双相钢点焊熔核界面撕裂失效机理与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对世界汽车保有量与日俱增带来的能源短缺、环境污染等一系列问题,通过减轻车体自重实现汽车的轻量化是节约能源、降低油耗和减少排放污染的最有效途径。使用双相高强钢(Dual Phase Steel)为代表的轻量化材料,能够在不降低车身强度和刚度等各项性能指标的前提下,有效降低汽车重量,实现车身材料轻量化,目前车身普遍采用的低碳钢以及低合金钢材料正在越来越多地被双相高强钢材料所替代。电阻点焊由于其低成本、易于实现自动化作业的特性,仍然是车身制造中首选的连接工艺,然而,基于相变强化机制的双相钢由于其特有的微观组织结构,点焊过程中焊点内部冷却速度不均将产生裂纹、气孔等缺陷,导致焊点熔核区强度低于母材强度,当进行焊点力学性能测试时,会产生点焊熔核界面撕裂问题。发生熔核界面撕裂的焊点十字拉伸强度将下降约10%,而焊点低周疲劳强度将下降约25%,因此,研究双相钢焊点发生界面撕裂的机理、建立评价该失效模式的特征指标、优化焊接工艺参数来实现焊点界面撕裂的有效控制,是亟待解决的重要问题,本文正是在上述背景下开展的研究工作。
     基于以上背景,本文主要以1.4mm双相钢(DP600)材料为研究对象,首先通过静载拉剪实验、动态疲劳实验研究双相钢焊点界面撕裂对点焊熔核质量的影响规律,采用微观金相和SEM实验探讨双相钢点焊熔核界面撕裂的形成机理;通过建立双相钢点焊接头力学模型,获得评价双相钢焊点界面撕裂的临界熔核直径指标;研究双相钢点焊熔核界面撕裂的微观组织演变规律,分析保压时间、后处理、多脉冲、锻压力等工艺参数对点焊熔核微观组织和硬度的影响;最后基于响应面方法对焊接工艺参数进行优化,以实现双相钢焊点界面撕裂的有效控制。论文旨在揭示双相钢焊点界面撕裂形成机理的同时,提高双相钢焊接质量,确定最优焊接工艺参数,开展的主要研究工作如下:
     (1)双相钢点焊熔核界面撕裂特征及成因分析
     双相钢电阻点焊快速冷却过程中形成的淬硬马氏体会增加点焊接头脆性,产生熔核界面撕裂问题,降低了焊接质量。本章首先分析双相钢焊点的不同失效模式并定义其失效级别:0级为合格焊点的熔核剥离模式,1~4级分别为焊点界面撕裂模式,且级数越高,界面撕裂程度越大。然后采用静态拉剪实验及动态疲劳实验研究各级焊点界面撕裂对焊点质量的影响规律,结果表明,2级以上的界面撕裂对焊点静载拉剪强度、动态疲劳强度均有较大的影响,尤其对疲劳强度的影响更为显著;并且界面撕裂级数越高,影响程度越大。在此基础上,结合微观金相和SEM试验,研究双相钢焊点界面撕裂的机理。结果表明,焊点力学性能和微观组织变化是引起双相钢焊点界面撕裂的主要原因,从而为后续研究提供了理论依据。
     (2)双相钢焊点界面撕裂力学评价模型建立
     针对传统熔核直径经验公式4 t难以有效评价双相钢焊点质量的问题,本章通过理论计算建立双相钢点焊熔核在拉剪方式下的界面撕裂评价模型:综合考虑板厚、压痕、熔核维氏硬度等参数,对双相钢焊点受载过程进行力学建模,研究界面撕裂和熔核剥离两种模式下焊点承受的不同应力分布规律,应用极限应力理论和Tresca失效准则,计算两种失效模式下焊点所能承受的最大载荷,由此获得了界面撕裂失效模式时的临界熔核直径d Cr;最后针对1.4mm及1.8mm双相钢DP600焊点拉剪失效模式进行验证。通过与经验公式的对比表明,本章所推导的临界熔核直径公式能够实现双相钢点焊熔核界面撕裂模式的准确评价。
     (3)双相钢点焊熔核界面撕裂的微观组织分析
     考虑点焊微观组织是影响其熔核界面撕裂的内在因素,本章采用理论结合实验的方法研究了点焊工艺参数对焊点微观组织的作用规律:通过分析Fe-C合金连续冷却相变图(CCT)和点焊冷却过程,得出点焊过程中主要发生马氏体相变;基于点焊熔核马氏体含量和维氏硬度测定结果,获得了不同焊点失效模式下的马氏体含量和硬度变化规律;最后研究保持时间、后处理工艺、多脉冲及锻压力等单个焊接工艺参数对点焊熔核微观组织及硬度的影响,为控制双相钢焊点界面撕裂的多参数优化提供研究基础。
     (4)控制双相钢焊点界面撕裂的焊接工艺参数优化
     针对双相钢点焊熔核界面撕裂的工艺参数优化问题,本章采用响应面方法进行了参数设计、分析和优化:以实际熔核直径d与临界熔核直径d Cr的比值η作为设计目标,采用均匀实验设计法,建立了二次响应面回归模型,分析各参数对η的影响,结果表明:焊接电流、时间及锻压力是影响焊点失效模式的最主要因素,焊接力、保持时间、后处理时间为次要因素;然后采用多目标函数的序列二次规划(SQP)优化算法,综合考虑熔核直径比η及其对焊接工艺参数的敏感度ψ,获得了最优的焊接参数,既增加了熔核直径比,又降低了其对焊接参数的敏感度,从而实现了双相钢点焊工艺参数的优化,控制了双相钢焊点的界面撕裂问题。
     通过以上工作,本文对双相钢焊点界面撕裂有了一个比较全面和系统的分析。从它的特征、机理、评价、控制等方面都进行了较为深入的探讨,对于双相钢点焊质量的评价与工艺参数控制,均提供了理论和实践依据,为双相钢在车身制造中的进一步推广,奠定了坚实的基础。
The energy and environment problems caused by the increase of automobile are becoming more and more urgent. Weight reduction of automobile is the most effective way to solve these problems. Dual-phase steel (DP) is such a kind of material used in automobile production to realize automobiles’weight reduction without decrease strength and stiffness. Therefore, the traditional low carbon and low alloy steel used in automobile industry are gradually replaced by high strength steels such as DP. Resistance spot welding process is still the major joining method in automobile industry due to its advantages such as low cost and easy automation. However, the special microstructure of DP will cause asymmetric cooling speed and result in crack and shrinkage voids during resistance spot welding process. The strength of nugget will lower than base material and interfacial fracture failure mode will appear during mechanical test. This failure mode will reduce the cross tension strength by 10% and low cycle fatigue strength by 25%. As a result, studying the mechanism, setting up evaluation model and optimizing welding process parameters to avoid the interfacial fracture mode of DP are becoming more and more important. This dissertation is conducted under this situation.
     Based on the background mentioned above, 1.4mm thick DP600 is selected as the research material. Firstly, tensile-shear test and fatigue test are conducted to study the influence of interfacial fracture mode DP600 weld on the weld quality to investigate the mechanism of DP’s interfacial fracture mode. Secondly, critical weld diameter is determined from the builded module of weld’s mechanical test to evaluate the failure modes of DP. Thirdly, transformation rules of martensite during resistance spot welding are investigated. Holding time, post-heat, multi-pulse and forging force are studied to find out their influence on micro-hardeness of spot welds. At last, welding process parameters are optimized using the response surface methodology (RSM) to avoid interfacial fracture failure mode of DP. The purpose of this dissertation is to study the mechanism, improve weld quality and optimize welding parameters for DP welds. The main tasks are listed as follows.
     (1) Characteristic and mechanism study on DP weld’s interfacial fracture mode
     The martensite transformed during the quench stage of resistance spot welding process will make the weld joint brittle and cause interfacial fracture failure mode. It will greatly decrease DP weld’s quality. This section analyzes the different failure modes of DP welds and defines their fracture degrees. 0 degree represents good weld quality with button pull-out mode while 1~4 degree represents interfacial fracture mode. The fracture magnitude will increase as the degree increases. Tensile-shear and fatigue test are conducted to study the influence of different fracture degrees on weld quality. Results show that interfacial fracture higher than 2 degree will greatly affect the weld quality especially on the fatigue life. The effect will be greater as the increase of fracture degree. Based on these studies, metallographic and SEM experiments are used to investigate the mechanism. It can be concluded that the load capacity of weld, microstructure of martensite are the source of interfacial failure mode of DP weld. The conclusions will provide theoretical support to the following investigation.
     (2) Study of mechanical evaluation module for DP weld’s interfacial fracture mode
     For the traditional nugget formula 4 t can not evaluate the high strength steel weld quality effectively, this chapter calculate the critical nugget formula based on the different failure mode of DP weld under tensile-shear test. Mechanical module of weld nugget is builded considering the thickness, indentation and micro-hardeness of weld material. According to the different stress distribution under interfacial fracture mode and button pull-out mode, the maximum force for these two kinds of failure modes are determined based on Tresca criteria and limit stress theory. Then critical weld diameter is calculated. 1.4mm and 1.8mm thick DP600 steel are used to validate the critical weld diameter. Compared to the experiential formula, the critical formula can evaluate interfacial fracture mode of DP weld effectively.
     (3) Microstructure analysis of DP weld’s interfacial fracture mode
     Considering that the weld’s microstructure is the source of DP’s interfacial fracture mode, influence of welding process parameters on microstructure transformation is investigated by theoretical and experimental methods in this chapter. According to the continous cooling transformation (CCT) diagram of Fe-C alloy and cooling stage of spot welding process, martensite transformation is the dominate process of microstructure transformation. Content of martensite and Vickers hardenss are measured for different fracture modes to see the influence of martensite performance on fracture modes. At last, the influence of welding parameters, such as holding time, post-heat conditions, multi-pulse welding, forging force experiments are conducted to do find out their single effect on the microstructure. The results can provide foundation for the parameter optimization in the next stage.
     (4) Control of DP weld’s interfacial fracture mode by optimizing welding process parameters
     Focus on welding parameters optimization to avoid DP’s interfacial fracture failure mode, response surface methodology (RSM) is used to conduct welding parameters design, analysis and optimization. Nugget size ratioηof real nugget diameter d versus critical nugget diameter dCr is used in this section to evaluate interfacial fracture degree of DP welds. Quadradic equation module is concluded from the RSM and uniform experimental design matrix to show that welding current, time and forging force are the most important factors that influence the nugget size ratio while welding force, hold time and post-heat time are the unimportant factors. Considering the maximum of nugget size ratioηand minimum insensitive to welding parametersψ, the optimum welding process parameters are concluded using the SQP method. As a result, control of DP steel weld’s interfacial failure mode by optimizing welding parameters is realized.
     Based on the contents mentioned above, a general and systemic analysis of DP weld’s interfacial fracture failure mode can be got. The characteristic, mechanism, evaluation and control of DP weld’s interfacial fracture failure mode are studied. It can provide theoretical and experimental support for welding DP steels. Besides, it will help the implementation of DP steel in automobile production.
引文
[1]. Heggie W. S., Sandri R., Energy saving hydro-pneumatic power plant for the automobile, Fluidics Quarterly, Dec 1980, v12 n4, p1-20
    [2]. A. E. Cornford, J. R. Hiam, R. M. Hobbs, SAE paper, 790007, 1979, Feb
    [3].孙志成,车身轻量化制造中的焊接技术,汽车制造业,2008
    [4]. Kary John J., Weight Reduction of Automobile Bumper Systems, SAE Preprints, n760012, 1976, 5p
    [5]. Buchholz Kami, ULSAB proves lighter is stronger, Automotive Engineering (Warrendale, Pennsylvania), May 1998, v106, n5, p36-38
    [6].闫志波,王长明,吴会波,激光拼焊线在汽车上的应用,焊接技术,2007, 36 (5): p29-31
    [7]. Oh Soo-Ik, Jeon Byung-Hee, Kim Hyun-Yong, Yang Jae-Bong, Applications of hydroforming processes to automobile parts, Journal of Materials Processing Technology, May 2006, v174, n1-3, p42-55
    [8]. ULSAB-AVC Consortium, Technical Transfer Dispatch #6 (Body Structure Materials), May 26, 2001
    [9]. Goodman S. R., Mould P. R., High-strength steel sheets for automobile body panels, SAE Preprints, 1979, n790168:17p
    [10]. Shi M.F., Thomas G.H., Chen M.X., Fekete J.R., Formability performance comparison between dual phase and HSLA steels, Iron and Steelmaker (I and SM), Mar 2002, v29 n3, p27-32
    [11]. Oliver S., Jones T.B., Fourlaris G., Dual phase versus TRIP strip steels: Comparison of dynamic properties for automotive crash performance, Materials Science and Technology, Apr 2007, v23 n4, p423-431
    [12]. Nishimoto Akihiro, Hosoya Yoshihiro, Nakaoka Kazuhide, New type of dual-phase steel sheet for automobile outer body panels, Transactions of the Iron and Steel Institute of Japan, 1981,v21 n11, p778-782
    [13]. Wu S.K. A methodology for optimal door fit in automobile body manufacturing.Ph.d Dissertation, the university of Michigan, 1991
    [14]. D.Ceglack,J.Shi. A knowledge-based diagnostic approach for launch of auto body assembly process, journal of engineering for industry, 1994, 116(12),491-499
    [15].连军,车身装配偏差传递的DEDS建模研究,上海交通大学博士学位论文, 2003
    [16]. Hu.S.J, Stream of variation theory for automotive body assembly, Annals of the CIRP, 1997, 46(1):1-6
    [17]. Dariusz, Dimensional variation reduction for automotive body assembly, ASME of manufacturing review, 1995, 8(2), 139-154
    [18]. S.Charles Liu, S.Jack Hu. Variation simulation for deformable sheet metal assemblies using finite element methods. journal of manufacturing science and engineering, 1997, 119(8), 368-374
    [19]. Okita Tomoyoshi, Hosoya Yoshihiro, Nakaoka Kazuhide, Manufacturing process of As hot rolled dual phase steel, Journal of the Iron and Steel Institute of Japan, Jul 1982, v68 n9, p1313-1322
    [20]. Liang Xuan, Li Jun, Peng YingHong, Effect of water quench process on mechanicalproperties of cold rolled dual phase steel microalloyed with niobium, Materials Letters, Jan 2008, v62 n2, p327-329
    [21]. Krauss George, Microstructure and performance of carburized steel. Part I: martensite, Advanced Materials & Processes, May 1995, v147 n5 p40Y-40BB
    [22]. Tomasz Wierzbicki, New Research Program on Fracture of Advanced High Strength Steels (AHSS), The Impact and Crashworthiness Lab, MIT, Aug 2006
    [23]. Stijn Donders, Marc Brughmans, Luc Hermans, Nick Tzannetakis, The Effect of Spot Weld Failure on Dynamic Vehicle Performance, 2005
    [24]. B. Yan, H. Zhu, SH. Lalam et al., Spot Weld Fatigue of Dual Phase Steels, SAE Technical Paper Series, 2004-01-0511
    [25].刘嘉苓,文慕冰,陈乾惕,双相钢的特征与生产工艺,钢铁研究,1985, 03, p88-94
    [26].吴宝榕,双相钢-物理和力学冶金,冶金工业出版社, 1988.6
    [27]. B. Pollard, R. H. Goodenow, SAE Paper 79006, Feb 1979
    [28].李在先等,冷轧SX55双相钢点焊性能的研究,东北大学学报,1995(16):160-164
    [29]. Yasuharu Sakuma,Yasuo Takahashi, Spot-weldability of galvannealed steel sheets with a tensile strength of 590 MPa, Society of Automotive Engineers of Japan,2002,23:142-144
    [30]. Kurt Hofman,Resistance spot welding of high strength steel sheets (600-1200N/mm2), Apr 2003
    [31]. B. Yan, K. Laurin, K. Xu, S. Sriram, M. Huang, J. Chintamani SH. Lalam, A New Dual Phase Steel for Automotive Body Panels, SAE Technical paper series,2003-01-0518
    [32]. Min Kuo, John Chiang, Weldability Study of Resistance Spot Welds and Minimum Weld Button Size Methodology Development for DP Steel,SAE, 2004-01-0169
    [33]. Kurt Hofman, AC or DC for Resistance Welding Dual-Phase 600, Welding Journal, 2005(1):46-48
    [34]. International Iron & Steel Institute,Committee on Automotive Applications,Advanced High Strength Steel (AHSS) Application Guidelines, Version 3
    [35]. GM/NAO High Strength Steel Applications Manual, Chapter 2 High Strength Steel Versus Mild Steel,1996:p2-60
    [36]. S.H.Lin, J. Pan, S.R. Wu, T. Tyan, P. Wung, Failure loads of spot welds under combined opening and shear static loading conditions, Solids and Structures, 2002, (39): 19-39
    [37]. Ibrahim Sevim, Effect of hardness to fracture toughness for spot welded steel sheets, Materials and Design 2006 (27):21–30
    [38]. Armando Joaquin, Adrian N.A. Elliott, Reduction of Shrinkage Voids in Resistance Spot Welds of Advanced-High Strength Steels, Sheet Metal Welding Conference XII,2006
    [39]. Manuel Marya, Kathy Wang, Louis G. Hector,Xiaohong Gayden,Tensile-Shear Forces and Fracture Modes in Single and Multiple Weld Specimens in Dual-Phase Steels,Journal of Manufacturing Science and Engineering,2006,Vol128:287-298
    [40]. T.B. Hilditch, J.G. Speer, D.K. Matlock, Effect of susceptibility to interfacial fracture on fatigue properties of spot-welded high strength sheet steel, Materials and Design,2006.10.019
    [41].中国机械工程学会焊接学会.电阻焊(III)专业委员会,电阻焊理论与实践,机械工业出版社,北京, 1994
    [42]. American National Standard, 1997. Weld button criteria, recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steelmaterials. ANSI/AWS/SAE/D8.9– 97, Section 5.7
    [43]. K. W. Ewing, M. Cheresh, R. Thompson, P. Kukuchek, Static and impact strengths of spot-welded HSLA and low carbon steel joints. SAE 820281, Society of Automotive Engineers, Warrendale, PA, 1982
    [44].张小云,张延松,陈关龙,基于焊点压痕的伺服焊枪点焊质量在线检测方法研究,焊接学报, Oct 2006, 27(10):57-6
    [45]. Y. J. Chao, Failure mode of spot welds: interfacial versus pullout, Science and Technology of Welding and Joining 2003 Vol. 8 No.2 133-137
    [46]. Y. J. Chao, Ultimate Strength and Failure Mechanism of Resistance Spot Weld Subjected to Tensile, Shear, or Combined Tensile/Shear Loads,Journal of Engineering Materials and Technology, 2003, Vol. 125:125-132
    [47]. X. Sun, E. V. Stephens, R. W. Davies, M. A. Khaleel, D. J. Spinella, Effects of Fusion Zone Size on Failure Modes and Static Strength of Aluminum Resistance Spot Welds,Welding Journal, 2004, (11): 308s-318s
    [48]. M. Marya,X. Q. Gayden, Development of Requirements for Resistance Spot Welding Dual-Phase (DP600) Steels Part 2-Statistical Analyses and Process Maps, Welding Journal,2005,197s-207s
    [49]. P Salvini, V Vullo, F. Vivio, P Guarino, One shot failure modes in spot welded structures, Welding International, 2005 19 (4) 297–304
    [50]. Xin Sun, E. V. Stephens, M. A. Khaleel, Effects of Fusion Zone Size on Strength and Failure Modes of Advanced High-Strength Steel Spot Welds,Sheet Metal Welding Conference XII,2006
    [51]. M. Marya, K. Wang, L. G. Hector, X. H. Gayden, Tensile-Shear Forces and Fracture Modes in Single and Multiple Weld Specimens in Dual-Phase Steels,Journal of Manufacturing Science and Engineering, 2006,Vol128:287-298
    [52]. W. L. Chuko, J. E. Gould, Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels, Welding Journal, Jan 2002, 1s-7s
    [53]. J.E. Gould, S.P. Khurana, T. Li, Predictions of Microstructures when Welding Automotive Advanced High-Strength Steels, Welding Journal, May 2006, 111s-116s
    [54]. K. Poorhaydari, B.M. Patchett, D.G. Ivey, Transformation twins in the weld HAZ of a low-carbon high-strength microalloyed steel, Materials Science & Engineering A, 2006(435-436): 371-382
    [55]. Warren Peterson, Methods to minimize the occurrence of interfacial fractures in HSS spot welds,Sheet Metal Welding Conference X,2006
    [56]. M. Marya, X. Q. Gayden, Development of Requirements for Resistance Spot Welding Dual-Phase (DP600) Steels Part 1-The Causes of Interfacial Fracture, 2005,11:172s-182s
    [57]. Chuko, W., Gould, J. E. 2002. Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels, Report to the American Iron and Steel Institute
    [58]. Esme Ugur, Cakmak Ayca, The effect of electrode shape and force on the contact resistance of spot welded joints, American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, 2005, v16-2, p1403-1407
    [59]. El-Banna Mahmoud, Filev Dimitar, Chinnam Ratna Babu, Intelligent constant current control for resistance spot welding ,IEEE International Conference on Fuzzy Systems,2006 IEEE International Conference on Fuzzy Systems, p1570-1577
    [60]. Tsai C L, Dai W L, Dickinson D W.Analysis and development of a real-time control methodology in resistance spot welding [J].Welding Research Supplement, 1991, 70(12): 339-351
    [61]. Holm, R., Electric contact theory and application, 4th edition, New York, chapter1,1967, 21-25
    [62]. Savage W. F., Nippes E. F., Wassell F. A., Dynamic contact resistance of series spot welds, Welding Journal (Miami, Fla), Feb 1978, v57 n2, p43-50
    [63]. Maslov G. A., Influence of tempering temperature on the static strength of resistance spot welded joints, Welding Production, Feb 1974, v21 n2, p44-46
    [64]. Hiratsuka Kazutomi, Tempering conditions for spot welds of hardenable steel sheets, Transactions of the Japan Welding Society, Sep 1973, v4 n2, p75-80
    [65].王宁一,林德怀,中碳钢的电极间回火二次脉冲点焊,焊接技术, 1982(4): 25-27
    [66]. M. S. Bzdok, N. High-Strength Steel Joining Technologies Project, Automotive Lightweighting Materials, FY 2005 Progress Report
    [67].服部隆行等,利用伺服焊枪的自动单侧点焊装置,国外机车车辆工艺, 2000(05):15-18
    [68]. ABB, ABB Flexible Automation for Savings With Servo Guns, ABB Corporation report, 2002(9)
    [69]. Slavick S.A. Using Servo gun for Automated Resistance Welding, Welding Journal, July 1999:29-33
    [70]. Dengensha, Servo spots series-Introduction and Features, Dengensha Manufacturing Corporation Limited, Dec 1997
    [71]. Y. J. Park., H Cho. Quality evaluation by classification of electrode force patterns in the resistance spot welding process using neural networks, Proceedings of the institution of mechanical engineers, Part B, Journal of Engineering Manufacture, 2004, 244(11):1513-1524
    [72]. He. Tang .Machine mechanical characteristics and their influences on resistance spot welding quality. PHD Dissertation, University of Michigan ,2000
    [73]. S. Zuniga, S. D. Sheppard: in‘Fatigue and fracture mechanics’, Vol. 27, ASTM STP 1296, (ed. R. S. Piascik et al.), 469–489; 1997, Philadelphia, USA, ASTM.
    [74]. Automotive Welding Handbook, Revision Date: 11/15/96, General Motors
    [75]. Cahoon, J. R., Broughton, W. H., and Kutzak, A. R., Determination of Yield Strength from Hardness Measurements, Metallurgical Transactions, 1971(2):1979-1983
    [76].戈晓岚等,机械工程材料,中国林业出版社, 2006.8
    [77]. Mohammad Ibraheem Khan, Spot Welding of Advanced High Strength Steels. PH.D thesis from University of Waterloo
    [78]. Thelning Karl Erik,CCT diagrams with natural cooling. Scandinavian Journal of Metallurgy, 1978, 7(6): 252-263
    [79].扎伊尔(德),焊接热效应,机械工业出版社, 1996,1-50
    [80]. W. Li, Modeling and on-line estimation of electrode wear in resistance spot welding, Journal of Manufacturing Science and Engineering, November 2005, Vol.127:709-717
    [81].罗爱辉,电阻点焊电极热流耦合分析与对流换热特性研究,上海交通大学博士论文, 2008
    [82]. G shi, S A Westgate, Techniques for improving the weldability of trip steel using resistancespot welding, TWI research paper. 2007
    [83]. F. Osmond, Bull. Soc. Encour. Ind Nat., 1895(10):480
    [84]. A. R. Troiano, A. B. Greninger, Metal Prog., 1946(50):303
    [85].徐祖耀,马氏体相变与马氏体,科学出版社, 1999,第二版
    [86]. C. H. Johansson, Arch. Eisen., 1937-1938(11):241
    [87].邓永瑞,马氏体转变理论,科学出版社, 1993
    [88].冯端等,金属物理学-第二卷相变.北京,科学出版社, 1990
    [89].铃木春义,田村博,焊接金属学,机械工业出版社, 1982.11
    [90].徐祖耀,金相检验与相变研究及应用,理化检验.物理分析, 1994, 30(5):2-6
    [91].范雄, X射线金属学[M].北京:机械工业出版社, 1981: 118-242
    [92]. Muhammad Sohaib Khan, Sanjiwan D. Bhole, Daolun Chen, Tempering Treatment in Resistance Spot Welding of DP 600 Steel, Sheet Metal Welding Conference XIII, May 14-16, 2008
    [93]. H Tang, W Hou, S J Hu, Forging force in resistance spot welding, Proc Instn Mech Engrs Vol 216 Part B: J Engineering Manufacture
    [94]. FANUC Robot series (R-J3i Model B) Servo Gun Function Operator’s Manual, B-81514EN/01
    [95].田胜元,萧曰嵘,实验设计与数据处理,中国建筑工业出版社,北京. 1988
    [96]. Kim T., Park H., Rhee S., Optimization of welding parameters for resistance spot welding of TRIP steel with response surface methodology. International Journal of Production Research, Nov 2005, 43(21): 4643-4657
    [97].隋允康,张轩,宇慧平,结构形状优化响应面方法的改进与应用,北京工业大学学报, 2008, 34(1): 31-37
    [98].朱志斌,张可村,不等式约束优化一个新的SQP算法.计算数学, 2004, 26(04): 413-426
    [99].安伟刚,多目标优化方法研究及其工程应用.西北工业大学博士论文, 2005
    [100].飞思科技产品研发中心, MATLAB 6.5辅助优化计算与设计. 2003