树脂基磁致伸缩复合材料及其智能阻尼器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂粘结Terfenol-D颗粒形成的树脂基超磁致伸缩复合材料与Terfenol-D相比具有涡流损耗低,使用频率宽,抗拉强度高,可加工性好,成本低等优点。本文主要从性能理论预测、制备工艺改进、不同工艺因素作用机理分析、性能影响因素实验分析、在土木工程中的应用等五个方面对树脂基磁致伸缩复合材料展开研究。
     首先,在考虑退磁场效应的前提下,采用复合材料细观力学等效夹杂理论,建立磁致伸缩复合材料的理论模型,研究颗粒形状、含量及基体弹性模量对磁致伸缩复合材料磁致伸缩性能及弹性模量的影响,以及磁致伸缩系数及弹性模量与磁场强度的关系。结果表明,磁致伸缩复合材料的饱和磁致伸缩应变随颗粒含量、纵横比的增大而增大,随基体弹模的增大而减小;弹性模量随颗粒含量、颗粒纵横比、基体弹模的增大而增大;饱和磁场强度随颗粒含量减小或颗粒纵横比减小而增大;颗粒含量越大、纵横比越大,磁致伸缩应变随磁场强度的变化越快;弹性模量随磁场强度的增大而增大,其影响程度在颗粒体积含量和颗粒纵横比较大时尤为显著。
     其次,针对树脂基磁致伸缩复合材料已有制备工艺中的问题,根据不饱和聚酯树脂低粘度的特性,对已有工艺进行了改进,即先采用超声振荡法使颗粒均匀分散在基体材料中,然后在混合体系树脂凝胶过程中通过电磁场系统施加可调节的强磁场,待凝胶后再将复合体系置于高温条件下固化。实验对比证明,采用改进工艺制备的不饱和聚酯树脂基磁致伸缩复合材料具有颗粒分散均匀、磁致伸缩性能高等优点。
     继而,对制备工艺流程中影响最终树脂基磁致伸缩复合材料性能的因素进行了讨论。结果表明,制备过程中颗粒分散方法,凝胶过程中取向磁场强度,最后的固化温度等对树脂基磁致伸缩复合材料的性能具有显著的影响。
     接着,通过实验对取向磁场强度、颗粒含量、颗粒粒度分布、固化温度、基体种类以及掺杂其它颗粒对磁致伸缩复合材料各性能参数的影响进行了讨论分析。结果表明,磁致伸缩复合材料磁致伸缩性能、磁机械耦合系数以及弹性模量、抗压强度等性能参数均随凝胶过程中取向磁场强度的增加而提高,对不同颗粒含量的复合材料存在着不同的取向磁场强度的临界值;磁致伸缩复合材料动静态磁致伸缩系数、磁导率及弹性模量随颗粒含量增大而提高;采用窄分布颗粒制备的磁致伸缩复合材料,其动静态磁致伸缩系数随颗粒平均粒径增大而先增大后减小,而采用宽分布的颗粒所制备的试样其磁致伸缩系数大于所有采用窄分布颗粒所制备的试样;在固化温度小于临界固化温度时,磁致伸缩复合材料的磁致伸缩性能随固化温度的升高而升高,当固化温度超过临界温度时,磁致伸缩复合材料的性能开始下降;相同条件下制备的不饱和聚酯树脂基磁致伸缩复合材料与环氧基磁致伸缩复合材料相比,各性能参数均略有下降;掺杂羰基铁粉在提高磁致伸缩复合材料磁导率的同时降低了其磁致伸缩性能,而掺杂纳米SiO2可以提高树脂基磁致伸缩复合材料的力学性能及低磁场下的磁致伸缩性能。
     此外,本文还通过实验研究了磁流变弹性体(MRE)的磁致伸缩性能。结果表明,由于羰基铁粉颗粒与硅橡胶基体的相互作用,MRE也具有一定的磁致伸缩效应,其磁致伸缩系数随颗粒含量的增大而增大;在粒子含量相同时,MRE的饱和磁致伸缩量随垂直于磁场方向的颗粒所占比重的增大而增大;实验中测得的最大饱和磁致伸缩量与压电陶瓷材料的压电变形量相当,较Terfenol-D的磁致伸缩效应小1个数量级;MRE的磁致伸缩性能不稳定,其饱和磁致伸缩系数及残余磁致应变随加卸磁场次数增加而逐次减小。
     最后,设计了一款基于环氧基磁致伸缩复合材料的半主动摩擦阻尼器。小尺寸实验研究表明,以磁致伸缩复合材料棒材为驱动材料的阻尼器耗能性能良好,且性价比较其它材料高。用其对1:16的斜拉索模型进行振动控制实验,结果表明,该阻尼器能够有效减小斜拉索振动,而半主动控制效果更优。
Magnetostrictive composites containing Terfenol-D particles dispersed within a polymer matrix presents high advantages when compared to the monolithic Terfenol-D. The higher frequency response of magnetostrictive composites increases power density and widens the design space for employing magnetostrictive materials. This dissertation focuses on the performance prediction, improvement of manufacturing craft, influential factors on its performance and applications in civil engineering of magnetostrictive composites.
     Firstly, consider the shape of the magnetostrictive particles in magnetostrictive composites was ellipsoid, which can be described by aspect, the relationship between effective magnetic field and applied magnetic field was established based on demagnetization effect. Combined with the relationship between magnetostriction of magnetostrictive particulate and effective field, the relationship between the magnetostriction of single particle to the applied field was also built up. Then treating the magnetostriction of particulate as an eigenstrain, the average magnetostriction of the composites under any applied field as well as saturation magnetostriction was calculated based on Eshelby equivalent inclusion and Mori-Tanaka method. The calculation results indicated that the saturation magnetostriction of magnetostrictive composites increases with increasing particle aspect, particle volume fraction and decreasing Young’modulus of matrix, and the influence of applied field on magnetostriction of the composites becomes more significant with larger particle volume fraction or particle aspect.
     Secondly, an improved method was developed to overcome the shortcomings of traditional craft of preparing magnetostrictive composites. Magnetostrictive particulates was evenly mixed with liquid resin system by ultrasonic, then large orientation field was applied by an electrical magnetic field system until the resin become gel and the mixture system was supposed to be stable. Then, the mixture was placed in an oven and cured at high temperature for several hours. Test on magnetostriction of polyester resin-bonded Terfenol-D composites prepared by traditional method and improved method indicated the new craft could promote the magnetostrictive properties of magnetostrictive composites. Besides, the mechanism of the influence of dispersion method, orientation field and cure temperature on properties of magnetostrictive composites was discussed.
     Thirdly, the effects of orientation field, particle volume fraction, particle size distribution, cure temperature, polymer matrix and blending with other particles on properties of magnetostrictive composites were studied by experiment. The study on orientation field indicated that the saturation magnetostriction, the peak dynamic strain coefficient, the magnetomechanical coupling coefficient and the Young’s modulus increase with an increasing orientation field. An optimal orientation field exists, the value of which depends on particle volume fraction, and no obvious improvement of the properties could be expected for an orientation field larger than the optimal value. The study on particle volume fraction indicated the magnetostriction increase dramatically with particle fraction at low particle volume fraction, but slightly at large levels. Both permeability and Young’s modulus increase with increasing particle fraction. The composite with 30% particle volume fraction presents the largest compression strength. The study on particle size distribution indicated that the magnetostrictive properties increase with increasing particle size at small particle size level, but decrease at large size level. Magnetostrictive composite fabricated with polydispersed distribution particles presents the largest magnetostrictive properties. The study on cure temperature indicated that when the operating temperature was a constant, at the same magnetic field level, the magnetostrictive properties, such as magnetostriction, piezo-magnetic coefficient and relative permeability, increase with increasing cure temperature. The study on polymer matrix indicated that magnetostrictive composites fabricated with epoxy resin shows better performance than those fabricated with unsaturated polyester resin. The study on blending with carbonyl iron particles indicated that with the increase of the percentage of soft magnetic powder is the increase of magnetic permeability and decline of magnetostrictive properties. The study on blending with nano-SiO2 indicated the mechanical properties and magnetostrictive properties of magnetostrictive composites at low field can be promoted by blended with nano-particles.
     Additionally, this dissertation studied the magnetostrictive properties of magnetorheological elastomer (MRE), another kind of magnetostrictive composites which have not been sufficiently studied. Due to the interaction between silicon rubber matrix and carbonyl iron particulates, MRE exhibits large magnetostriction effect. The particles volume fraction is one of the important factors, which have great influence on the performance of MRE. At low-volume fraction levels, magnetostriction effect of MRE increases with increasing particle volume fraction. The increase of percentage of particles, which are aligned in the transverse direction during cure time, is beneficial to the improvement of saturation magnetostriction. The largest magnetostriction observed in tests was 184ppm, which was as large as piezoelectric ceramic, but was an order less than Terfenol-D. The performance of composites lacked repeatability resulted from the hysteresis effect and remnant strain after switching off the applied field; therefore, the magnetostriction of MRE was unstable.
     Finally, a semi-active friction damper was designed based on the properties of epoxy-bonded Terfenol-D composites with 53% particle volume fraction. Energy dissipation capacity under different magnetic field was tested and compared with the dampers actuated by Terfenol-D and PZT, which indicated the smart friction damper actuated by magnetostrictive composites presented both large tunable damping force and less cost. Then vibration control experimental was done on a model of stay cable by smart friction damper actuated by magnetostrictive composites. The results indicated that this kind of smart friction damper can decrease the vibration of stay cable effectively, especially by semi-active control method.
引文
1 J. P. Joule. On a New Class of Magnetic Forces. Annals of Electricity, Magnetism, and Chemistry. 1842, 8:219~224
    2钟文定.铁磁学(中册).科学出版社, 1984: 82~96
    3 A. E. Clark, B. D. DeSavage and R. Bozorth. Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium. Phys. Rev. 1965, 138:216~219
    4 A. E. Clark, H. Belson. Giant Room-temperature Magnetostriction in TbFe2 and DyFe2. Phys. Rev. B. 1972, 5:3642~3648
    5 A. E. Clark. Magnetostrictive Rare Earth-Fe2 Compounds, in Ferromagnetic Materials, edited by E. P. Wohlfarth, North-Holland, Amsterdam. 1980, 1: 531~589
    6何国,周寿增,李建国.我国稀土超磁致伸缩材料的研究与应用现状.材料导报. 1996, (5):12~17
    7贺西平.稀土超磁致伸缩换能器.科学出版社, 2006:6~12
    8王博文,曹淑瑛,黄文美.磁致伸缩材料与器件.冶金工业出版社, 2008: 74~81
    9 L. Sandlund, M. Fahlander, T. Cedell, A. E. Clark, J. B. Restorff and M. Wun-Fogle. Magnetostriction, Elastic Moduli, and Coupling Factors of Composite Terfenol-D. J. Appl.Phys. 1994, 75(10):5656~5658.
    10 L. Ruiz de Angulo, J. S. Abell and I. R. Harris. Magnetostrictive Properties of Polymer Bonded Terfenol-D. Journal of Magnetism and Magnetic Materials. 1996, 157/158: 508~509
    11 S. H. Lim, S. R. Kim and S. Y. Kang. Magnetostrictive Properties of Polymer-bonded Terfenol-D Composites. Journal of Magneticsm and Magnetic Materials. 1999, 191: 113~121
    12 M. Roberts, M. Mitrovic and G. P. Carman. Nonlinear Behavior of Coupled Magnetostrictive Material Systems Analytical/Experimental. SPIE. 1995, 2411: 341 ~354
    13 L. Sandlund, T. Cedell. Terfenol-D Powder Composite with High Frequency Performance. Journal of Magneticsm and Magnetic Materials. 1996, (5):113~118.
    14詹茂盛,丁乃秀,鲁云华.聚合物及其复合材料磁致伸缩性能的研究进展.材料工程. 2005, (7):59~63.
    15 X. G. Zhao, G. H. Wu, J. H. Wang, K. C. Jia and W. S. Zhan. Stress Dependence of Magnetostriction and Strains in <111>-oriented Single Crystals of Terfenol-D. J. Appl. Phys. 1996, 79(8):6625~6627
    16 G. P. McKnight. [112]Oriented Terfenol-D Composites. Ph.D Dissertation, University of California Los Angeles. 2002: 90~94
    17赵玉庭,姚希曾.复合材料聚合物基体.武汉:武汉工业大学出版社, 1992:5~15
    18 T. A. Duenas, G. P. Carman. Large Magnetostrictive Response of Terfenol- D Resin Composites. J. Appl. Phys. 2000, 87(9): 4696~4700.
    19 G. P. McKnight, G. P. Carman. Large Magnetostriction in Oriented Particle Terfenol-D Composites. American Society of Mechanical Engineers, Aerospace Division. 2001, 64:321~326
    20 M. Anjanappa, Y. Wu. Magnetostrictive Particulate Actuators: Configuration, Modeling and Characterization. Smart Mater. Struct. 1997, 6:393~402.
    21闻荻江.复合材料原理.武汉:武汉工业大学出版社, 1998:141~145
    22 Z. J. Guo, S. C. Busbridge, A. R. Piercy, Z. D. Zhang, X. G. Zhao and B. W. Wang. Effective Magnetostriction and Magnetomechanical Coupling of Terfenol-D Composties. Applied Physics Letters. 2001, 78(22):3490~3492.
    23 T. A. Duenas, G. P. Carman. Experimental Results for Magnetostrictive Composites. American Society of Mechanical Engineers, Aerospace Division. 1998, 57:63~71
    24耿雪霏,闫久春,杨士勤.超磁致伸缩合金粉末材料的粘接.焊接, 2000, (7) :15~17
    25耿雪霏.粘接Terfenol-D复合材料的制备工艺.哈尔滨工业大学硕士学位论文, 2000: 20~26
    26江民红,徐鹏,顾正飞.超磁致伸缩复合材料的静态弹性模量及抗压强度.稀有金属材料与工程, 2005,34(6): 912~915.
    27江民红,顾正飞,成钢.树脂基稀土-铁系超磁致伸缩复合材料的制备与压应力效应研究.中国稀土学报, 23(6), 2005:727~731
    28 J. Hudson, S. C. Busbridge and A. R. Piercy. Magnetomechanical Coupling and Elastic Moduli of Polymer-bonded Terfenol-D Composites. J. Appl.Phys. 1998, 83(11): 7255~5727
    29温永春,赵增祺,江丽萍,吴双霞,郝宏波.粘结Terfenol-D磁致伸缩材料制备工艺研究.稀土. 2006, 27(3): 44~47
    30李淑英.粘结稀土-铁巨磁致伸缩材料的制备工艺与磁特性研究.河北工业大学硕士学位论文, 2002:15~18
    31张羊换,王国清,陈梅艳,解伟,江丽萍.粘结TbDyFe合金的组织及磁致伸缩性能.包头钢铁学院学报, 2002, 21(1):23~25
    32解伟,吴双霞,江丽萍.粉末冶金粘结磁致伸缩材料.金属功能材料. 2001, 8(4): 29~32
    33闫久春. Terfenol-D复合材料磁致伸缩效应数值模拟及定量评价.哈尔滨工业大学博士学位论文, 2002: 68~80
    34李淑英,王博文,翁玲.粉末Tb0.27Dy0.73Fe2的最佳磁粉粒度研究.河北工业大学学报, 2005, 34(3):14~17
    35 T. A. Duenas, G. P. Carman. Particle Distribution Study for Low-volume Fraction Magnetostrictive Composites. J. Appl. Phys. 2001, 90(5):2433~2439.
    36 S. M. Na, S. J. Suh, K. H. Shin and S. H. Lim. Effects of Particle Shape on Magnetostrictive Properties of Polymer-bonded Fe–Co based Alloy Composites. Journal of Magneticsm and Magnetic Materials. 2004, (4):1~3.
    37 W. D. Armstrong. The Strain Behavior of Magnetostrictive Particulate Composites. Part of the SPIE Conference on Smart Materials Technologies. 1999, 3675:214~221
    38 G. P. McKnight, G. P. Carman. [112] Oriented Terfenol-D Composites. Materials Transactions. 2002, 43(5): 1008~1014.
    39 S. W. Or, C. S. Yung, C. Y. Lo. A 64-kHz Sandwich Transducer Fabricated Using Pseudo 1–3 Magnetostrictive Composite. IEEE Transactions on Magnetics. 2006, 42(1):47~50
    40 S. W. Or, N. Nersessian and G. P. Carman. Dynamic Magnetomechanical Behavior of Terfenol-D/Epoxy 1–3 Particulate Composites. IEEE Transactions on Magnetics. 2004, 40(1):71~77
    41 S. W. Or, N. Nersessian and G. P. Carman. Effect of Combined Magnetic Bias and Drive Fields on Dynamic Magnetomechanical Properties of Terfenol-D/epoxy 1–3 Composites. Journal of Magneticsm and Magnetic Materials. 2003, 262:181~185
    42 S. W. Or, G. P. Carman. Dynamic Magnetoelastic Properties of Epoxy-bonded Terfenol-D Particulate Composite with a Preferred [112] CrystallographicOrientation. IEEE Transactions on Magnetics. 2005, 41(10):2790~2792
    43 C. Rodríguez, A. Barrio, I. Orue, J. L. Vilas, L.M. Leon, J. M. Barandiarán and M. L. Fdez-Gubieda Ruiz. High Magnetostriction Polymer-bonded Terfenol-D Composites. Sensors and Actuators A. 2008, 142:538~541
    44 C. Rodríguez, J. M. Cuevasa, I. Orue, J. L. Vilas, J. M. Barandiarán, M. L. Fdez–Gubiedac and L. M. Leon. Magnetostrictive and Mechanical Properties of Terfenol-D Composites based on Polymer. Proc. of SPIE. 2007, 6423:64231M
    45 N. Nersessian, S. W. Or and G. P. Carman. Magneto-thermo-mechanical Characterization of 1–3 Type Polymer-bonded Terfenol-D Composites. Journal of Magnetism and Magnetic Materials. 2003, 263: 101–112.
    46 R. E. Newnham. Molecular Mechanisms in Smart Materials. MRS Bulletin. 1974, 22(5):20~34
    47 W. D. Armstrong. The Non-linear Deformation of Magnetically Dilute Magnetostrictive Particulate Composites. Materials Science and Engineering A. 2000, 285: 13~17.
    48闫久春,杨士勤,何世禹.基于Eshelby等效夹杂理论的Terfenol-D复合材料磁致应变模型.材料科学与工艺, 2002, 10(2):196~198.
    49 H. M. Yin, L. Z. Sun and J. S. Chen. Micromechanics-based Hyperelastic Constitutive Modeling of Magnetostrictive Particle-filled Elastomers. Mechanics of Materials. 2002, (34): 505~516.
    50 X. Feng, D. N. Fang, A.K. Soh and K. C. Hwang. Predicting Effective Magnetostriction and Moduli of Magnetostrictive Composites by Using the Double-inclusion Method. Mechanics of Materials. 2003, (35):623~631
    51朱厚卿.稀土超磁致伸缩材料的应用.应用声学. 1998, 17(5):3~10
    52江民红,杨平生.超磁致伸缩复合材料及其在超声中的应用.国外金属热处理. 2003, 24(4):11~16
    53王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社, 2003:112~131
    54 J. Hudson, S. C. Busbridge and A. R. Piercy. Dynamic Magneto-mechanical Properties of Epoxy-bonded Terfenol-D Composites. Sensors and Actuators. 2000, 81:294~296
    55 Etrena Products Inc. http://www.etrema-usa.com/prfeb9.html
    56 Tianxing Products Inc. http://www.txre.net/chn/indexc.html
    57 J. D. Carlson, M. R. Jolly. MR Fluid, Foam and Elastomer Devices. Mechatronics. 2000, 10:555~569
    58 T. Shiga, A. Okada and T. Kurauchi. Magnetroviscoelastic Behavior of Composite Gels. J. Appl.Polym. Sci. 1995, 58(4): 787~792.
    59 M. R. Jolly, J. D. Carlson, B. C. Munoz and T. A. Bullions. The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in Polymer Matrix. J. Intel. Mater. Syst. Struct. 1996, 7 (11):613~622.
    60 G. Y. Zhou. Shear Properties of a Magnetorheological Elastomer. Smart Mater. Struct. 2003, 12:139~146
    61 M. Lokander, B. Stenberg. Performance of Isotropic Magnetorheological Rubber Materials. Polymer Testing. 2003, 22: 245~251
    62 X. L. Gong, X. Z. Zhang and P. Q. Zhang. Fabrication and Characterization of Isotropic Magnetorheological Elastomers. Polymer Testing. 2005, 24: 669~676
    63 L. C. Davis. Model of magnetorheological elastomers. J. Appl. Phys. 1999, 85(6): 3348~ 3351
    64 J. M. Ginder, S. M. Clark, W. F. Schlotter and M. E. Nichols. Magnetostrictive Phenomena in Magnetorheological Elastomers. Int. J. Mod. Phys. B. 2002, 16: 2412~2418
    65 http://news.sohu.com/20080916/n259582169.shtml
    66张世远,路权,薛荣华.磁性材料基础.科学出版社, 1988:52~74
    67徐忠民.磁粉退磁场和退磁因子的理论计算.材料工程. 1996, (10):9~10
    68张晓渝,陈亚杰,蔡田怡. MnZn铁氧体/SiO2颗粒复合体磁导率的频率响应与温度效应.功能材料. 2003, 34(4):392~394
    69许善椿,李金香,孙玉田.电机电磁计算中的各种磁导率.大电机技术. 1998, (1): 30~34
    70王博文,张智祥,翁玲,李养贤.巨磁致伸缩材料磁机械耦合系数的测量.河北工业大学学报. 2002, 31(4):1~4
    71任俊,沈健,卢寿慈.颗粒分散科学与技术.化学工业出版社, 2005:23~56
    72马立群,陈锋,舒光冀.超声在制备SiC/Al-Mg颗粒增强复合材料中的应用.东南大学学报. 1995, 25(2):50~54
    73徐任信,周祖福,王金钧.测定凝胶时间的新方法.玻璃钢学会第十三届全国玻璃钢/复合材料学术年会论文集. 1999, C9
    74冯海阔,于思荣.超声波在冶金及金属基复合材料制备过程中的应用.特种铸造及有色合金. 2006, 26(1):31~34
    75潘蕾,陶杰,陈照峰,刘子利.高能超声在颗粒/金属熔体体系中的声学效应.材料工程. 2006, (1):35~42
    76王俊,陈锋,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用.上海交通大学学. 1999, 33(7):813~816
    77张锦,张乃恭.新型复合材料力学机理及其应用.北京航空航天大学出版社, 1993: 102~124
    78 J. L. Thomason, M. A. Vlug. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-reinforced Polypropylene: 4. Impact Properties. Composites Part A. 1997, 28A: 277~288
    79王建冲,张茂才,高光绪,周寿增,王润.巨磁致伸缩合金Tb-Dy-Fe近似单晶颗粒在磁场中的取向.中国稀土学报. 2006, 24:148~152
    80欧进萍.结构振动控制:主动、半主动和智能控制.科学出版社, 2003: 1~10
    81余海湖,赵愚,姜德生.智能材料与结构的研究及应用.武汉理工大学学报, 2001, 23(11):39~41
    82李惠,刘敏,欧进萍,关新春.斜拉索磁流变智能阻尼控制系统分析与设计.中国公路学报. 2005, 18(4):37~41
    83 J. S. Kumar, N. Ganesan, S. Swarnamani and C. Padmanabhan. Active Control of Cylindrical Shell with Magnetostrictive Layer. Journal of Sound and Vibration. 2003, 262:577~589
    84 V. Balamurugan, S. Narayanan. Active Vibration Control of Smart Shells Using Distributed Piezoelectric Sensors and Actuators. Smart Marerial and Structure. 2001, 10:173~180
    85 L. Tong, D. Sun and S. N. Atluri. Sensing and Actuators Behaviors of Piezoelectric Layers with Debonding in Smart Beams. Smart Material and Structure. 2001, 10: 713 ~723
    86 V. Giurgiutiu, C. A. Rogers. Large-Amplitude Rotary Induced-Strain (LARIS) Actuator. Journal of Intelligent Material Systems and Structures. 1997:41~50
    87 X. C. Guan, J. L. Li and J. P. Ou. A novel controllable viscous fluid damper based on magnetic shape memory alloy. Pacific Science Review. 2004, 6:213~216
    88 X. C. Guan, J. H. Li and J. P. Ou. Experiment Study of Large-scale Magnetorheological Fluid Damper. Proceedings of SPIE’s 12th Annual International Symposium on Smart Structures and Materials. 2005: 5241~5244
    89 H. Li, M. Liu, J.H. Li, X. C. Guan and J. P. Ou. Field Tests of Vibration Control of Stay Cables by Using Magnetorheological Fluid Dampers. IEEE International Symposium on Intelligent Control and 13th Mediterranean Conference on Control and Automation. 2005: 521~523
    90王宏,郭彦林,任革学.索振动控制及其工程应用.工业建筑. 2003, 33(7):1~2
    91王金峰,刘斌.斜拉索的振动与抑振措施探讨.中国港湾建设. 2006, (1):1~3
    92 X. C. Guan, X. F. Dong, P. F. Guo and J. P. Ou. Vibration Control and Magnetostrictive Composite Materials. Proceedings of SPIE’s 13th Annual International Symposium on Smart Structures and Materials. 2006, 61690:61690Q
    93邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立.工程设计学报2004, 11(4): 1~4
    94 S. Ashley. Magnetostrictive Actuators. Mechanical Engineering. 1998, 120 (6):68~69
    95欧进萍,关新春,吴斌,隋丽丽.智能型压电-摩擦耗能器.地震工程与工程振动. 2000, 20(1):81~86
    96 X. C. Guan, Y. Wu and J. P. Ou. Smart Friction Damper based on Micro-displacement Atuator. Erik Johnson and Andrew Smyth. Proceeding of the Fourth World Conference on Structural Control and Monitoring, San Diego, 2006:1241~1248
    97 X. C. Guan, P. F. Guo and J. P. Ou. Design Method of Magnetic Circuit of Tefernol-D Actuator. Proceeding of the 4th China-Japan-US Symposium on Structural Control and Monitoring, Hangzhou, China, 2006:251~253
    98 G. Engdahl. Design Procedures for Optimal Use of Giant Magnetostrictive Materials in Magnetostrictive Actuator Applications. Actuator 2002, 8th International Conference on New Actuators, Bremen, Germany, 2002:157~164
    99雷银照.轴对称线圈磁场计算.中国计量出版社, 1991:201~210
    100林其壬,赵佑民.磁路设计原理.机械工业出版社, 1987:325~340
    101吴阳.基于磁致伸缩材料的半主动摩擦阻尼器的设计与应用研究.哈尔滨工业大学硕士学位论文, 2007:47~53
    102 H. M. Irvine. Cable Structures. MIT Press, Cambridge, Massachusetts, 1981:56~84
    103胡海岩.应用非线性动力学.航空工业出版社, 2002:224~24
    104 R. Stribeck. The Key Qualities of Sliding and Roller Bearings. Zeitschrift des Vereines Seutscher Ingenieure. 1902, 46H38(39I):1342~48,1432~1437
    105 B. F. Spencer, Jr. Dyke and S. J. Sain. Phenomenological Model for Magneto-rheological Dampers. Journal of Engineering Mechanics. 1997, 123:230~238
    106 E. A. Johnson, R. E. Christenson and B. F. Spencer. Semi-active Damping of Cables with Sag. Computer-Aided Civil and Infrastructure Engineering. 2003, 18:132~146
    107 D. Hrovat, P. Barak and M. Robins. Semi-active Versus Passive or Active Tuned Mass Dampers for Structural Control. Journal of Engineering Mechanics. 1983, 109:691~701
    108 B. M. Pacheco, Y. Fujino and A. Sulekh. Estimation Curve for Modal Damping in Stay Cables with Viscous Damper. Journal of Structural Engineering. 1993, 119(6):1961 ~1979
    109刘敏.斜拉索—磁流变液阻尼控制系统及形状记忆合金耗能体系.哈尔滨工业大学工学博士学位论文. 2006:36~47
    110 W. D. Iwan, N. C. Gates. Estimation Earthquake Response of Simple Hysteretic Structures. Journal of the Engineering Mechanics Division. 1979, EM3: 391~405