基于预测理论的精密角位移动态测量及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位移测量是最基本、最普遍的测量。从宇航飞行卫星探测到超大规模集成电路生产,从物质结构研究到纳米技术的探索,无一不需要高精度位移测量。在精密测量中用得最广泛的是以光栅为代表的栅式位移传感器,但在我国,高端位移传感器目前绝大部分依赖进口,不仅价格高,而且进口某些高精度传感器常常受限,这些不利因素直接制约着我国制造业和国防工业的发展。
     作者所在课题组自1995年开始从事精密位移传感器及相关技术的研究,研制出了一种具有自主知识产权全新测量原理的精密位移传感器——时栅。根据“用时间作为空间位移测量基准”的思想,使得时钟脉冲具有唯一的空间当量,从而实现“采用时间测量位移”的新方法。目前场式圆时栅的检定精度已达到±0.8″,直线时栅的检定精度达到±0.5μm/m,而分辨力分别达到0.1″和0.1μm。
     由于时栅是采用时间测量空间,按时间均分的等时采样,因此时栅属于绝对式静态位移传感器。而在动态测量和实际生产应用中,有许多场合需要按空间均分的等空间间隔采样,这就需要将时栅的原始绝对角位移转化为空间均分的增量式脉冲信号。在三项国家自然基金的支持下,本课题引入预测理论实现时栅位移传感器的增量式动态测量和普通栅式位移传感器的细分方法设计,并由此进行相关预测理论、算法和实验的研究,主要研究和创新成果如下:
     (1)从空间和时间的角度研究两种位移测量模型。由此展开对普通栅式位移传感器和时栅位移传感器测量模型和测量原理的深入分析和讨论。从深层次上阐述栅式位移传感器和时栅位移传感器在测量原理及物理意义上的相关性和差异性。
     (2)提出将预测理论用于精密位移测量。从数学角度对经典的预测理论进行分析和对比,寻求用于精密位移测量的最佳预测理论,从理论上证明了预测理论用于精密位移测量的有效性和可行性。
     (3)提出了按时间序列生成连续空间位置信号的新全闭环控制方案。结合预测理论和时栅的测量原理,从数学和运动学的角度,采用时序理论对预测回归模型进行辨识、建模、检验和优化,其中还包含对预测回归模型的定阶和参数估计。为了获得最佳预测效果,提出了自适应时序预测模型,实现了预测模型参数的时变性。其目的是通过时栅测量得到的原始绝对式位移信号实时、有效地预测下个测量周期的位移值,并将此预测增量值通过脉宽调制方式转换成连续空间均分的预测脉冲信号,完成原本静态测量式时栅用于全闭环数控转台的动态位置反馈,解决了时栅动态位置的反馈误差问题和数控系统接口兼容性问题。
     (4)研究预测技术用于滚齿机床传动链误差检测。将时栅用作滚齿机床传动链传动误差的检测元件,采用预测技术设计了一套用于传动链高速端时栅和低速端时栅测量的软同步技术。解决了测量过程中出现的时-时、时-空和空-空不同步问题,实现了传动误差的同步精确测量。
     (5)提出了按空间序列生成连续反映空间位置信号的时间序列新方案。采用时空对偶方式研究利用时间序列理论构建空间序列理论,建立状态时间模型和空间序列模型,以完成对时间量的精确预测。从而提出一种基于时空转换技术的栅式位移传感器信号细分新技术。这种细分方法突破传统细分方法的思维限制,从原理上创新,是一种与栅式位移传感器输出信号的正交性和等幅性无关的新技术。
     (6)研究基于测量基准时空变换技术具有空间意义的时间脉冲产生机理。利用时间脉冲实现对时栅空间脉冲的实时细分和对普通栅式位移传感器脉冲信号的细分方法研究,以及相关的细分误差实时修正技术的研究。
     (7)研究了动态和静态标定实验中的误差补偿。提出了基于多位置测头法和傅立叶级数谐波修正法的静态测量误差修正和基于离散标准量插入的动态测量误差修正法,并通过数学和运动学角度建立起一系列基于预测理论的精密位移测量的误差修正理论与方法。
     在上述研究工作中,最成功的理论与技术成果有:
     (1)建立了用于精密位移测量自适应回归预测理论。结合精密位移测量和预测理论重点研究了应用最多、最广的多元统计回归、时间序列和支持向量机,并在系统分析了三种预测方式的优点和缺点的基础上,提出了自适应回归预测理论,为预测理论用于精密位移测量提供有力的理论依据。
     (2)研究了动态和静态标定实验中的误差补偿技术。采用多位置测头误差分离与傅立叶级数谐波修正技术,把时栅传感器静态误差修正到1″之内,实现了无需高精度机械制造完成高精度测量的目的。在动态预测测量过程中,采用标准量插入法在预测当前测量值后减去上次预测误差,目的是保证预测精度,消除预测误差累计。
     (3)实现基于预测理论的精密角位移动态测量实验研究及相关产品研制。①实现了基于时间序列理论的时栅全闭环数控转台研制。采用自适应时序预测模型实时、有效地预测下个测量周期的位移值,并通过嵌入式技术将此预测增量值转换成连续空间均分的预测脉冲信号,实现时栅用于全闭环数控转台的动态位置反馈,目前预测精度能达到±2″。②实现了基于预测技术的时栅测量传动误差的软同步技术。采用预测技术设计了一套用于传动链高速端时栅和低速端时栅测量的软同步技术。解决了测量过程中出现的时-时、时-空和空-空不同步问题,实现了时栅对传动误差的同步精确测量。③实现了基于空间序列理论的传统栅式位移传感器新型细分卡研制。提出空间序列的概念,并采用时空对偶方式研究利用空间序列理论建立空间状态时间模型,实现对栅距运动时间量的精确预测,可实现最大细分倍数400,角位移细分精度优于信号周期的±4%,细分误差达到±1.3″。
Displacement measurement is one of the most basic and common physical measurement.Precision displacement measurement cover many areas such as space navigation, satellite sounding,super-large-scale integration production, material structure study and nanometer technology. Gratingtyped displacement sensors, such as optical grating sensors, are most widely applied in precisiondisplacement measurement. However, such high precision displacement sensors mainly depend onimport in our country. These high precision displacement sensors cost too much and are usuallyrestricted to import. These negative factors directly influence the development of our nationalmanufacturing industry and national defense industry.
     Our research team have been involving in precision displacement study since1995, and a novelprecision displacement sensors named time grating sensors with proprietary intellectual propertyrights have been invented. Time grating displacement sensors adopt time quantity as measurementstandard to measurement spatial value. Because time pulses in time grating sensors have a specialspatial equivalent, a new measurement principle, special measurement using time as measurementstandard, can be realized. The measurement precision of existing field typed circular time gratingsensors can reach±0.8″, and that of linear time grating sensors can reach±0.5μm/m. And theresolution of time grating sensors can reach0.1″and0.1μm, respectively.
     Time grating sensors adopt time to measure spatial value, i.e. time grating sensors measurespatial value every equal time interval. Therefore, time grating sensors are mainly used in staticalmeasurement state. However, sampling equal spatial interval is needed in many applications. Inorder to adopt time grating sensors as position detectors in dynamic measurement for suchapplications, original absolute time grating signal should be transformed into incremental pulseswith equal spatial value. Funded by three National Natural Science Foundation of China (NSFC),this study adopts forecast theory to realize the dynamic measurement of time grating sensors and thesignal subdivision of traditional grating typed displacement sensors. Furthermore, forecast theory,algorithm and related experiments are also studied. The main research content and innovations are asfollows:
     (1)Two displacement measurement models are analyzed from spatial quantity and timequantity. After analyzing the measurement models and principles of grating typed displacementsensors and time grating sensors deeply, the correlation and variation in physical meaning betweenthem are discussed.
     (2)Forecast theory is presented for precision displacement measurement. Some classicalforecast theory are analyzed and discussed with mathematics, and the optimal forecast theory isobtained, which validates the effectiveness and availability of forecast theory for precisiondisplacement measurement.
     (3)The principle of continuous spatial position signal generation is presented in time order fora new principle of full closed loop control. Combing with forecast theory and the measurementprinciples of time grating, the principles of identification, checkout, optimization of forecastregression model are presented, as well as the model ordering and parameter estimation withmathematics and kinematics. In order to obtain optimal forecast results, adaptive forecast model withtime order is presented. As a result, the time variation of model parameters can be realized. Thepurpose is to forecast the displacement of time grating sensors during the next measurement periodbased on series of past measured absolute displacement values. The forecast incrementaldisplacement values are transformed into continuous equal spatial forecast pulses with pulse widthmodulation (PWM). Therefore, time grating sensors applied for statical measurement can be adoptedas position dectors for dynamic position feedback of a full closed loop numerical control system.And the problems of feedback errors and compatible interface of numerical control system can besolved.
     (4)Forecast technology are pesented for transmission error measurement of gear-hobbingmachine. Time grating sensors are adopted as position detectors for transmission error measurementof gear-hobbing machine. A soft synchronization technology is presented based on forecasttechnology for time grating sensors equipped in the high speed terminal and low speed terminal oftransmission chain. In this way, the problems of time-time asynchronization, time-spaceasynchronization and space-space asynchronization can be solved, and precision transmission errorscan be measured synchronously.
     (5)The principles of time series signal generation which represent spatial position values arepresented in spatial order. Spatial series theory is established using time series with a time-spacecorresponding method. State-time model and space series model will be established to forecastprecise time quantity. Therefore, a novel subdivision technology based on time space transformationmethod for grating typed sensors is proposed. This subdivision technology broaden out thetranditional think model of subdivision technology and bring some innovations for the signalsubdivision of grating typed sensors. This method has nothing to do with the orthogonal and equalamplitude of signal outputted from grating typed sensors.
     (6)The principle of time pulse generation with spatial value based on time-space transformation of measurement standard is presented. The real time subdivision technology arepresented for spatial pulses of time gratings and grating typed displacement sensors, and real timeerror correction technology are also presented for calibrating subdivision errors.
     (7) Error correction methods are presented for statical measurement and dynamicmeasurement. The methods of multi-probe and harmonic correction based on fourier series arepresented for statical measurement, and discrete standard quantity interpolation method is presentedfor dynamic error correction. Therefore, a set of error correction theory and methods are establishedbased on mathematics and kinematics.
     Among the mentioned research works, the most successful achievements of theory andtechnology are as follows:
     (1)A self-adaptive regression forecast theory is established for precision displacementmeasurement. Combining with precision displacement measurement and forecast theory, themulti-statistical regression model, time theory and support vector regression machine which areadopted most widely are discussed. And a self-adaptive regression forecast theory is presented basedon the deep analysis on the binifits and drawbacks of three classic forecast theory, which provides apowerful theoretical foundation for precision displacement measurement.
     (2)Error correction technology are established for statical and dynamic measurement. Staticalerrors of the time gating sensor are calibricated within1″with a multi-probe method and a harmoniccorrection technique based on fourier series, which realizes precision measurement without precisionmechnical fabrication. In addition, the next future displacement value is forecasted with standardquantity interpolation method. In order to ensure forecasting precision and eliminate accumulativeforecasting errors, the forecasting errors during the last measurement period are deducted from theoriginal forecasting value.
     (3)The experiment study of dynamic precision angular displacement measurement arerealized, and related products are designed.①A full closed loop numerical control rotary tablewith time grating sensors as position detectors based on time series theory is designed. A self-adaptive regression forecast model is adopted to forcast the effective displacement value of nextmeasurement period in real time. And the forecasting incremental angular displacement istransformed into continuous forecasting pulses with equal spatial value using embedded technology.Therefore, time grating sensors can be used as a position feedback sensors for full closed loopnumerical control rotary table. The forecasting precision can reach±2″.②A soft synchronizationtechnology is realized based on forecast technology for transmission error measurement oftransmission chain. A soft synchronization technology is presented based on forecast technology for time grating sensors equipped in the high speed terminal and low speed terminal of transmissionchain. In this way, the problems of time-time asynchronization, time-space asynchronization andspace-space asynchronization can be solved, and precision transmission errors can be measuredsynchronously, and the synchronized transmission errors can be measured with time grating sensors.③The novel signal subdivision devices of traditional grating typed displacement sensors aredesigned based on space series theory. Space series theory is presented. And state-time model andspace series model will be established to forecast precise moving time quantity of line-space ofgrating using time series with a time-space corresponding method. And maximum subdivisionnumber can achieve400, and the subdivision accuracy of angular displacement measurement ishigher than±4%of the original signal period. And forecasting errors are limited within±1.3″.
引文
[1]吴清烈,蒋尚华.预测与决策分析[M].南京:东南大学出版社.2004.
    [2]傅毓维.张凌.预测决策理论与方法[M].哈尔滨:哈尔滨工程大学出版社.2003
    [3]朱本仁.蒙特卡罗方法引论[M].济南:山东大学出版社.1987
    [4]孙燕,尚军亮,刘三阳.基于合作目标的姿态测量系统建模及精度的蒙特卡罗估计[J].系统工程与电子技术.2010.32(9):2001-2004.
    [5]宋宇,孙富春,李庆玲.移动机器人的改进无迹粒子滤波蒙特卡罗定位算法[J].自动化学报.2010.36(6):851-857.
    [6]赵玉华,袁峰,丁振良,等.基于合作目标的姿态测量系统建模及精度的蒙特卡罗估计[J].仪器仪表学报.2010.31(8):1873-1877.
    [7]韩雪冰,张景旭,赵金宇,等.水平式光电望远镜目标定位误差的预测[J].光学精密工程.2010.18(7):1594-1604
    [8]茆诗松.贝叶斯统计[M].北京:中国统计出版社.1999.
    [9]侯强,吴国平,黄鹰.统计信号分析与处理[M].武汉:华中科技大学出版社.2009.(第三章贝叶斯)
    [10] Press,S.James.贝叶斯统计学——原理、模型及应用[M].北京:中国统计出版社.1999.
    [11]尹晓伟,钱文学,谢里阳.贝叶斯网络在机械系统可靠性评估中的应用[J].东北大学学报(自然科学版).2008.29(4).
    [12]党耀国,刘思峰,王正新,等.灰色预测与决策模型研究.北京:科学出版社.2009.
    [13]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社.2002.
    [14]祝晓辉,李颖晖,陈玉峰.永磁同步电机转子位置及速度提取灰色预测法[J].电机与控制学报.2009.13(2):184-189.
    [15]李彦斌,李存斌,宋晓华.改进的人工智能神经网络预测模型及其应用[J].中南大学学报(自然科学版).2008.39(5):1054-1058.
    [16]贾振元,马建伟,刘巍多,等.几何要素影响下液压阀件特性的混合神经网络预测模型[J].机械工程学报.2010.46(2):126-131.
    [17]林喜娜,王相友,丁莹.双孢蘑菇远红外干燥神经网络预测模型建立[J].农业机械学报.2010.41(5):110-114.
    [18]谭文,王耀南,周少武等.混沌时间序列的模糊神经网络预测[J].物理学报.2003.52(4):795-801.
    [19]武星星,朱喜林,杨会肖.自适应神经模糊推理系统改进算法在机械加工参数优化中的应用[J].机械工程学报.2008.44(1):199-204.
    [20] D Hamilton.A new approach to the economic analysis of nonstationary time series and thebusiness cycle[J].Econometrica: Journal of the Econometric Society.1989.57(2):357-384.
    [21] G Kitagawa,W Gersch.A smoothness priors time-varying AR coefficient modeling ofnonstatio-nary covariance time series[J].Automatic Control, IEEE Transactionson.2002.30(1):48-56.
    [22] Z Zhou,Z Xu,WB Wu.Long-Term Prediction Intervals of Time Series[J].IEEE Transactions onInformation Theory.2010.56(3):1436-1446.
    [23] JA Guajardo,R Weber,J Miranda.A model updating strategy for predicting time series withseasonal patterns[J].Applied Soft Computing.2010.10(1):276-283.
    [24] H Sohn,CR Farrar.Damage diagnosis using time series analysis of vibration signals[J].SmartMaterials and Structures.2001.10446.
    [25]韩秋实,许宝杰,王红军等.旋转机械故障诊断监测专家系统中的时间序列模式识别技术研究[J].机械工程学报.2008.44(1):199-204.
    [26] H Yang,K Huang,I King,et al.Localized support vector regression for time series prediction[J].Neurocomputing.2009.72(10-12):2659-2669.
    [27] J Guajardo,R Weber,SF Crone.A study on the ability of Support Vector Regression and NeuralNetworks to Forecast Basic Time Series Patterns[J]. International Federation for InformationProcessing Digital Library.2010.217(1):149-157.
    [28] PF Pai,KP Lin,CS Lin,et al.Time series forecasting by a seasonal support vector regressionmodel[J]. Expert Systems with Applications.2010.37(6):4261-4265.
    [29] CH Wu,GH Tzeng,RH Lin.A Novel hybrid genetic algorithm for kernel function andparameter optimization in support vector regression[J].Expert Systems withApplications.2009.36(3):4725-4735.
    [30]刘大同,彭宇,彭喜元.一种分段在线支持向量回归算法[J].仪器仪表学报.2010.31(08):1732-1737.
    [31]赵玉刚,宋现春.数控技术.北京:机械工业出版社,2003.
    [32] James V. Valentino, Joseph Goldenberg. Introduction to Computer Numerical Control (CNC)(Third Edition). New Jersey: Prentice-Hall, Inc.,2002.
    [33]刘夏.国产数控机床附件产品的现状及发展趋势.制造技术与机床,2004,(3):74~75.
    [34]彭东林,刘小康,张兴红,等.高精度时栅位移传感器研究[J].机械工程学报.2005(12):126-129.
    [35]彭东林,刘小康,张兴红,等.基于谐波修正法的高精度时栅位移传感器[J].仪器仪表学报.2006(01):31-33.
    [36] Xiao Kang Liu, Dong Lin Peng, Xing Hong Zhang and Xi Hou Chen. Research on a NovelHigh-precision Intelligent Displacement Sensor. Mechatronic Systems and Materials: SolidState Phenomena,2006, Vol.113, pp.435-441.
    [37]彭东林,刘成康,谭为民.位移测量中的时空坐标转换理论.机械工程学报,2000,36(5):11~14.
    [38]滕保华,廖旭.大学物理学(上册)[M].北京:科学出版社.2010.
    [39]陈曙光.大学物理学(上册)[M].湖南:湖南大学出版社.2010.
    [40]陈锡侯.新型时栅位移传感器研究[D].重庆:重庆大学.2007.
    [41]彭东林.时栅位移传感器与新型机床动态检测系统[M].北京:科学出版社.2010.
    [42]李科杰.现代传感技术[M].北京:电子工业出版社.2005.
    [43]赵学增.现代传感技术基础及应用[M].北京:清华大学出版社.2010.
    [44]施涌潮.传感检测技术[M].北京:国防工业出版社.2007.
    [45] Einstein,A. On the electrodynamics of moving bodies[J].Annalen der Physik1995.17,891.
    [46]彭东林,张兴红,刘小康,等.基于时空转换的精密位移测量新方法与传统方法的比较[J].仪器仪表学报.2006.27(4):423-426.
    [47]张兴红.时空坐标转换理论及场式时栅位移传感器实验研究[D].重庆大学.2003.
    [48] Fitzgerald, A., Kingsley, C.&Umans, S. Electric machinery. sixth edn [M], New York:McGraw-Hill Higher Education.2002
    [49]彭东林,张兴红,刘小康,等.场式时栅位移传感器研究[J].仪器仪表学报.2003.24(3):321-323.
    [50]刘小康.基于电气制导与误差修正的几何量计量新方法及新型栅式智能位移传感器研究
    [D].重庆大学.2004.
    [51]庄楚强,何春雄.应用数理统计基础(第三版)[M].广州:华南理工大学出版社.2006.
    [52] Frantisek S. Predictions in Time Series Using Regression Models. New York: Spinger-Verlag,2002.
    [53] Box G&Jonkins G. Time Series Analysis: forecasting and control. San Francisco:Holden-Day,1976.
    [54] Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods (Second Edition).New York: Spinger-Verlag,1991.
    [55]杨叔子,吴雅,轩建平.时间序列分析的工程应用(第二版)(上册).武汉:华中科技大学出版社,2007.
    [56]杨叔子,吴雅,轩建平.时间序列分析的工程应用(第二版)(下册).武汉:华中科技大学出版社,2007.
    [57] Levinson N. The Wiener RMS Error Criterion in Filter Design andprediction[J].J.Math.Phys.,1947,25.
    [58]何书元.应用时间序列分析.北京:北京大学出版社,2003.
    [59]潘红宇.时间序列分析[M].北京:对外经济贸易大学出版社.2006.
    [60]吴今培,孙德山.现代数据分析[M].北京:机械工业出版社.2006.
    [61] V.N.Vapnik. The nature of statistical learning theory, New York: Springer-Verlag,1995.
    [62] V.N.Vapnik. An overview of statistical learning theory. Ieee Transactions on Neural networks,1999,10(5):988-999.
    [63]王定成.支持向量机建模预测与控制[M].北京:气象出版社.2009.
    [64] Nello Cristianini, John Shawe-Taylor(著).李国正,王猛,曾华军(译).支持向量机导论.北京:电子工业出版社.
    [65]金泰义.精度理论及应用.合肥:中国科学技术大学出版社.2005.
    [66]费业泰,卢荣胜.动态测量误差修正原理与技术[M].北京:中国计量出版社.2001.
    [67]费业泰,蒋敏兰,刘芳芳.动态测量精度理论研究进展与未来[J].中国机械工程.2007(18):2260-2262.
    [68] Yang Yun, Wang Zheng, Kim Lock Song. Calculation and Improvement and DynamicCharacteristics of Centrifuge. Chinese Journal of Mechanical Engineering, Vol.14(1),2001.
    [69] Ludwik Finkelstein and Roman Z. Morawski. Fundamental concepts of measurement.Measurement, Vol.34,2003.
    [70]刘小康.时栅数控转台回转位置动态预测与实时误差修正研究[D].合肥工业大学.2008.
    [71]许桢英.动态测量系统误差溯源与精度损失诊断[D].合肥工业大学.2004.
    [72]杨大地,王开荣.数值分析[M].北京:科学出版社.2006.
    [73]朱庆保,钱刚.神经网络与回归相结合实现传感器特性线性化[J].仪器仪表学报,2001,22(4):422~427.
    [74] A. L. Shestakov. Dynamic Error Correction Method[J].IEEE. Transaction on Instrumentationand Measurement.1996.45(1):250-255.
    [75] David I.Bergman. Dynamic error correction of a digitizer for time-domain metrology[J].IEEE.Transaction on Instrumentation and Measurement.2004.53(5):1384-1390.
    [76]张宇华,王小琳,张国雄,等.多点法圆度及轴系误差分离方法的若干问题[J].北京理工大学学报.1999.19(3):309-313.
    [77]同济大学应用数学系.高等数学(下册)(M).北京:高等教育出版社.2004.
    [78] Dale R. Patrick, Stephen W. Fardo Rotating electrical machines and power systems2nd edn,New Jersey: The Fairmont Press, Inc.1997.
    [79]李发海,朱东起.电机学.北京:科学出版社.2001.
    [80]王正茂等.电机学.西安:西安交通大学出版社.2000.
    [81]刘小康.基于电气制导与误差修正的几何量计量新方法及新型栅式智能位移传感器研究
    [D].重庆大学.2004.
    [82]陈自然,彭东林,王先全,董淳.基于Matlab时栅位移传感器的误差曲线研究与拟合[J].工具技术2008.42(12):(85-87).
    [83] Ziran Chen, Donglin Peng, Yong Zheng, Fangyan Zheng, et al. Error Compensation Method ofHarmonic Analysis for Time Grating Sensor. International Conference on Frontiers ofManufacturing and Design Science, Taiwan, December11-13,2011.
    [84]郑永.基于时栅传感器的精密涡轮副动态检测技术研究[D].2011.
    [85]卢荣胜,费业泰,叶声华,等.标准量插入神经网络实时误差修正技术研究[J].计量学报.2001.22(2):81-86.
    [86]韩建海.数控技术及装备[M].武汉:华中科技大学出版社.2007
    [87]张建钢,胡大泽.数控技术.武汉:华中科技大学出版社,2000.
    [88]曹甜东.数控技术(M).武汉:华中科技大学出版社,2005.
    [89]白恩远,王俊元,孙爱国.现代数控机床伺服及检测系统.北京:国防工业出版社,2005.
    [90] Ziran Chen, Xiaokang Liu, Donglin Peng, e tal. Dynamic Model of NC Rotary Table in AngleMeasurements with Time Series. Transactions of the Institute of Measurement and Control.(DOI:10.1177/0142331212437992)
    [91]陈自然,彭东林,刘小康,等.基于时间序列的时栅数控转台动态建模研究[J].中国机械工程.2011. Vol.22(23):2853-2857.
    [92] Donglin Peng, Ziran chen, Xiaokang Liu, et al. Dynamic Forecast Method of CNC RotaryTable of Absolute Time Grating Displacement Sensor Using Support Vector Regression[J].Sensor letters.(已录用)
    [93]陈自然,彭东林等.基于支持向量机时栅数控转台时序预测研究[J].仪器仪表学报.(已录用)
    [94]张树京,齐立心.时间序列分析简明教程.北京:清华大学出版社,2003.
    [95] Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard V. Mechanical Measurements(Fifth Edition). Pearson Edition, Inc., publishing as Addison Wesley Longman,2004.
    [96] H.Yagixhita. Method for measuring the dynamic transmission error in large gear hobbingmachines [J]. Precision Engineering.1990.12(3):144-150.
    [97]柏永新.齿轮精度与综合检验[M].上海:上海科学技术出版社.1986.
    [98]彭东林,郑永,陈自然,等.基于时栅传感器的传动误差动态测试系统研制[J].中国机械工程.2011. Vol.22(10):1138-1142.
    [99]彭东林,郑永,等.基于误差传递理论及误差修正技术的高精度蜗轮母机研制[J],机械工程学报.2011,47(9):157-163.
    [100]陈自然.基于绝对式位移传感器的传动误差检测系统设计与开发[D].重庆理工大学.2009.
    [101]梁立辉,万秋华,佘容红.复合式光电编码器精密轴系设计及准确度分析[J].光子学报2010.39(12):2194-2198.
    [102]本刊记者.海德汉定位欧洲最大天文望远镜[J].现代制造.2008(12):26-26.
    [103]张善钟.计量光栅技术[M].北京:机械工业出版社.1985.
    [104]郭雨梅,崔晋玲,刘雪艳,等.锁相式莫尔条纹信号细分方法[J].哈尔滨工业大学学报.2007.39(9):1496-1512.
    [105]林长友.光栅编码器发展现状分析与展望[J].光机电信息.2011.28(6):1-7.
    [106]陈晓荣,陈淑芬,杨甫勤.增量式编码器的相位编码细分研究[J].仪器仪表学报.2007.28(1):132-135.
    [107]楚兴春,吕海宝,杜列波,等.任意相位差条纹信号细分方法的研究[J].光学学报.2005.25(4):497-500.