Fe-Ga-Al磁致伸缩材料及其在致动器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Ga、Al等无磁性原子替代Fe后形成的Fe基合金具有较大的磁致伸缩和饱和磁化强度以及较低的饱和磁场和磁晶各向异性,并且具有较高的硬度和良好的机械加工性能,同时由于不含有稀土元素,因而价格相对较低,因此,Fe基新型磁致伸缩材料在致动器和换能器等领域具有广阔的应用前景。本文选择了"Fe-Ga-Al磁致伸缩材料及其在致动器中的应用研究”这一既具有科学价值又具有工程实际意义的课题,以期对新型磁致伸致动器的开发及应用提供技术指导。本文的主要工作如下:
     采用合金熔炼方法制备Fe_(98-x)Ga_xAl_2、Fe_(96-x)Ga_xAl_4、Fe_(94-x_Ga_xAl_6、Fe_(100-y)(Ga_(0.75)Al_(0.25))_y和Fe_(98-z)Ga_2Al_z五个系列共21个合金样品,研究了合金样品的显微结构和磁性,确定合金的成分、结构与热处理工艺之间的变化关系。在研究合金样品的成分和显微结构的关系基础上,建立了Fe-Ga-Al三元系富Fe区合金的650℃等温截面和Fe-(Ga_(0.75)Al_(0.25))垂直截面,发现当少量Al替代Fe-Ga合金中Ga时,D0_(19)单相区快速减小,与Fe-Ga二元系相图相比A2和L1_2单相区右移,D0_(19)单相区消失。根据相图研究结果和磁致伸缩理论,预测了磁致伸缩性能最优化成分区域。
     采用磁致伸缩测试仪器,研究了Fe_(82)Ga_(18-x)Al_x(3≤x≤13.5)合金的磁致伸缩性能,确定磁致伸缩性能最佳成分的合金。发现Fe_(82)Ga_9Al_9合金磁致伸缩系数最大,达到88ppm;经过磁场热处理后,磁致伸缩系数达114ppm,为目前电弧炉熔炼Fe基合金中磁致伸缩系数最大值。采用定向凝固方法制备取向Fe_(82)Ga_9Al_9磁致伸缩棒状样品,研究了取向磁致伸缩棒状样品的结构、磁致伸缩等性能,发现Fe_(82)Ga_9Al_9磁致伸缩棒状样品在不加压力条件下磁致伸缩为135ppm,在53MPa预应力条件下磁致伸缩为221ppm,高于美国犹他大学N.Srisukhumbowornchai的磁致伸缩数值。
     应用研制的Fe_(82)Ga_9Al_9磁致伸缩棒设计、制作了新型的磁致伸缩致动器。在对磁致伸缩致动器的磁路、水冷系统、预压机构等方面的设计基础上,制作了Fe-Ga-Al新型磁致伸缩致动器。测试了致动器的位移输出特性,结果表明驱动电流较小时,Fe-Ga-Al材料新型磁致伸缩致动器的输出位移具有较好线性度。与稀土超磁致伸缩致动器相比,Fe-Ga-Al材料磁致伸缩缩致动器具有更高的精度。
     设计并制作了高真空磁场热处理装置。该装置由直流磁场发生装置、真空系统和加热系统三部分组成。测试表明研制的高真空磁场热处理装置的炉腔内真空度最高为104~(-4)Pa数量级,最大磁场可达240kA/m,最高加热温度为800摄氏度,达到了设计的要求。利用自行研制的磁场热处理装置对Fe-Ga-Al合金和Terfenol-D材料进行了磁场热处理,结果表明磁场热处理装置工作良好,通过处理可显著的提高材料的磁致伸缩性能。
Fe alloys with nonmagnetic elements in which there are no d-shell electrons(Al) or the d-shell is full(Ga),are known to have appreciable low field magnetostriction,good mechanical properties,low magneto-crystalline anisotropy and relatively low cost.Therefore,the new magnetostrictive materials,Fe based alloys can be widely applied in the actuator.In this paper, Fe-Ga-Al magnetostrictive materials and the application in the actuator has been researched,as follows.
     The 21 ingots were prepared from high purity elements using a high vacuum arc melting system.The isothermal section at 650℃and the vertical section Fe-(Ga_(0.75)Al_(0.25)) of the Fe-rich portion in the Fe-Ga-Al ternary system were determined using optical microscopy,scanning electron microscopy,energy dispersion X-ray spectroscopy,X-ray diffraction and differential thermal analysis.It was found that the A2 phase region remains almost unchanged with increasing Al content.However,the D0_(19) single-phase region rapidly reduces when a small amount of Al is substituted for Ga in Fe-Ga alloys.Compared to the Fe-Ga binary phase diagram, the A2 and L1_2 single-phase regions move toward the right of the vertical section,and the D0_(19) single-phase region disappears.According to the results of the research and the magnetostriction theories,the area of the optimization composition has been forecasted.
     Fe_(82)Ga_(18-x)Al_x(3≤x≤13.5) alloys has been researched.It was found that the magnetostriction value of the e_(82)Ga_9Al_9 alloy increased from 88×10~(-6) before magnetic heat treatment to 114×10~(-6) after magnetic heat treatment.Up to now,the magnetostriction is the highest value of the alloys using the arc melting.The directional solidification Fe_(82)Ga_9Al_9 alloy was prepared using a directional solidification furnace.We measured the magnetostriction under compressive stresses ranging.Tests showed that the magnetostriction increased from 135ppm to 221ppm with the increasing value(0-53MPa) of compressive stresses.And the magetostriction is higher than the value in the N.Srisukhumbowornchai's study.
     The new magnetostrictive actuator has been designed and made with the directional solidification Fe_(82)Ga_9Al_9 alloy rod,which based on designing magnetic circuit,the water-cooling system and the pre-stress mechanism.The investigation to the Fe-Ga-Al magnetostrictive actuator indicates its output displacement has good linearity.Comparing with Terfenol-D giant magnetostrictive actuator,the Fe-Ga-Almagnetostrictive actuator has better precision.
     Including the DC magnetic field,the vacuum system and the heating system,the magnetic field heat treatment furnace has been designed and made.The furnace chamber can be vacuumized in this equipment,which will simplify magnetic field heat treatment.Measuring and controlling of temperature in the furnace chamber will be more accurate by using double temperature controllers.The furnace has high magnetic field(H_(max)=3 kOe) and temperature (T_(max)=800℃),meanwhile,its size is not too large.The two actual applications,indicating the function of the furnace is fine,was listed.
引文
[1]Joule.J.P.On a new class of magnetic forces.Electr Magn Chem.,1842.8:219-224
    [2]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003
    [3]宛德福,马兴隆.磁性物理学,北京:电子工业出版社,1999
    [4]王博文,曹淑英,黄文美.磁致伸缩材料与器件.北京:冶金工业出版社,2008
    [5]Clark A E,DeSavage B F and Callen E R.Magnetostriction of Single Crystal Dysprosium,Gadolinium Iron Garnet and Dysprosium Iron Garnet.J.Appl.Phys.,1964,35(3):1028-1029
    [6]de V.du Plessis P.Magnetoelastic Behavior of a Terbium Single Crystal I.Anisotropic Single-Ion Properties.Phil.Mag.,1968,18
    [7]Clark A and Hathaway K.Physics of Giant Magnetostriction.In:Engdahl G,Ed.,Handbook of Giant Magnetostrictive Materials.San Diego,CA:Academic Press,2000.1-125
    [8]Clark A E and Belon H S.Gaint room-temperature magnetostrictions in TbFe_2 and DyFe_2.Physical Review,1972,5(9):3642-3644.
    [9]Clark A E.Magnetostrictive rare earth-Fe_2 compounds.Edited by Wohlfarth E P.New York:North-Holland Pubishing Company,1980,531-567
    [10]倪嘉缵,洪广言.稀土新材料及新流程进展.电子工业出版社:1998
    [11]钟俊辉.稀土合金材料的进展.材料导报,1995,1:24
    [12]Clark A E,Restorff J B,Wun Fogle M,et al.Magnetostrictiveproperties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys.IEEE Transactions on Magnetics,2000,36:3238
    [13]Clark A E,Wun Fogle M,Restorff J B,et al.Magnetic and magnetostrictive properties of GalFenol alloys under large compressivestresses.Proc.of Pacific Rim International ConFerence on Advanced Materials and Processing.Honolulu,HI,Dec.2001,11
    [14]Guruswamy S,Srisukiumbowomchai N,Clark A E,et al.Strongductile and low field magnetostrictive alloys based on Fe-Ga.Scripta Mater,2000,43:239
    [15]陈海燕.超磁致伸缩薄膜特性的数值模拟研究:[博士学位论文].天津:河北工业大学,2004
    [16]翁玲.超磁致伸缩振动传感器的模型与实验研究:[博士学位论文].天津:河北工业大学,2008
    [17]Clark A E,Proc.19~(th).Conf.on Magn and Magn.Materials,Aip conf.Proc.No.1974,18:1015-1029
    [18]Clark A E,Teter J P,and McMaster O D,J.Appl.Phys.,1988 63(8):3910
    [19]Teter J P,Mahoney K,Jiboary M A,et al.J.Appl.Phys.,1991 69(8):5768
    [20]Verhoeren J D,Ostenson J E,and Gibson E D.J.Appl.Phys.,1989 66(2):772-779
    [21]Wu G H,Zhao X G,Wang J H,et al.Appl.Phys.Lett.,2005 67
    [22]Mei W,Okane T and Umeda T.Phase diagram and inhomogeneity of(TbDy)-Fe(T)(T=Mn,Co,Al,Ti)systems.J.Alloys and Compounds,1997,248:132-138
    [23]Clark A E,Teter J P,Wun-Fogle M,et al.Magnetic poperties of RZn with R=Tb_(1-x)Dy_x(0≤x≤0.6)and R=Tb_(1-y)Gd_y(0≤y≤0.4).IEEE Trans.Magn.,1995,31(6):4032-4034
    [24]Wu C H,Jin X M,Ge W Q,et al.Magnetostriction and anisotropy compensation composition of Dy_(0.9-x)Tb_xPr_(0.1)Fe_(1.85),Dy_(1-x)Tb_x(Fe_(0.9)Mn_(0.1))_(1.8) and Dy_(0.9-x)Tb_xP_(0.1)(Fe_(0.9)Mn_(0.1))_(1.8) alloys.J.Magn.Magn.Mater.,1996,163:360-364
    [25]Clark A E,Teter J P and McMasters O D.Magnetostrictive properties of Tb_(0.3)Dy_(0.7)(Fe_(1-x)Co_x)_(1.9) and Tb_(0.3)Dy_(0.7)(Fe_(1-x)Ni_x)_(1.9),IEEE Trans.Magn.,1987,MAG-23(5):3526-3528
    [26]Guo H Q,Yang H Y,Shen B G,et al.Structure,magnetic and magnetostrictive studies of Tb_(0.27)Dy_(0.73)(Fe_(1-x)Al_x)_2.J.Alloys and Compounds,1993,190:255-258
    [27]Fujimori H,Kim J Y,Suzuki S,et al.Huge magnetostriction of amorphous bulk(Sm,Tb)Fe_2-B with low exciting fields.J.Magn.Magn.Mater.,1993,124:115-118
    [28]Clark A E,Teter J P,and Wun-Fogle M.Anisotropy compensation and magnetostriction in Tb_xDy_(1-x)(Fe_(1-y)T_y)_(1.9)(T=Co,Mn).J.Appl.Phys.,1991,69(8):5771-5773
    [29]Teter J P,Clark A E,Wun-Fogle M,et al.Magnetostriction and hysteresis for Mnsubstitutions in (Tb_xDy_(1-x))(Mn_yFe_(1-y))_(1.95),IEEE Trans.Magn.,1990,26(5):1748-1750
    [30]Funayama T,Kobayashi T,Sakai L,et al.Mn substitution effect on magnetostriction temperature dependence in Tb_(0.3)Dy_(0.7)Fe_2.Appl.Phys.Lett.,1992,61(1):114-115
    [31]D.Viehland,Li J F,Lograsso T A,et al.Structural studies of Fe_(0.81)Ga_(0.19) by reciprocal space mapping.Appl.Phys.Lett.,2002,8(17),3185-3187
    [32]Kellogg R A,Flatau A B,Clark A E,et al.Texture and grain morphology dependencies of saturation magnetostriction in rolled polycrystalline Fe_(83)Ga_(17) J.Appl.Phys.,2003,93(10):8495-8497
    [33]Clark A E,Wun-Fogle M,Restorff J B,Lograsso T A,and Cullen J R,IEEE Trans.Magn.2001,37:2678
    [34]Kellogg R A,Flatau A B,Clark A E,et al.Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe_(0.81)Ga_(0.19).Journal of Applied Physics,2002,91:7821
    [35]刘增民,林后植,章思俊,等.铁磁材料.电子工业出版社:1993
    [36]Clark A E,Hathaway K B,Wun-Fogle M,et al.J.Appl.Phys.,2003 93:8621
    [37]Okamoto H."Fe-Ga(Iron-Gallium)," in Phase Diagrams of Binary Iron Alloys,Monograph Series on Alloy Phase Diagrams No.9,Okamoto H,Ed.,ASM International,Materials Park,OH,1993.147-151
    [38]Ikeda O,Kainuma R,Ohnuma I,et al.J.Alloys and Comp.,2002,347:198
    [39]Kumagai A,FujitaA,Fukamichi K,et al.J.Mag.Mag.Mater.2004,2060:272-276
    [40]Logarsso T A,Ross A R,Schlagel D L,et al.J.Alloys and Comp.,2003,350:95
    [41]Lograsso T A,Summers E M.Materials Science & Engineering,2006,A 416:240
    [42]韩志勇,张茂才,高学绪,等.Ga原子对Fe-Ga合金原子磁矩的影响.北京科技大学学报,2004,26:387-389
    [43]韩志勇,高学绪,张茂才,等.取向多晶Fe-Ga合金结构与磁致伸缩应变研究自然科学进展,2003.13:655-658
    [44]江洪林,张茂才,高学绪,等.Fe_(83)Ga_(17)快淬薄带组织结构与磁致伸缩性能的研究金属学报,2006,42:177-180
    [45]韩志勇,张茂才,高学绪,等.〈110〉轴向取向Fe_(83)Ga_(17)合金中原子间作用与磁致伸缩的关系功能材料,2004,35:548
    [46]徐翔,蒋成保,徐惠彬.Fe_(72.5)Ga_(27.5)合金的相结构和磁致伸缩性能.金属学报,2005,41:483
    [47]Liu L,Fu S,Liu G,et al.Physica B,2005,365:102
    [48]刘立宝,付石友,张怀若,等.Fe_(85)Ga_(15)合金的电子显微结构研究.电子显微学报,2004,23(4):416
    [49]Wuttig M,Dai L,Cullen J.Elasticity and magnetoelasticity of Fe-Ga solid solutions.Appl.Phys.Lett.,2002,80(7):1135-1137
    [50]Wu R.Origin of large magnetostriction in FeGa alloys.J.Appl.Phys.,2002,91:7358
    [51]Bai F,Li J,Viehland D.Magnetic force microscopy investigation of domain structures in Fe-x at.%Ga single crystals(12<x<25).J.Appl.Phys.,2005,98,(2):023904
    [52]Hall R C.Magnetostriction of Aluminum-Iron Single Crystals in the Region of 6 to 30 Atomic Percent Aluminum,J.Appl.Phys.,1957,28(6):707-713
    [53]Hall R C.Single crystals anisotropy and magnetization constants of several ferromagnetic materials including alloys of FeNi,SiFe,AlFe,CoNi,and CoFe.J.Appl.Phys.,1959,30,(6):816-819
    [54]Bolycheva Z N,Borodkina M M and Sand omirskaya V L.Texture and magnetic properties of Fe-Al magnetostriction alloys.Fiz.Metal.Metalloved,1965,19,(1):147-150
    [55]Cline R S and Hu H.Formation of annealing textures in rolled aluminum-iron single crystals.Trans.Metal.Soc.AIME,1965 233:57-64
    [56]Clark A E,Wun-Fogle M,Restorff J B,et al.Temperature dependence of the magnetic anisotropy and magnetostriction of Fe_(100-x)Ga_x(x=8.6,16.6,28.5).J.Appl.Phys.,2005,97:10M316
    [57]Srisukhumbowornchai N and Guruswawy S.Large magnetostriction in directionally solidified FeGa and FeGaAl alloys J.Appl.Phys.,2001,90:5680
    [58]Restorff J B,Wun-Fogle M,Clark A E,et al.,Magnetostriction of ternary Fe-Ga-X alloys (X=Ni,Mo,Sn,Al).J Appl Phys 2002(91):8225
    [59]Dunlap R A,Gaudet J M,Hatchard T D.A Mossbauer effect and X-ray diffraction study of Fe-Ga-Al thin films prepared by combinatorial sputtering Journal of Magnetism and Magnetic Materials 2008,320:2730-2736
    [60]贾宇辉,谭久彬.超磁致伸缩微驱动器在纳米测量中应用的研究.压电与声光,2000,22(2):127-130
    [61]吕福在,项占琴,方正辉.超磁致伸缩材料在活塞异形销孔加工中的应用.机电工程,机电一体化论文集,1997:71-72
    [62]Claeyssen F,Lhermet N,Le Letty R,et al.Design and construction of a resonant magnetostrictive motor.IEEE Transactions on Magnetics,1996,32(5):4749-4751
    [63]Kiesewetter L.The application of Terfenol-D in linear motors development.Proceedings of Second International ConFerence on Giant Magnetostrictive and Amorphous Alloys for Sensors and Applications.Amter,France,1988,1-18
    [64]Vranish J M,Naik D P,Restorff J B,et al.Magnetostrictive direct drive rotary motor development.IEEE Transactions on Magnetics,1991,27(6):5355-5357
    [65]Anjanappa M,Bi J.Theoretical and experimental study of magnetostrictive mini- actuators.Smart Materials and Structures,1994,3(2):83-91
    [66]Ohmata K,Zaike M,Koh T.Three-link arm type vibration control device using magnetostrictive actuators.Journal of Alloys and Compounds,1997,258(1):74-78
    [67]顾仲权,朱金才.磁致伸缩材料作动器在振动主动控制中的应用研究.振动工程学报,1998,11(4):381-388
    [68]盖玉先,藤燕.超精密机床磁致伸缩作动器隔振系统.制造技术与机床,2001,(1):29-30
    [69]张春良,梅德庆,陈子辰.微制造平台微振动的最优控制.振动工程学报,2003,16(3):326-330
    [70]张春良,梅德庆,陈子辰.微制造平台振动的H_2/H_∞混合控制.仪器仪表学报,2004,25(3):298-301
    [71]Zhu H,Liu J,Wang X,et al.Applications of Terfenol-D in China.J.Alloys Comp.,1997,258(8):49-52
    [72]Wakiwaka H,Aoki K,Yoshikawa T,et al.Maximum output of a low frequency sound source using giant magnetostrictive materials.Journal of Alloys and Compounds,1997,258(8):87-92
    [73]张洪平,杜挺.稀土-铁系超磁致伸缩材料水声换能器的研制.金属功能材料,1995,2(3):107-109
    [74]周利生,曹荣.稀土纵向式换能器.声学与电子工程,1995,(3):18-21
    [75]王博文,闫荣格.稀土超磁致伸缩材料、应用与器件.河北工业大学学报,2004,33(2):16-22
    [76]黄文美.超磁致伸缩换能器的动态模型及实验研究:[博士学位论文].天津:河北工业大学,2005
    [77]孟爱华,项占琴,吕福在.微型超磁致伸缩高速阀致动器的优化设计.浙江大学学报(工学版),2006,40(2):216-220
    [78]孟爱华,项占琴,吕福在.GMM换能器的设计优化.传感技术学报,2005,18(4):771-776
    [79]李明范,项占琴,吕福在.超磁致伸缩换能器磁路设计及优化.浙江大学学报(工学版),2006,40(2):192-196
    [80]孙宝元.现代执行器技术.长春:吉林大学出版社.2003
    [81]Wang B,Busbridge S,Li Y,et al.Magnetostriction and magnetisation process in Tb_(0.27)Dy_(0.73)Fe_2 single crystal.J.Magn.Magn.Mater.2000,218:198.
    [82]Wang B,Busbridge S,Guo Z,et al.Magnetization processes and magnetostriction of Tb_(0.27)Dy_(0.73)Fe_2single crystal along <110> direction J.Appl.Phys.2003,93:8489.
    [83]Srisukhumbowornchai N,Guruswawy S.Influence of ordering on the magnetostriction of Fe-27.5 at.%Ga alloys J.Appl.Phys.2002,92(9):5371.
    [84]Clark A,Wun-Fogle M,Restorif J,et al.Magnetostriction and elasticity of body centered cubic Fe_(100-x)Be_x alloys J.Appl.Phys.2004,95(2):6942.
    [85]Clark A,Restorif J,Wun-Fogle M,et al.Magnetostrictive properties of body-centered cubic Galfenol and Galfenol-Al Alloy IEEE Trans.Magn.2000,36(5):3238-3240.
    [86]Massalski T,Subramlanian P,Okamoto H,et al.Binary Alloys Phase Diagrams,ASM,Mater.Park,OH 1990.
    [87]Ikeda O,Ohnuma I,Kainuma R,et al.Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe-Al systemIntermetallics 2001,9(9):755-761
    [88]Udoh K,Oki K,Eguchi T.Process of ordering and disordering of D0_3 phase in Fe-22.2 at%Ga alloy J.Jpn.Inst.Metals,1985,49(5):337-343.
    [89]Moffet M B,Clark A E,Wun-Fogle M,et al.Characterization of Terfenol-D for magnetostrictive transducers,Journal of the Acoustical Society of America 1991,89(3):1448-1455
    [90]D.C.Jiles In:D.Holland,Editor,New Materials and their Applications,1990,Institute of Physics,Bristol
    [91]Jiles D C.Recent advances and future directions in magnetic materials.Acta Mater.2003,51:5907-5939.
    [92]N.Srisukhumbowornchai.Development of highly magnetostrictive Fe-Ga and Fe-Ga-Al alloys.[Ph.D.dissertation].University of Utah:2001
    [93]Lograsso T A,Ross A R,Schlagel D L,et al.Structural transformations in quenched Fe-Ga alloys,J.Alloys Compd.2003,350(1):95-101
    [94]韩志勇,高学绪,张茂才,周寿增,热处理对Fe_(83)Ga_(17)合金磁致伸缩和有序-无序的影响,自然科学进展,14(2004)593-596
    [95]翁玲,王博文,孙英,等.超磁致伸缩致动器的输出位移与其控制研究.仪器仪表学报,2006,27(7):800-803
    [96]贾振元,杨兴,郭东明.超磁致伸缩材料微位移执行器的设计理论与方法.机械工程学报,2001(37)11:46-49.
    [97]夏春林,丁凡,路甬祥.超磁致伸缩材料驱动器实验研究.电工技术学报,1999,4(18):14-16.
    [98]贾宇辉,谭久彬.超磁致伸缩材料微位移驱动系统的研究.仪器仪表学报,2000,21(1):38-41.
    [99]Wang B,Weng L,Li S,et al.Dynamic characteristics of Tb_2Dy_2Fe crystal with <110> axial lignment.Materials Science Forum.2005:475479,2251-2254.
    [100]孙英.超磁致伸缩致动器的神经网络控制与动态模型及实验研究:[博士毕业论文].天津:河北工业大学,2007
    [101]翁玲,曹淑英,王博文,等.超磁致伸缩致动器控制系统的建模与仿真.河北工业大学学报,2002,31(5):27-30.
    [102]曹淑瑛,王博文,闫荣格,等.磁致伸缩致动器的磁滞非线性动态模型研究.中国电机工程学报,2003,23(11):145-149.
    [103]浦军,梅德庆,陈子辰.超磁致伸缩微位移致动器的研究.工程设计学报,2003,10(5):275-278.
    [104]Cao Shuying,Wang Bowen,YanRongge,.Dynamic model with hysteretic nonlinearity for a magnetostrictive actuator[A].Proceedings of the sixth International conFerence on electrical machines and systems,Edited by Fangquan Rao and Guobiao Gu[C].China Beijing:2003,Ⅱ(9-11):706-709.
    [105]Ito N.,Michels A.,Kohlbrecher J.et al.EfFect of magnetic field annealing on the soft magnetic properties of nanocrystalline materials.Journal of Magnetism and Magnetic Materials,2007,316:458-461.
    [106]Wang L,Du Z,Zhao D.Influence of magnetic annealing on properties of SmFe thin films.J.Rare Eerths 2007,25:444-448.
    [107]江丽萍,沙玉辉,李松等.磁场热处理和预压力对Tb0.3Dy0.7Fe1.95合金磁致伸缩“跳跃”效应的影响.中国稀土学报,2006,24(2):197-200.
    [108]Yang C J,EON B P.The effect of magnetic field treatment on enhanced ex2 change coupling of Nd2Fe_(14)B/Fe_3B magnet.IEEE Trans Magn,1996,32(5):442824430.
    [109]Yang C J,EON B P.Mjssbauer study on Nd_2Fe_(14)B/Fe_3B composite magnet treated by an external magnetic field.J.Magn.Magn.Mater.1997,168:2782284.
    [110]Zhao T M,Hao Y Y,Xu X R,et al.Promotion of crystallization and magnetic property improvement:enhancement of the energy product in Nd_(5.5)Fe_(66)B_(18.5)Cr_5Co_5 by magnetic field heat treatment.J Appl Phys,1999,85(1):5182521.
    [111]Verhoeven J D,Ostenson J E,Gibson E D,et al.The effect composition and magnetic heat treatment on the magnetostriction of Tb_xDy_(12x)Fe_2 twinned single crystals[J].J Appl Phys,1989,66:772 - 779.
    [112]计齐根,都有为.磁场热处理对Nd_2Fe_(14)B/α-Fe纳米材料磁性和微磁结构的影响.材料科学与工艺,2000,8(4):22-25.
    [113]Galloway N,Greennough R D,Schulze M P,et al.The effect of magnetic annealing and compressive stress on the magnetic properties of the rare earth-iron compound Terfenol-D.J.Magn.Magn.Mater.1993,119:107-115.
    [114]张小菊,徐仁根,吴危航,等.磁场热处理对Fe_2Cr_2Co合金组织与性能的影响.电工材料2002,2:31-35
    [115]赵铁民,郝云彦,徐孝荣,等.磁场热处理对NdFeB非晶快淬粉末的晶化与磁性的影响.材料研究学报,1998,5
    [116]连利仙,刘颖,李军,等.磁场热处理对纳米复相Nd_2Fe_(14)B/α-Fe永磁体磁性能的影响.中国有色金属学报.2004,12
    [117]江丽萍,吴双霞,沙玉辉,等.退火磁场施加方式对Tb_(0.3)Dy_(0.7)Fe_(1.95)合金磁伸性能的影响.材料热处理学报.2007,28(3):10-13
    [118]Byeon S C,Kim C K,Hong K S.The relationship between microstructure and field-induced anisotropy in cobalt-rich amorphous alloys after magnetic field annealing.Materials Science and Engineering.1999,B56:58-65
    [119]Wun-Fogle M,Clark A E,Restorff J B,et al.Stress annealing of Fe-Ga transduction alloys for operation under tension and compression.J.Appl.Phys.2005,97:10M301
    [120]Wang B W,Li S Y,Zhou Y,et al.Structure,magnetic properties and magnetostriction of Fe_(81)Ga_(19) thin films.Journal of Magnetism and Magnetic Materials 2008,320:769-773
    [121]李淑英 磁致伸缩层状复合材料性能与器件研究[博士毕业论文].天津:河北工业大学,2008
    [122]Kim S R,Kang S Y,Park J K,et al.Magnetostrictive properties of polymer-bonded amorphous Tb-Fe-B composites.J.App.Phys.,1998,83(11):7285-7287