity[J],Int.J.Plasticity,1997,37-58
    [27]P.Perzyna,The consititutive equations for rate sensitive plastic materials[J],Quart.Appl.Math,1993,321-332
    [28]F.K.G.Odqvist,Mathematical Theory of Creep and Creep Rupture[M],Oxford Univ.Press,1966
    [29]K.Hashiguchi,Fundamentals in constitutive equation:continuity and smoothness conditions and loading criterion[J],Soils and Foundations,2000,155-162
    [30]P.Perzyna,The constitutive equations for workhardening and rate sensitive plastic materials[J],Proc.Vibration Problems,Warsaw,1993,281-290
    [31]P.Perzyna,Fundamental problems in viscoplastieity[J],Advances in Applied Mechanics,1966,243-377
    [32]F.Tatsuoka,S.DE Magiatris,EHanano,Y.Momoya and J.Koseki,Some new aspects of time effects on the stress-strain behavior of stiff geomaterials[J],Proc.2~(nd) Int.Conf.Hard Soils and Soft Rocks,Napoli,1999
    [33]K.Hashiguehi,and Z-EChen,Elastoplastie constitutive equations of soils with the subloading surface and the rotational hardening[J],Int.J.Numer.Anal.Mech.Geomech.1998,197-227
    [34]K.Setoguchi,M.Yamauchi,T.Igari and Y.Wakamatsu.Transactions of the Iron and Steel Institute of Japan[C],1984,1063-1071
    [35]Wilson.J.C,and R.G.Berggren,Effects of neutron irradiation on steel[N].Proc.ASTM.1955
    [36]Funk.G,Bohmer.J.R,Fett.EN,and Hentrich.R.Coupled Thermal and Stress-Strain Models for the Continuous Casting of Steels[J].Steel Research.1993.246-254
    [37]K.Hashiguchi.Fundamental requirements and formulation of elastoplastie constitutive equations with tangential plasticity[J],Int.J.Plasticity.1993.525-549
    [38]K.Hashiguchi.Mechanical requirements and structures of cyclic plasticity models[J].Int.J.Plasticity.1993.721-748
    [39]李强,韩常省.弹/粘塑性模型及应用[J].西安石油学院学报.1989.43-50
    [40]李勇,许方,朱应禄.金属塑性变形过程的刚(粘)塑性有限元数值模拟[J].南方金属.2007.21-27
    [41]陆璐,王辅忠,王照旭.有限元方法在金属塑性成型中的应用[J].材料导报.2008.87-91
    [42]何京力,闻邦椿.振动拉伸的弹粘塑性模型[J].机械科学与技术.2000.345-352
    [43]刘志宏,梁乃刚,刘洪秋.多晶金属弹粘塑性的取向元模型[J].力学学报.1996.459-467
    [441 彭大暑.金属塑性加工原理[M].长沙:中南大学出版社.2004
    [45]应富强,张更超,潘孝勇.金属塑性成型有限元模拟技术探讨[J].锻压技术.2004
    [46]唐永进.高温结构热弹塑性--蠕变问题的有限元分析[D].学位论文.1991
    [47]陈明祥.弹塑性力学[M].北京:科学出版社.2007
    [48]徐秉业,黄炎,刘信声,孙学伟.弹塑性力学及其应用[M].北京:机械工业出版社.1984
    [49]曾有良,唐伟枫.金属材料的微观热力学机理及本构方程的研究[J].上海力学.1995.96-100
    [50]陈孙艺.高温下塑性变形和蠕变的统-模型[J].化工装备技术.1996.11-13
    [51]Shestenko~S.A,Lokochtchenko.A.M.金属蠕变与蠕变破坏理论综述[J].力学学报1991.233-235
    [52]李红丹,张庆志,刘巍.影响金属高温力学性能的因素[J].科技创新导报.2007.108
    [53]谷广建.屈服和破坏的物理意义及概念区分[J].科技创新导报.2008.122
    [54]张建可.金属材料的低温蠕变的机理[J].真空与低温.1994.204-213
    [55]彭见祥,李大红.金属材料两种常用本构模型的比较[J].爆轰波与冲击波.2001161-168
    [56]黄金,王军,邓国红.考虑滞弹性的蠕变-塑性交互本构模型[J].力学与实践.200041-44
    [57]金问鲁.固体的统一弹、粘、塑性理论[J].应用数学和力学.1999.241-248
    [58]程国强,李守新.金属材料在高应变率下的热粘塑性本构模型[J].弹道学报.2004.18-22
    [59]王伟.岩土本构模型的研究现状及进展[J].黑龙江水利科技.2008.63-64
    [60]陈忠平.Clylic elasto-plastic constitutive equation of soils with the hardening/softening and inherent/induced anisotropy[D].日本九州大学.1997
    [61]伍先安.Time-dependent Elastoplastic constitutive model and Its Application to Geologic Material[D].日本九州大学.1999