氧化应激对内皮祖细胞作用的蛋白质组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮祖细胞(endothelial progenitor cells, EPCs)可分化为内皮细胞,在组织损伤或者缺血时可被募集到损伤部位参与新生血管形成,以此来修复受损组织。目前的研究显示在有高脂血症、高血压、糖尿病、心脏病或者吸烟的脑血管病高危人群中,外周血EPCs数量降低、功能减退。它不仅是脑卒中的风险及预后预测指标,更因其能修复血管内皮、生成新生血管、延缓动脉粥样硬化斑块形成、促进神经发生而成为对于急性缺血性脑卒中患者具有治疗潜力的一类细胞。
     活性氧(reactive oxygen species, ROS)是需氧细胞在代谢过程中产生的,包括超氧阴离子(Ο2)、过氧化氢(H2O2)、超氧化氢离子(ΗΟ2)和羟自由基(ΟΗ)。许多病理条件例如高脂血症、高血压病、糖尿病会增加血管壁ROS的产生。另外,急性组织缺血也会导致微环境中ROS产生增多。目前的研究显示EPCs可通过高表达抗氧化酶类来对抗、防御氧化应激损伤,已被证实的抗氧化酶包括过氧化氢酶、锰超氧化物歧化酶(manganese superoxide dismutase,MnSOD)和谷胱甘肽过氧化物酶1(glutathione peroxidase-1,GPx-1)、血红素加氧酶1(haemoxygensae1,HO-1)。但是研究显示在同样的条件下,联合抑制EPCs前3种抗氧化酶后产生的ROS水平仍然较人脐静脉内皮细胞(human umbilicalvein endothelial cells,HUVECs)低,提示还有另外的抗氧化酶在EPCs中发挥清除ROS的作用。对于氧化损伤机制目前已知的有氧化应激使凋亡信号调控激酶1(apoptosis signal-regulating kinase1,ASK1)活性增高,导致细胞凋亡并由此引起血管形成能力降低。另外细胞内ROS产生的增多使人端粒酶逆转录酶(human telomerase reverse transcriptase,hTERT)活性降低,EPCs血管生成能力降低,同时增加的ROS刺激TERT从细胞核输出到细胞浆,导致端粒复制能力降低、延长能力丧失,端粒缩短,最终使细胞老化。其他有关氧化损伤机制的研究大多涉及高糖环境、氧化型低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)、血管紧张素II(angiotensin II,Ang II)等因素导致的ROS升高,并且从这些因素本身对EPCs的影响来推测ROS对EPCs的作用,而对ROS与EPCs功能状态的直接作用机制了解甚少。本研究旨在通过蛋白质组学技术为EPCs的抗氧化机制和氧化损伤机制的研究寻找新的线索。
     本研究应用MTT比色法、划痕实验和小管形成实验对不同浓度(100、200、300和400μM)H2O2对EPCs作用3小时后的细胞数量、迁移能力和小管形成能力进行了比较,发现与对照组相比,细胞数量减少、迁移和小管形成能力下降,且这种负性作用为剂量依赖性。应用二维差异凝胶电泳(two-dimensional differential in-gelelectrophoresis,2D-DIGE)结合基质辅助激光解吸/电离-飞行时间质谱(matrix-assistedlaser desorption/ionization time of flight mass spectrometry, MALDI TOF/TOF MS)鉴定的方法对200μM H2O2处理3小时后的EPCs氧化应激模型进行了蛋白质组的分离和鉴定,发现了8个有明显表达差异的蛋白质,其中6个表达上调,2个表达下调。应用2D-Western blot方法选取其中一个蛋白进行验证,证明了质谱鉴定结果的正确性。EPCs通过高表达抗氧化蛋白过氧化还原酶2(peroxiredoxin-2,Prx-2)、硫氧还蛋白依赖性过氧化物还原酶即过氧化还原酶3(thioredoxin-dependent peroxide reductase/peroxiredoxin-3,Prx-3)、过氧化还原酶6(peroxiredoxin-6,Prx-6)和细胞骨架蛋白包含表皮生长因子腓骨蛋白样细胞外基质蛋白1(EGF-containing fibulin-like extracelluarmatrix protein1,EFEMP1)、波形蛋白(vimentin)来防御氧化应激损伤。对于氧化损伤的机制,我们的研究发现抑制信号转导的Rab GDP分离抑制剂α(Rab GDPdissociation inhibitor alpha,Rab GDI α)表达上调,参与清除氧化核苷酸、减少DNA复制错误的ADP糖焦磷酸酶(ADP-sugar pyrophosphatase,NUDT5)和催化“有氧糖酵解”产生能量的磷酸丙糖异构酶(triosephosphate isomerase,TIM)表达均下调。可见,尽管存在防御反应(包括抗氧化蛋白和细胞骨架蛋白的表达上调),由于与信号转导、氧化核苷酸清除、能量产生相关蛋白的表达改变,EPCs仍表现出数量减少、迁移和小管形成能力下降。这一发现提示我们今后在研究保护EPCs免受氧化应激损伤的关键点的工作中,不能仅仅关注于防御反应蛋白,更要重视像Rab GDIα、NUDT5和TIM这样的蛋白。因为这些负性通路不能被防御反应所保护,也许正是氧化应激造成EPCs功能紊乱的关键通路。
     本研究采用2D-DIGE结合MALDI TOF/TOF MS鉴定的方法研究EPCs氧化应激模型的蛋白质组学改变,这在国内外均未见报道,所鉴定的8个差异表达蛋白在EPCs氧化应激的研究中也均未见报道。抗氧化蛋白和细胞骨架蛋白表达上调的发现使EPCs抗氧化机制的研究得到进一步完善,而与信号转导、氧化核苷酸清除、能量产生相关蛋白的表达改变的发现为EPCs氧化损伤机制的研究提供了新的线索。
Endothelial progenitor cells (EPCs) can differentiate into endothelial cells. When thetissue is damaged or ischemic, they can be recruited to the damaged area and participate inthe neovascularization to repair damaged tissue. The cumulative evidence indicates that inpatients with cerebrovascular risk factors, including hyperlipidemia, hypertension, diabetesmellitus, cardiovascular diseases, and also in smokers, there are reduced numbers andimpaired functionality of EPCs. They not only are the indicator of stroke risk and prognosis,but also have therapeutic potential to acute ischemic stroke patients because of the ability torepair vascular endothelium, form new vessels, delay the form of atherosclerosis plaque, andpromote neurogenesis.
     Reactive oxygen species (ROS) which includeΟ2, H2O2, ΗΟ2, ΟΗand so on areproduced in the process of metabolization by aerobic cells. Previous studies havedemonstrated that multiple pathological conditions can increase the production of ROS in thevascular wall, including hyperlipidemia, hypertension, and diabetes mellitus. In addition, theproduction of ROS is also increased in the environment of acute ischemia. It has been shownthat higher expression of intracellular antioxidative enzymes catalase, manganese superoxidedismutase (MnSOD), glutathione peroxidase-1(GPx-1), and haemoxygensae1(HO-1) arecritical mechanisms protecting EPCs against oxidative stress. But under the same condition,after inhibiting the first three antioxidative enzymes, the level of ROS in EPCs is still lowerthan that in human umbilical vein endothelial cells (HUVECs), indicating that there mustalso be some other antioxidative enzymes exist in EPCs to eliminate ROS. About themechanism of oxidative damage, one study has shown that enhanced apoptosissignal-regulating kinase1(ASK1) promoted apoptosis and leaded to the diminishedvessel-forming ability of EPCs after oxidative stress. Another study revealed that theincreased ROS impaired the telomerase reverse transcriptase (TERT) activity and inducedthe translocating of TERT protein from nucleus into the cytosol, finally reduced the prolongability of telomere which is followed by the onset of cell senescence. Other investigationsabout mechanisms of oxidative damage were indirect involving in different conditionsincluding high glucose condition, ox-LDL and angiotensin II, in which ROS production wasincreased. But the knowlege about oxidative stress and EPCs is limited. The aim of this study is to find new clues about antioxidative defensive mechanism and oxidative damagemechanism of EPCs with the help of proteomic analysis.
     To investigate the effect of oxidative stress on EPCs, cells were treated with H2O2atdifferent final concentrations (100、200、300and400μM) for3hours. MTT assay,scratch-wound assay and matrigel assay showed that cell number reduced, and migration andtubule formation function were impaired under H2O2stress in a concentration-dependentmanner. To identify proteins in response to H2O2stress, EPCs were treated in200μM H2O2for3hours and then two-dimensional differential in-gel electrophoresis (2D-DIGE) combinedwith matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF/TOF MS) analysis were performed. Eight proteins were identifiedsuccessfully, six of which were up-regulated and the rest were down-regulated. To furtherconfirm the results from the MS analysis, the expression pattern of peroxiredoxin-3inresponse to H2O2stress was examined by2D-Western blot and the result showed that MS wasreliable. The results suggested that in order to protect themselves from oxidative damage,EPCs upregulated antioxidative enzymes peroxiredoxin-2, thioredoxin-dependent peroxidereductase, peroxiredoxin-6and cytoskeleton proteins EGF-containing fibulin-like extracelluarmatrix protein1and vimentin. About the oxidative damaged mechanism, we found that RabGDP dissociation inhibitor alpha which inhibited signal transduction was upregulated. BothADP-sugar pyrophosphatase which eliminated oxidative nucleotide and reduced errors duringDNA replication and triosephosphate isomerase which catalyzed “aerobic glycolysis” toproduce energy were downregulated. In summary, though the defensive responses existed,including the up-regulation of antioxidative enzymes and cytoskeleton proteins, EPCs stilldysfunctioned due to the altered proteins associated with signal transduction, oxidativenucleotide eliminating, and energy production. These results indicated that we should focuson the proteins which were susceptible to oxidative stress, as well as protective proteins, suchas Rab GDI α, NUDT5and TIM. Because these negative pathways can’t be avoided by theprotection of defensive responses and may be the key pathways of oxidative damage to EPCsfunctions.
     This study performed2D-DIGE combined with MALDI-TOF/TOF MS analysis to studythe proteomic alters of EPCs oxidative stress model. This hasn’t been reported in the literature.All of the eight altered proteins discovered in this study also haven’t been reported in theprevious studies of EPCs exposed to oxidative stress. The discovery of new antioxidativeenzymes and cytoskeleton proteins provide novel insights into antioxidative defensive mechanim of EPCs and the alteration of proteins associated with signal transduction,oxidative nucleotide eliminating, and energy production offers new clues to the study ofoxidative damage mechanism of EPCs.
引文
[1] Zampetaki A, Kirton J P, Xu Q. Vascular repair by endothelial progenitor cells [J].Cardiovasc Res,2008,78(3):413-421.
    [2] Ward M R, Stewart D J, Kutryk M J. Endothelial progenitor cell therapy for the treatmentof coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives[J]. Catheter Cardiovasc Interv,2007,70(7):983-998.
    [3] Dobert N, Britten M, Assmus B, et al. Transplantation of progenitor cells after reperfusedacute myocardial infarction: evaluation of perfusion and myocardial viability withFDG-PET and thallium SPECT [J]. Eur J Nucl Med Mol Imaging,2004,31(8):1146-1151.
    [4] Flores-Ramirez R, Uribe-Longoria A, Rangel-Fuentes M M, et al. Intracoronary infusionof CD133+endothelial progenitor cells improves heart function and quality of life inpatients with chronic post-infarct heart insufficiency [J]. Cardiovasc Revasc Med,2010,11(2):72-78.
    [5] Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, et al. Mobilization, endothelialdifferentiation and functional capacity of endothelial progenitor cells after ischemicstroke [J]. Microvasc Res,2010,80(3):317-323.
    [6] Case J, Ingram D A, Haneline L S. Oxidative stress impairs endothelial progenitor cellfunction [J]. Antioxid Redox Signal,2008,10(11):1895-1907.
    [7]赵婷,黎健.内皮祖细胞与氧化应激[J].医学分子生物学杂志,2008,5(4):344-347.
    [8] Ogita H, Liao J. Endothelial function and oxidative stress [J]. Endothelium,2004,11(2):123-132.
    [9] Imanishi T, Tsujioka H, Akasaka T. Endothelial progenitor cells dysfunction andsenescence: contribution to oxidative stress [J]. Curr Cardiol Rev,2008,4(4):275-286.
    [10]陈树春,宋光耀.内皮祖细胞与氧化应激研究进展[J].中国组织工程研究与临床康复,2011,15(6):1119-1122.
    [11] Ingram D A, Krier T R, Mead L E, et al. Clonogenic endothelial progenitor cells aresensitive to oxidative stress [J]. Stem Cells,2007,25(2):297-304.
    [12] Haendeler J, Hoffmann J, Diehl J F, et al. Antioxidants inhibit nuclear export oftelomerase reverse transcriptase and delay replicative senescence of endothelial cells [J].Circ Res,2004,94(6):768-775.
    [13] Di Stefano V, Cencioni C, Zaccagnini G, et al. p66ShcA modulates oxidative stress andsurvival of endothelial progenitor cells in response to high glucose [J]. Cardiovasc Res,2009,82(3):421-429.
    [14] Lapergue B, Mohammad A, Shuaib A. Endothelial progenitor cells and cerebrovasculardiseases [J]. Prog Neurobiol,2007,83(6):349-362.
    [15] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelialcells for angiogenesis [J]. Science,1997,275(5302):964-967.
    [16] Yoder M C. Defining human endothelial progenitor cells [J]. J Thromb Haemost,2009,7Suppl149-152.
    [17] Zhang S J, Zhang H, Wei Y J, et al. Adult endothelial progenitor cells from humanperipheral blood maintain monocyte/macrophage function throughout in vitro culture[J]. Cell Res,2006,16(6):577-584.
    [18] Rehman J, Li J, Orschell C M, et al. Peripheral blood "endothelial progenitor cells" arederived from monocyte/macrophages and secrete angiogenic growth factors [J].Circulation,2003,107(8):1164-1169.
    [19] Schmeisser A, Garlichs C D, Zhang H, et al. Monocytes coexpress endothelial andmacrophagocytic lineage markers and form cord-like structures in Matrigel underangiogenic conditions [J]. Cardiovasc Res,2001,49(3):671-680.
    [20] Waldo S W, Li Y, Buono C, et al. Heterogeneity of human macrophages in culture andin atherosclerotic plaques [J]. Am J Pathol,2008,172(4):1112-1126.
    [21] Anghelina D, Pewe L, Perlman S. Pathogenic role for virus-specific CD4T cells in micewith coronavirus-induced acute encephalitis [J]. Am J Pathol,2006,169(1):209-222.
    [22] Deschaseaux F, Selmani Z, Falcoz P E, et al. Two types of circulating endothelialprogenitor cells in patients receiving long term therapy by HMG-CoA reductaseinhibitors [J]. Eur J Pharmacol,2007,562(1-2):111-118.
    [23] Case J, Mead L E, Bessler W K, et al. Human CD34+AC133+VEGFR-2+cells are notendothelial progenitor cells but distinct, primitive hematopoietic progenitors [J]. ExpHematol,2007,35(7):1109-1118.
    [24] Hirschi K K, Ingram D A, Yoder M C. Assessing identity, phenotype, and fate ofendothelial progenitor cells [J]. Arterioscler Thromb Vasc Biol,2008,28(9):1584-1595.
    [25] Sieveking D P, Buckle A, Celermajer D S, et al. Strikingly different angiogenicproperties of endothelial progenitor cell subpopulations: insights from a novel humanangiogenesis assay [J]. J Am Coll Cardiol,2008,51(6):660-8.
    [26] Medina R J, O'Neill C L, Sweeney M, et al. Molecular analysis of endothelialprogenitor cell (EPC) subtypes reveals two distinct cell populations with differentidentities [J]. BMC Med Genomics,2010,318.
    [27] Kopp H G, Ramos C A, Rafii S. Contribution of endothelial progenitors andproangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue [J].Curr Opin Hematol,2006,13(3):175-181.
    [28] Yoon C H, Hur J, Park K W, et al. Synergistic neovascularization by mixedtransplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases [J]. Circulation,2005,112(11):1618-1627.
    [29] Hill J M, Zalos G, Halcox J P, et al. Circulating endothelial progenitor cells, vascularfunction, and cardiovascular risk [J]. N Engl J Med,2003,348(7):593-600.
    [30] Patschan D, Patschan S, Henze E, et al. LDL lipid apheresis rapidly increases peripheralendothelial progenitor cell competence [J]. J Clin Apher,2009,24(5):180-185.
    [31] Chen J Z, Zhang F R, Tao Q M, et al. Number and activity of endothelial progenitorcells from peripheral blood in patients with hypercholes-terolaemia [J]. Clin Sci (Lond),2004,107(3):273-280.
    [32] Wang X, Chen J, Tao Q, et al. Effects of ox-LDL on number and activity of circulatingendothelial progenitor cells [J]. Drug Chem Toxicol,2004,27(3):243-255.
    [33] Imanishi T, Hano T, Sawamura T, et al. Oxidized low-density lipoprotein inducesendothelial progenitor cell senescence, leading to cellular dysfunction [J]. Clin ExpPharmacol Physiol,2004,31(7):407-413.
    [34] Imanishi T, Hano T, Matsuo Y, et al. Oxidized low-density lipoprotein inhibits vascularendothelial growth factor-induced endothelial progenitor cell differentiation [J]. ClinExp Pharmacol Physiol,2003,30(9):665-670.
    [35] Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulatingendothelial progenitor cells inversely correlate with risk factors for coronary arterydisease [J]. Circ Res,2001,89(1): E1-7.
    [36] Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cellsenescence through induction of oxidative stress [J]. J Hypertens,2005,23(1):97-104.
    [37] Endtmann C, Ebrahimian T, Czech T, et al. Angiotensin II impairs endothelialprogenitor cell number and function in vitro and in vivo: implications for vascularregeneration [J]. Hypertension,2011,58(3):394-403.
    [38] Zhou Z, Peng J, Wang C J, et al. Accelerated senescence of endothelial progenitor cellsin hypertension is related to the reduction of calcitonin gene-related peptide [J]. JHypertens,2010,28(5):931-939.
    [39] Loomans C J, de Koning E J, Staal F J, et al. Endothelial progenitor cell dysfunction: anovel concept in the pathogenesis of vascular complications of type1diabetes [J].Diabetes,2004,53(1):195-199.
    [40] Chen L L, Liao Y F, Zeng T S, et al. Number and function of circulating endothelialprogenitor cell in diabetics with different vascular complications [J]. Zhonghua Yi XueZa Zhi,2009,89(18):1234-1239.
    [41] Tepper O M, Galiano R D, Capla J M, et al. Human endothelial progenitor cells fromtype II diabetics exhibit impaired proliferation, adhesion, and incorporation intovascular structures [J]. Circulation,2002,106(22):2781-2786.
    [42] Fadini G P, Sartore S, Agostini C, et al. Significance of endothelial progenitor cells insubjects with diabetes [J]. Diabetes Care,2007,30(5):1305-1313.
    [43] Fadini G P, Sartore S, Schiavon M, et al. Diabetes impairs progenitor cell mobilisationafter hindlimb ischaemia-reperfusion injury in rats [J]. Diabetologia,2006,49(12):3075-3084.
    [44] Krankel N, Adams V, Linke A, et al. Hyperglycemia reduces survival and impairsfunction of circulating blood-derived progenitor cells [J]. Arterioscler Thromb VascBiol,2005,25(4):698-703.
    [45] Shao H, Tan Y, Eton D, et al. Statin and stromal cell-derived factor-1additively promoteangiogenesis by enhancement of progenitor cells incorporation into new vessels [J].Stem Cells,2008,26(5):1376-1384.
    [46] Fadini G P, Miorin M, Facco M, et al. Circulating endothelial progenitor cells arereduced in peripheral vascular complications of type2diabetes mellitus [J]. J Am CollCardiol,2005,45(9):1449-1457.
    [47] Jung C, Rafnsson A, Shemyakin A, et al. Different subpopulations of endothelialprogenitor cells and circulating apoptotic progenitor cells in patients with vasculardisease and diabetes [J]. Int J Cardiol,2010,143(3):368-372.
    [48] Ghani U, Shuaib A, Salam A, et al. Endothelial progenitor cells during cerebrovasculardisease [J]. Stroke,2005,36(1):151-153.
    [49] Werner N, Wassmann S, Ahlers P, et al. Endothelial progenitor cells correlate withendothelial function in patients with coronary artery disease [J]. Basic Res Cardiol,2007,102(6):565-571.
    [50] Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulatingendothelial progenitor cells predicts future cardiovascular events: proof of concept forthe clinical importance of endogenous vascular repair [J]. Circulation,2005,111(22):2981-2987.
    [51] Briguori C, Testa U, Riccioni R, et al. Correlations between progression of coronaryartery disease and circulating endothelial progenitor cells [J]. Faseb J,2010,24(6):1981-1988.
    [52] Kunz G A, Liang G, Cuculi F, et al. Circulating endothelial progenitor cells predictcoronary artery disease severity [J]. Am Heart J,2006,152(1):190-195.
    [53] Shantsila E, Watson T, Lip G Y. Endothelial progenitor cells in cardiovascular disorders[J]. J Am Coll Cardiol,2007,49(7):741-752.
    [54] Valgimigli M, Rigolin G M, Fucili A, et al. CD34+and endothelial progenitor cells inpatients with various degrees of congestive heart failure [J]. Circulation,2004,110(10):1209-1212.
    [55] Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitorcells by statin therapy in patients with stable coronary artery disease [J]. Circulation,2001,103(24):2885-2890.
    [56] Michaud S E, Dussault S, Haddad P, et al. Circulating endothelial progenitor cells fromhealthy smokers exhibit impaired functional activities [J]. Atherosclerosis,2006,187(2):423-432.
    [57] Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increasescirculating progenitor cells in peripheral blood in chronic smokers [J]. ArteriosclerThromb Vasc Biol,2004,24(8):1442-1447.
    [58] Rouhl R P, van Oostenbrugge R J, Damoiseaux J, et al. Endothelial progenitor cellresearch in stroke: a potential shift in pathophysiological and therapeutical concepts [J].Stroke,2008,39(7):2158-2165.
    [59] Yip H K, Tsai T H, Lin H S, et al. Effect of erythropoietin on level of circulatingendothelial progenitor cells and outcome in patients after acute ischemic stroke [J]. CritCare,2011,15(1): R40.
    [60] Yip H K, Chang L T, Chang W N, et al. Level and value of circulating endothelialprogenitor cells in patients after acute ischemic stroke [J]. Stroke,2008,39(1):69-74.
    [61] Sobrino T, Hurtado O, Moro M A, et al. The increase of circulating endothelialprogenitor cells after acute ischemic stroke is associated with good outcome [J]. Stroke,2007,38(10):2759-2764.
    [62] Bogoslovsky T, Chaudhry A, Latour L, et al. Endothelial progenitor cells correlate withlesion volume and growth in acute stroke [J]. Neurology,2010,75(23):2059-2062.
    [63] Hu Y, Davison F, Zhang Z, et al. Endothelial replacement and angiogenesis inarteriosclerotic lesions of allografts are contributed by circulating progenitor cells [J].Circulation,2003,108(25):3122-3127.
    [64] Xu Q, Zhang Z, Davison F, et al. Circulating progenitor cells regenerate endothelium ofvein graft atherosclerosis, which is diminished in ApoE-deficient mice [J]. Circ Res,2003,93(8): e76-86.
    [65] Shirota T, Yasui H, Shimokawa H, et al. Fabrication of endothelial progenitor cell(EPC)-seeded intravascular stent devices and in vitro endothelialization on hybridvascular tissue [J]. Biomaterials,2003,24(13):2295-2302.
    [66] Au P, Daheron L M, Duda D G, et al. Differential in vivo potential of endothelialprogenitor cells from human umbilical cord blood and adult peripheral blood to formfunctional long-lasting vessels [J]. Blood,2008,111(3):1302-1305.
    [67] Hu C H, Li Z M, Du Z M, et al. Human umbilical cord-derived endothelial progenitorcells promote growth cytokines-mediated neorevascularization in rat myocardialinfarction [J]. Chin Med J (Engl),2009,122(5):548-555.
    [68] Schuh A, Liehn E A, Sasse A, et al. Transplantation of endothelial progenitor cellsimproves neovascularization and left ventricular function after myocardial infarction ina rat model [J]. Basic Res Cardiol,2008,103(1):69-77.
    [69] Lo E H. A new penumbra: transitioning from injury into repair after stroke [J]. Nat Med,2008,14(5):497-500.
    [70] Ohab J J, Fleming S, Blesch A, et al. A neurovascular niche for neurogenesis afterstroke [J]. J Neurosci,2006,26(50):13007-13016.
    [71] Ma Z L, Mai X L, Sun J H, et al. Inhibited atherosclerotic plaque formation by localadministration of magnetically labeled endothelial progenitor cells (EPCs) in a rabbitmodel [J]. Atherosclerosis,2009,205(1):80-86.
    [72] Liu P, Zhou B, Gu D, et al. Endothelial progenitor cell therapy in atherosclerosis: adouble-edged sword?[J] Ageing Res Rev,2009,8(2):83-93.
    [73] Hagensen M K, Shim J, Thim T, et al. Circulating endothelial progenitor cells do notcontribute to plaque endothelium in murine atherosclerosis [J]. Circulation,2010,121(7):898-905.
    [74] Thored P, Wood J, Arvidsson A, et al. Long-term neuroblast migration along bloodvessels in an area with transient angiogenesis and increased vascularization after stroke[J]. Stroke,2007,38(11):3032-3039.
    [75] Shen Q, Goderie S K, Jin L, et al. Endothelial cells stimulate self-renewal and expandneurogenesis of neural stem cells [J]. Science,2004,304(5675):1338-1340.
    [76] Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+cells after strokeenhances neurogenesis via angiogenesis in a mouse model [J]. J Clin Invest,2004,114(3):330-338.
    [77] Ward N L, Lamanna J C. The neurovascular unit and its growth factors: coordinatedresponse in the vascular and nervous systems [J]. Neurol Res,2004,26(8):870-883.
    [78] Zhang R L, Zhang Z G, Chopp M. Neurogenesis in the adult ischemic brain: generation,migration, survival, and restorative therapy [J]. Neuroscientist,2005,11(5):408-416.
    [79] Fan Y, Shen F, Frenzel T, et al. Endothelial progenitor cell transplantation improveslong-term stroke outcome in mice [J]. Ann Neurol,2010,67(4):488-497.
    [80] Moubarik C, Guillet B, Youssef B, et al. Transplanted late outgrowth endothelialprogenitor cells as cell therapy product for stroke [J]. Stem Cell Rev,2011,7(1):208-220.
    [81] Chen Z Z, Jiang X D, Zhang L L, et al. Beneficial effect of autologous transplantationof bone marrow stromal cells and endothelial progenitor cells on cerebral ischemia inrabbits [J]. Neurosci Lett,2008,445(1):36-41.
    [82] Sobrino T, Rodriguez-Gonzalez R, Blanco M, et al. CDP-choline treatment increasescirculating endothelial progenitor cells in acute ischemic stroke [J]. Neurol Res,2011,33(6):572-577.
    [83]陈雅玲,董强.他汀类药物对急性缺血性脑卒中患者外周血内皮祖细胞的影响[J].中国临床神经科学,2009,17(2):128-133.
    [84]张基昌,李淑梅,宋春莉,等.内皮祖细胞CD34抗体包被冠脉支架对猪冠状动脉再狭窄影响的研究[J].中国老年学杂志,2009,29(4):394-396.
    [85]李欢欢,何旭,刘亢丁.内皮祖细胞与缺血性脑卒中[J].中国组织工程研究与临床康复,2010,14(19):3569-3572.
    [86]张鹏,吴建祥,冷冰,等.内皮祖细胞与支架术后再内皮化的研究进展[J].心脏杂志,2011,23(4):535-537+541.
    [87] Kuliszewski M A, Kobulnik J, Lindner J R, et al. Vascular gene transfer of SDF-1promotes endothelial progenitor cell engraftment and enhances angiogenesis inischemic muscle [J]. Mol Ther,2011,19(5):895-902.
    [88] He T, Peterson T E, Holmuhamedov E L, et al. Human endothelial progenitor cellstolerate oxidative stress due to intrinsically high expression of manganese superoxidedismutase [J]. Arterioscler Thromb Vasc Biol,2004,24(11):2021-2027.
    [89] Galasso G, Schiekofer S, Sato K, et al. Impaired angiogenesis in glutathioneperoxidase-1-deficient mice is associated with endothelial progenitor cell dysfunction[J]. Circ Res,2006,98(2):254-261.
    [90] Dernbach E, Urbich C, Brandes R P, et al. Antioxidative stress-associated genes incirculating progenitor cells: evidence for enhanced resistance against oxidative stress [J].Blood,2004,104(12):3591-3597.
    [91]胥光热,刘应才.氧化应激与内皮祖细胞[J].泸州医学院学报,2010,33(3):321-324.
    [92] Fujii H, Li S H, Szmitko P E, et al. C-reactive protein alters antioxidant defenses andpromotes apoptosis in endothelial progenitor cells [J]. Arterioscler Thromb Vasc Biol,2006,26(11):2476-2482.
    [93]赵亚宁,李强.前凋亡蛋白Bim研究进展[J].国际输血及血液学杂志,2006,29(1):33-36.
    [94] Tousoulis D, Andreou I, Antoniades C, et al. Role of inflammation and oxidative stressin endothelial progenitor cell function and mobilization: therapeutic implications forcardiovascular diseases [J]. Atherosclerosis,2008,201(2):236-247.
    [95] Thum T, Fraccarollo D, Schultheiss M, et al. Endothelial nitric oxide synthaseuncoupling impairs endothelial progenitor cell mobilization and function in diabetes [J].Diabetes,2007,56(3):666-674.
    [96] Jialal I, Devaraj S, Singh U, et al. Decreased number and impaired functionality ofendothelial progenitor cells in subjects with metabolic syndrome: implications forincreased cardiovascular risk [J]. Atherosclerosis,2010,211(1):297-302.
    [97] Tobler K, Freudenthaler A, Baumgartner-Parzer S M, et al. Reduction of both numberand proliferative activity of human endothelial progenitor cells in obesity [J]. Int J Obes(Lond),2010,34(4):687-700.
    [98] Sen S, McDonald S P, Coates P T, et al. Endothelial progenitor cells: novel biomarkerand promising cell therapy for cardiovascular disease [J]. Clin Sci (Lond),2011,120(7):263-283.
    [99]刘守跃,姚春山,关文明,等.脑缺血性疾病的蛋白质组学研究进展[J].吉林大学学报(医学版),2009,35(5):967-970.
    [100]金涛,孙莉,张颖.格林-巴利综合征脑脊液蛋白质组学的研究进展[J].中国老年学杂志,2011,31(19):3846-3848.
    [101]章波,粟永萍,艾国平. Peroxiredoxin蛋白家族与电离辐射[J].中华放射医学与防护杂志,2005,25(1):95-97.
    [102] Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional,mammalian redox protein [J]. Redox Rep,2002,7(3):123-130.
    [103]章波,向渝梅,白云.抗氧化蛋白Peroxiredoxin家族研究进展[J].生理科学进展,2004,35(4):352-355.
    [104] Rhee S G, Kang S W, Chang T S, et al. Peroxiredoxin, a novel family of peroxidases[J]. IUBMB Life,2001,52(1-2):35-41.
    [105] Kobayashi N, Kostka G, Garbe J H, et al. A comparative analysis of the fibulin proteinfamily. Biochemical characterization, binding interactions, and tissue localization [J]. JBiol Chem,2007,282(16):11805-11816.
    [106] Timpl R, Sasaki T, Kostka G, et al. Fibulins: a versatile family of extracellular matrixproteins [J]. Nat Rev Mol Cell Biol,2003,4(6):479-489.
    [107] Song E L, Hou Y P, Yu S P, et al. EFEMP1expression promotes angiogenesis andaccelerates the growth of cervical cancer in vivo [J]. Gynecol Oncol,2011,121(1):174-180.
    [108] Roybal C N, Marmorstein L Y, Vander Jagt D L, et al. Aberrant accumulation offibulin-3in the endoplasmic reticulum leads to activation of the unfolded proteinresponse and VEGF expression [J]. Invest Ophthalmol Vis Sci,2005,46(11):3973-3979.
    [109] Muller K, Dulku S, Hardwick S J, et al. Changes in vimentin in human macrophagesduring apoptosis induced by oxidised low density lipoprotein [J]. Atherosclerosis,2001,156(1):133-144.
    [110] Zamoner A, Barreto K P, Filho D W, et al. Hyperthyroidism in the developing rat testisis associated with oxidative stress and hyperphosphorylated vimentin accumulation [J].Mol Cell Endocrinol,2007,267(1-2):116-126.
    [111] Chen X, Kang H, Zou F. Low concentration of GA activates a preconditioningresponse in HepG2cells during oxidative stress-roles of Hsp90and vimentin [J]. CellStress Chaperones,2009,14(4):381-389.
    [112] Ivaska J, Pallari H M, Nevo J, et al. Novel functions of vimentin in cell adhesion,migration, and signaling [J]. Exp Cell Res,2007,313(10):2050-2062.
    [113] Wang P, Chintagari N R, Narayanaperumal J, et al. Proteomic analysis of lamellarbodies isolated from rat lungs [J]. BMC Cell Biol,2008,9(34):1-10.
    [114] Seabra M C, Wasmeier C. Controlling the location and activation of Rab GTPases [J].Curr Opin Cell Biol,2004,16(4):451-457.
    [115] Yamaguchi Y, Miyagi Y, Baba H. Two-dimensional electrophoresis with cationicdetergents: a powerful tool for the proteomic analysis of myelin proteins. Part2:analytical aspects [J]. J Neurosci Res,2008,86(4):766-775.
    [116] Poirrier J E, Guillonneau F, Renaut J, et al. Proteomic changes in rat hippocampus andadrenals following short-term sleep deprivation [J]. Proteome Sci,2008,6(14):1-12.
    [117] Ito R, Sekiguchi M, Setoyama D, et al. Cleavage of oxidized guanine nucleotide andADP sugar by human NUDT5protein [J]. J Biochem,2011,149(6):731-738.
    [118] Kamiya H, Hori M, Arimori T, et al. NUDT5hydrolyzes oxidized deoxyribonucleosidediphosphates with broad substrate specificity [J]. DNA Repair (Amst),2009,8(10):1250-1254.
    [119] Wierenga R K, Kapetaniou E G, Venkatesan R. Triosephosphate isomerase: a highlyevolved biocatalyst [J]. Cell Mol Life Sci,2010,67(23):3961-3982.
    [120] Peters K, Kamp G, Berz A, et al. Changes in human endothelial cell energy metaboliccapacities during in vitro cultivation. The role of "aerobic glycolysis" and proliferation[J]. Cell Physiol Biochem,2009,24(5-6):483-492.