大豆抗胞囊线虫机制及与抗性相关的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从大豆抗大豆胞囊线虫3号生理小种的抗性生化本质入手,系统地研究了大豆根系分泌物作用、膜脂过氧化作用、光合能力、物质代谢能力、防御酶系统和几丁质酶活性等多个方面与抗性的关系;本文首次利用我国特有的抗病品种哈尔滨小黑豆(ZDD7170)与辽宁省农科院培育的主栽品种辽豆10成功配制杂交组合,通过分组分离法(Bulked Segregation Analysis,BSA)建立F_4代抗感池,研究了F_4代抗感池之间与抗性相关的差异蛋白。这些对于从根本上揭示大豆抗大豆胞囊线虫病的抗性本质具有重要意义,为培育高抗的大豆品种提供了有力的理论支持。主要研究结果如下:
     1.不同抗性品种不同时期的根系分泌物对二龄幼虫的趋化性影响呈现出不同规律。总体表现为感病品种根系分泌物对二龄幼虫有较强的吸引性,而抗性品种表现不规律,在线虫容易侵入的幼苗期,某些抗病品种甚至还对二龄幼虫表现出了一定的排斥性。胞囊孵化影响的试验结果表明,感病品种的根系分泌物能明显促进胞囊的孵化,而抗病品种的根系分泌物对胞囊孵化的影响不明显。
     2.不同抗性大豆品种根系分泌物中氨基酸种类和含量与大豆抗病性有一定的关系。大豆根系分泌物中氨基酸总含量随品种对大豆胞囊线虫病抗性的增加而降低,抗病品种根系分泌物中检测到的氨基酸总含量平均为26.77mg·L~(-1),而在感病品种根系分泌物中平均达到87.90mg·L~(-1)。谷氨酸、甘氨酸、丙氨酸、亮氨酸、苯丙氨酸和赖氨酸等几种氨基酸在根系分泌物中的表达量与品种的抗性呈一定的负相关,而半胱氨酸和酪氨酸在抗病品种灰皮支黑豆和小粒黑豆中有高量表达而在感病品种中却未检测到,与抗病性关系更为密切。
     3.大豆胞囊线虫侵染后抗感品种细胞膜系统受破坏程度不同。感病品种细胞膜受到了严重的伤害,根部组织内MDA含量显著增加,电解质渗漏严重:大多数抗病品种中的MDA含量虽然也有少量增加但与对照相比差异不大,电解质渗漏总体上低于感病品种。
     4.物质代谢与抗病性有着密切关系。接种大豆胞囊线虫后供试抗病品种根内可溶性糖含量有不同程度的提高,感病品种根内可溶性糖含量低于抗病品种,认为寄主植物可能需要适当的糖类物质作为抗病反应的激发子来抵御线虫的侵染,而根系中低糖含量更有利于大豆胞囊线虫的侵入;受大豆胞囊线虫侵染诱导后,抗病品种根内可溶性蛋白含量变化较大,有明显的升高,这一现象与大豆受侵染后诱导产生与抗性相关的蛋白有一定关系。
     5.受线虫侵染后大豆根内防御相关酶系,包括苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和几丁质酶活性出现了明显的变化,其中PAL和SOD表现出酶活的动态变化与对大豆胞囊线虫的抗病性关系更为密切。
     6.通过对大豆双向电泳实验条件的优化,确定了以TCA/Acetone法提取大豆蛋白,裂解缓冲液为9M Urea,2M Thiourea,4%CHAPS,100mM DTT,0.5%Carrier ampholyte,4%NP-40,1mM PMSF,2mM EDTA,40mM Tris-HCl,18cm pH4-7IPG StripIEF等电聚焦时间最终控制在8000V,75000vh,聚丙烯酰胺凝胶浓度为12%的双向电泳最佳条件。
     7.通过分离群体分组分析法构建抗病品种哈尔滨小黑豆与辽豆10杂交后代抗感池材料,F_4代抗、感池经双向电泳各检测到近500个蛋白点,从2-DE图谱上找到28个明显差异表达的蛋白点,通过基质辅助激光解析电离飞行时间质谱技术(MALDI-TOF/TOF)获得了这28个蛋白点的肽质量指纹图谱(PMF),Mascot数据库搜索比对后,鉴定了16个蛋白质点,它们分别是cytosolic ascorbate peroxidase9(112);ribulosel,5-bisphosphatecarboxylase/oxygenase,Rubisco(87);Oxidoreductase(110);retrotransposonprotein,putative,Ty3-gypsy subclass(36);calmodulin binding protein(131);phospholipase C(243);putative proteasome 20S betal.1 subunit(92);RNA polymerase beta'subunit(356);alpha 2 actin(183);Predieted protein(55,332);hypothetical protein(62,215,298,407,415)。其中,F_4抗病池上调表达的蛋白点(QUALITY)有:87,92,112;仅在F_4感病池中表达的蛋白点(QUALITY)有:183,298,332,407,415;抗病比感病池含量上调3倍以上的蛋白点有110,131;抗病比感病池含量下调3倍以上的蛋白点有:36,55,62,215,243,356。它们分别参与了植物自身的防卫反应、能量代谢、细胞信号传导和转录调控等多个生理生化过程,这些上调或下调的蛋白都是复杂的蛋白调控网络中的一部分,在植物的抗病反应中协同起着重要作用。
The researches on the resistant biochemistry essences of soybean against soybean cyst nematode(Heterodera glycines, SCN) race 3 were systematically conducted to the relationships between resistance and the root exudations, membrane lipid peroxidation, photosynthetic capacity, material metabolism, oxidases system and chitinase. The cross was made between resistant Harbin Xiaoheidou(ZDD7170) and suceptible Liaodou 10 to SCN in this paper. Applying the F_4 separated population from the cross of Harbin Xiaoheidou and Liaodou 10 as test material, according to Bulked Segregant Analysis(BSA) to study differential proteomics. It was important for fundamentally revelation resistant mechanism to H. glycines. Meanwhile this work offered theory guiding for breeding new reistant varieties. The main results of this study were as follows:
     1. The different resistant variety and different stage soybean root exudation presented the different regulation to J2. The general result was that susceptible variety had the strong attractability to the J2 of SCN , but resistant variety performed less evidently, while the effect of resistant cultivars at seeding stage even rejected J2. Cyst hatching indicated that susceptible variety root exudation promoted cyst hatching, while resistant variety performance was not obvious.
     2. Free amino acids from these soybean cultivars root exudates were detected using an Automatic Amino Acid Analyzer and their relationships of the resistance against H. glycines were studied. Data indicated that the kinds and contents of amino acids were different in these root exudates. Total amino acid contents decreased with increasing degree of resistance capability in these soybean varieties. Total amino acid contents of resistant variety was 26.77mg·L~(-1), of susceptible variety was 87.90mg·L~(-1). A significant negative relationship was detected between the disease resistance and the ratios of content of Glutamic acid, Glycine, Alanine, Leucine, Lysine to Phenylalanine. The ability of resistant to SCN was highly positively correlated with the ratios of content of Tyrosine and Cysteine.
     3. Inoculated by SCN, the cell membrane of susceptible variety had serious destruction. MDA content in roots significantly increased. The cell membrane electrolyte leakage increased. But of resistant variety had no significantly changes, electrolyte leakage was lower than those of susceptible variety.
     4. The study on the relationships between the metabolism and resistance to H.glycines indicated that the soluble sugar content of resistant varieties root was increased in different degree after inoculating by SCN, the soluble sugar content of susceptible varieties root was relatively lower than CK. Host plants need carbohydrate to resist SCN. Low sugar content in soybean roots was beneficial to nematode invasion. Moreover, infected and inducted by nematode, the soluble protein content in the roots of resistant varieties obviously increased, maybe soybean infected by SCN were induced to express resistant protein
     5. Defensive enzymes were stimulated after infected by SCN J2. The dynamic changes of defensive enzymes, include phenylalanine ammonialyase(PAL), polyphenoloxidase(PPO), superoxide dismutase(SOD) , peroxidase(POD) and Chitinase were studied. The results showed that PAL and SOD had closely related to resistance to H.glycines.
     6. Soybean protein was extracted with TCA/acetone, then resolubilized in lysis buffer(9 M Urea, 2M Thiourea, 4%CHAPS, 100 mM DTT, 0.5%Carrier ampholyte, 4%NP-40, 1mM PMSF, 2mM EDTA, 40mM Tris-HCl), 18cm pH4-7IPG Strip Isoelectric focusing(IEF)was performed at 20℃under 75000vh conditions. SDS-PAGE was performed in 12% polyacrylamide gels.
     7. Differential proteomics were studied by the method of Bulked Segregant Analysis (BSA). Two-dimensional gel electrophoresis (2-DE) were adopted to identify proteins from soybean that the plants were differentially expressed in F4. Nearly 500 protein spots were detected. Furthermore, analysis with MALDI-TOF-MASS identification Peptide Mass Fingerprinting of 28 protein spots. The 16 protein spots were obtained by Mascot database searching and intercomparison preliminary identification. The proteins were respectively CytosolicAscorbatePeroxidase(112),Oxidoreductase(110),Ribulosel ,5-bisphosphateCarboxyl ase/Oxygenase,Rubisco(87),RetrotransposonProtein,Putative,Ty3-gypsySubclass(36),Calmod ulinBindingProtein(131),PhospholipaseC(243), Putative Proteasome 20S beta1.1 Subunit(92), RNA Polymerase beta' subunit(356), andAlpha 2 Actin(183), Predieted Protein(55, 332) and Hypothetical Protein(62, 215, 298, 407, 415). Protein spots 87, 92 and 112 were identified in resitant pool , protein spots 83, 298, 332 ,407and 415 were identified in sensitive pool. Three-fold upper protein spots were110 and 131. Three-fold lower protein spots were36, 55, 62, 215, 243 and 356. All of those up- or down-regulated proteins were probably parts of network of resistance or development-related proteins had close connection with plant defense responses, energy metabolism, cell signal transduction and transcriptional regulation.
引文
1.蔡建,刘奇华.2006.大豆胞囊线虫病抗性机制及抗病育种.陕西农业科学,6:101-103.
    2.曹维英.2007.大豆质核互作雄性不育系和保持系差异蛋白质组研究.南京农业大学硕士学位论文.
    3.陈芳育,黄青云,张红心等.2007.水稻品种”佳辅占”应答细菌性条斑病病原菌侵染的蛋白质组学分析.作物学报,33(7):1051-1058.
    4.陈芳育.2005.水稻应答细菌性条斑病病原菌侵染差异蛋白组学研究.福建农林大学硕士学位论文.
    5.陈仕江,钟国跃,徐金辉.2005.黄连生育期间可溶性糖和氨基酸含量动态的研究.中国中药杂志,30(17):1324-1327.
    6.陈为钧,赵贵文,顾月华.1999.RubisCO的研究进展.生物化学与生物物理进展,26(5):620-622.
    7.陈孝仁.2007.大豆疫霉侵染早期机制的分子解析.南京农业大学博士学位论文.
    8.陈英,黄敏仁,诸葛强等.2002.植物抗病信号传导途径及其相互作用.南京林业大学学报(自然科学版),26(3):85-90.
    9.陈宇飞.2006.葡萄果实抗灰霉病机制研究.东北农业大学硕士学位论文.
    10.陈志伟,吴为人.2004.植物中的反转录转座子及其应用.遗传,26(1):122-126.
    11.崔汝强,廖金铃,卓侃等.2008.植物寄生线虫发育基因的研究进展.华中农业大学学报,27(3):456-461.
    12.戴芳澜,相望年,郑儒永.1958.中国经济植物病原目录.北京:科学出版社.
    13.邓稳桥.2006.辣椒抗病毒病材料鉴定及相关抗病生理指标研究.湖南农业大学硕士学位论文.
    14.刁琢,许艳丽.2008.中国大豆胞囊线虫抗源筛选及抗病育种研究进展.大豆科技,(5):14-16.
    15.杜慧,王生荣.2008.辣椒疫病抗性机制研究进展.北方园艺,(1):53-55.
    16.杜绍华.2005.枣疯病病程相关抗性生理指标的研究.河北农业大学硕士学位论文.
    17.段江燕,安建梅等.2008.感染青枯病马铃薯中几种酶及蛋白质含量变化的研究.农业与技术,28(1):21-25.
    18.段玉玺,陈立杰,远方等.2004.大豆抗大豆胞囊线虫3号生理小种的抗性机制研究.莱阳农学院学报,21(2):118-121.
    19.段玉玺,吴刚.2002.植物线虫病害防治.北京:中国农业出版社.
    20.范海延,陈捷,吕春茂等.2007.黄瓜杂交二代抗黄瓜白粉病的蛋白质组学初步分析.园艺学报,34(2):349-354.
    21.范海延.2006.黄瓜抗白粉病的蛋白质组学研究.沈阳农业大学博士后出站报告.
    22.范文艳,姜述君.2005.植物抗病性及抗病信号转导的研究进展.中国农学通报,21(2):249-252.
    23.丰胜求,张艳,徐久玮等.2005.甘蓝型油菜防御酶活性变化与抗病性的关系.华中农业大学学报,24(3):231-235.
    24.冯洁,陈其瑛.1991.棉花幼苗根系分泌物与枯萎病关系的研究.棉花学报,3:89-96.
    25.冯丽贞,陈全助,郭文硕等.2008.桉树的次生代谢与桉树对焦枯病抗性的关系.中国生态农业学报,16(2):426-430.
    26.冯丽贞.2008.桉树叶绿素含量与焦枯病抗性的关系.福建农林大学学报(自然科学),37(4):365-368.
    27.符美英,陈绵才,肖彤斌等.2008.根结线虫与寄主植物互作机理的研究进展.热带农业科学,28(3):73-77.
    28.郭尧君.1999.蛋白质电泳实验技术.北京:科学出版社.
    29.韩丽梅,鞠会艳,杨振明等.2005.两种基因型大豆根系分泌物对大豆根腐病菌的化感作用.应用生态学报,16(1):137-141.
    30.韩雪,吴凤芝,潘凯.2006.根系分泌物与土传病害关系之研究综述.中国农学通报,22(2):316-318.
    31.何大澄,肖雪嫒.2002.差异蛋白质组学及其应用.北京师范大学学报(自然科学版),38(4):558-562.
    32.何瑞锋,丁毅,张剑峰等.2000.植物叶片蛋白质双向电泳技术的改进与优化.遗传,22(5):319-321.
    33.胡海燕,庄杰云,柴荣耀等.2007.水稻对不同小种稻瘟菌抗性差异表达基因的鉴定.中国水稻科学,21(1):1-6.
    34.皇甫海燕,官春云,郭宝顺等.2006.蛋白质组学及植物蛋白质组学研究进展.作物研究,(5):577-581.
    35.黄奔立,许云东,张顺琦等.2007.根系分泌物影响黄瓜枯萎病抗性的机理研究.扬州大学学报(农业与生命科学版),28(3):77-81.
    36.黄青云.2006.水稻细菌性条斑病侵染水稻明恢63诱导差异蛋白质组学研究.厦门大学硕士学位论文.
    37.蒋跃明.1994.香蕉采后炭疽病发生与几丁质酶和β-1,3葡聚糖酶关系.植物病理学报,25:238-239.
    38.解文科,王小青,李斌等.2005.植物根系分泌物研究综述.山东林业科技,(5):63-66.
    39.匡传富,罗宽.2002.烟草品种对青枯病抗病性及抗性机制的研究.湖南农业大学学报(自然科学版),28(5):395-398.
    40.雷红灵,吴永尧.2007.蛋白质组学研究策略及质谱技术的应用.湖北民族学院学报(自然科学版),25(3):346-349.
    41.李赤,于莉,刘付东标等.2007.富贵竹中可溶性糖、蛋白质含量与细菌性茎腐病的关系.吉林农业大 学学报,29(6):620-622.
    42.李春梅,杨守苹,盖钧镒等.2007.野生大豆与栽培大豆种子差异蛋白质组学研究.生物化学与生物物理进展,34(12):1296-1302.
    43.李庚飞.2006.猕猴桃不同品种对溃疡病抗病机制的初步研究.安徽农业大学硕士学位论文.
    44.李冠军,付风玲.2006.玉米叶片总蛋白提取和双向电泳技术的改进.玉米科学,14(6):100-103.
    45.李海燕,刘润进,李艳杰等.2003.AM真菌和胞囊线虫对大豆根内酶活性的影响.菌物系统,22(4):613-619.
    46.李海燕,刘惕若,甄艳.2006.辣椒品种对疫病的抗性研究-氨酸、丙二醛与可溶性糖在抗病中的作用.中国农学通报,22(11):315-317.
    47.李惠华,赖钟雄.2006.植物抗坏血酸过氧化物酶研究进展.亚热带植物科学,35(2):66-69.
    48.李建武,萧能赓,余瑞元等.1997.生物化学实验原理和方法.中国:北京大学出版社.
    49.李琨.2007.稻白叶枯病菌弱毒菌株对水稻品种的抗病诱导效果及生化机制的研究.华中农业大学硕士学位论文.
    50.李蕾,云兴福,康利平.2007.氯钾离子共体诱导后黄瓜体内几丁质酶和β-1,3葡聚糖酶活性的研究.内蒙古农业大学学报,28(2):119-124.
    51.李淼,檀根甲,李瑶等.2005.猕猴桃品种中糖分及木质素含量与抗溃疡病的关系.植物保护学报,32(2):138-142.
    52.李艳军.2007.蛋白质组学技术及其应用.上海畜牧兽医通讯,4:54-55.
    53.冀宪领.2008.桑树黄化型萎缩病病原及其响应蛋白的蛋白质组学研究.山东农大博士学位论文.
    54.梁根云,姬红丽,章振羽等.2007.条锈菌侵染慢锈性小麦品种川麦107后的蛋白质组学分析.麦类作物学报,27(2):335-340.
    55.梁根云.2006.”川麦107”受条锈菌侵入后叶片蛋白质组学分析.西北农林科技大学硕士学位论文.
    56.林涛.2005.水稻9311对于水稻细菌性条斑病侵染应答差异蛋白组学研究.厦门大学硕上学位论文.
    57.刘纪霜,刘志明,黄金玲等.2007.植物抗根结线虫机制研究进展.植物保护,33(1):21-23.
    58.刘军,温学森,郎爱东.2007.植物根系分泌物成分及其作用的研究进展.食品与药品,9(03):63-65.
    59.刘康,高起飞,万振昆等.2008.蛋白质组学研究中的质谱鉴定与生物信息学分析.棉花学报,20(4):281-288.
    60.刘丽杰,于景华,唐中华等.2007.非模式植物蛋白质组学研究进展.广西植物,27(2):217-223.
    61.刘丽君,吴俊江,高明杰.2005.大豆抗疫霉病菌的生理生化机制.中国油料作物学报,27(1):81-83.
    62.刘素萍,王汝贤,张荣等.1998.根系分泌物中糖和氨基酸对棉花枯萎病菌的影响.西北农业大学学报,26(6):30-35.
    63.刘维志.1995.植物线虫学研究技术.沈阳:辽宁科学出版社.
    64.刘维志.2000.植物病原线虫学.北京:中国农业出版社.
    65.刘伟霞.2007.适用于小麦叶片蛋白质组分析的双向电泳技术体系的建立.中国农科院硕士学位论文.
    66.刘晓光,高克祥,康振生等.2007.生防菌诱导植物系统抗性及其生化和细胞学机制.应用生态学报,18(8):1861-1868.
    67.刘亚光,李丽清,马景生等.2001.感染大豆灰斑病菌后不同抗性的大豆品种叶绿素动态变化的研究.大豆科学,20(1):49-53.
    68.刘亚光,徐刚,杨庆凯.2003.大豆叶片内几丁质酶活性的变化与大豆抗灰斑病关系的研究.东北农业大学学报,34(2):210-218.
    69.刘柱,朱建清,赵建等.2002.植物反转录转座子的研究进展.生物化学与生物物理进展,29(4):527-530.
    70.龙书生,李亚玲,张宇宏.1999.糖分含量作为抗镰刀菌茎腐病玉米品种的育种指标研究.山东农业大学学报,30(4):372-376.
    71.鲁滨.2005.空间诱变大豆不同发育时期蛋白质组差异分析.哈尔滨工业大学硕士学位论文.
    72.吕蓓,方宣钧.2003.大豆孢囊线虫4号生理小种侵染大豆根系诱导表达的cDNA分析.分子植物育种,1(2):193-200.
    73.栾晓燕,陈怡,杜维广等.2001.不同抗性大豆品种感染SMV后过氧化物酶、多酚氧化酶、超氧化物岐化酶的变化分析.大豆科学,20(3):200-203.
    74.骆桂芬,崔俊涛,张莉等.1997.黄瓜叶片中糖和木质素含量与霜霉病诱导抗性的关系.植物病理学报,27(1):65-69.
    75.马洁,吴松锋,朱云平.2007.蛋白质组学中新蛋白质鉴定的研究方法和策略.生物化学与生物物理进展,34(8):791-799.
    76.毛国红,宋林霞,孙大业.2004.植物钙调素结合蛋白研究进展.植物生理与分子生物学学报,30(5):481-488.
    77.欧志远.2007.叶绿素含量与植物抗病性的关系.安徽农学通报,13(6):134-135.
    78.潘凯,吴凤芝.2007.枯萎病不同抗性黄瓜(Cucumis sativus L.)根系分泌物氨基酸组分与抗病的相关 性.生态学报,27(5):1945-1950.
    79.潘延云,朱正歌,孙大业.2005.植物磷脂酶C及其参与的信号途径.植物生理学通讯,41(2):229-234.
    80.彭浩,林文芳,朱学艺.2008.叶绿体蛋白质组研究进展.西北植物学报,28(1):0194-0203.
    81.蒲金基,王向社,梁活华等.2004.芒果叶片生化特性与炭疽病发生的关系.果树学报,21(5):434-437.
    82.朴仁哲,赵洪颜,金玉姬等.2008.百草枯胁迫对地黄叶片膜脂过氧化相关生理指标的影响.北方园艺,10:45-48.
    83.邱丽娟,常汝镇,王文辉等.2003.大豆抗胞囊线虫病种质rhg1和Rhg4位点的单核苷酸多态性(SNPs).植物遗传资源学报,4(2):89-93.
    84.屈中华.2007.木霉菌REMI转化子诱导黄瓜抗白粉病方法与机理的研究.沈阳农业大学硕士学位论文.
    85.阮松林,童建新,赵杭苹.2007.植物响应逆境胁迫蛋白质组学研究进展.杭州农业科技,2:15-18.
    86.孙国忠,朱振东,武小菲等.2008.大豆疫霉菌、水杨酸和创伤诱导的拟南芥蛋白质谱的比较研究.中国农业科学,41(4):1030-1039.
    87.孙漫红,刘杏忠.2004.淡紫拟青霉发酵滤液对大豆胞囊线虫趋化性的影响.植物病理学报,34(4):376-379.
    88.孙卫红,王伟青,孟庆伟.2005.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性.植物生理学通讯,41(2):143-147.
    89.孙卫宁.2005.水稻抗盐的蛋白质组学研究.中国科学院上海生命科学研究院植物生理生态研究所博士后士学位论文.
    90.万华方,董翠月,梁颖.2006.植物蛋白质组学的研究进展.生物学通报,41(12):10-12.
    91.王惠.2005.大豆对胞囊线虫的抗性及分子标记研究.沈阳农业大学博士学位论文.
    92.王继峰.2005.盐胁迫下紫花苜蓿根系蛋白质组的初步分析.中国农业科学院硕士学位论文.
    93.王文娟,张飞云.2007.植物抗病分子机制研究进展.生物技术通报,(1):19-23.
    94.王小平,宋东杰,周泉澄等.2008.Cr~(3+)胁迫对苦草叶片活性氧清除系统和叶细胞超微结构的影响.植物资源与环境学报,17(2):56-60.
    95.王晓琴.2006.小立碗藓(Physcomitrella patens)非生物胁迫蛋白质组学研究.首都师范大学博士学位论文.
    96.王玉琪,彭新湘.2006.适用于水稻叶片蛋白质组分析的双向电泳技术.植物生理与分子生物学学,32(2):252-256.
    97.王嫒.2007.杨树与溃疡病菌(Botryosphaeria dothidea)互作中的细胞生物学、活性氧代谢及细胞过敏性反应.中国林业科学研究院博士学位论文.
    98.吴海燕,段玉玺,李秀侠等.2007.SCN侵染对不同大豆品种根系分泌氨基酸/低分子肽类分泌物的影响.植物病理学报,37(6):616-622.
    99.吴海燕,段玉玺.2004.几丁质酶与大豆抗胞囊线虫关系初步研究.植物病理学报,34(6):555-557.
    100.吴海燕,远方,陈立杰等.2001.大豆胞囊线虫病与大豆抗胞囊线虫机制的研究.大豆科学,20(4):285-289.
    101.吴海燕.2003.大豆与大豆胞囊线虫相互关系研究.沈阳农业大学博士学位论文.
    102.吴庆知,黄开勋,徐辉碧.2002.双向凝胶电泳技术进展,生物技术通讯,13(2):S28-31.
    103.吴晓丽.2006.花椰菜幼苗抗黑腐病的生理学机制及其抗性的化学诱导研究.中国农业大学博士学位论文.
    104.谢娟,黄明星,卢代华等.2006.水稻稻瘟菌抗性相关蛋白的双向电泳分析.中国生物工程杂志,26(12):92-98.
    105.谢娟.2007.水稻(Oryza sativa)稻瘟菌(Magnaporthe grisea)抗性相关蛋白的双向电泳分析研究.四川大学硕士学位论文.
    106.徐秉良,李敏权,郁继华等.2005.苜蓿对白粉病抗性与叶绿素含量的关系.草业科学,22(4):72-74.
    107.徐晓燕,郑蕊,李春梅等.2006.大豆种子萌发过程中的差异蛋白质组研究.生物化学与生物物理进展,33(11):1106-1112.
    108.徐晓燕.2006.大豆种子萌发的蛋白质组研究.南京农业大学硕士学位论文.
    109.徐幼平,徐秋芳,蔡新忠.2007.适于双向电泳分析的番茄叶片总蛋白提取方法的优化.浙江农业学报,19(2):71-74.
    110.许艳丽.2004.土壤环境对大豆胞囊线虫卵孵化影响及线虫分子诊断研究.东北农业大学博士学位论文.
    111.许云东.2006.黄瓜不同抗性品种根系分泌物对枯萎病发生的影响及其机理初探.扬州大学硕士学位论文.
    112.薛应龙.1985.植物生理学实验手册.上海科技出版社.
    113.颜清上.1995.中国小黑豆抗源对大豆胞囊线虫4号生理小种抗性机制的研究.中国农业科学院研究生院博士学位论文.
    114.杨庆凯.2002论大豆入世行动.哈尔滨:黑龙江科学技术出版社.
    115.杨秀红等.2002.大豆根系的研究.东北农业大学学报,33(2):203-208.
    116.姚怀莲.2007.西瓜枯萎病抗性遗传及生理生化基础研究.扬州大学硕士学位论文.
    117.姚金保,姚国才,杨学明等.2007.小麦梭条花叶病抗性遗传和育种研究进展.植物遗传资源学报,8(2):246-249.
    118.应喜娟,刘丽娟,柳宇琰等.2007.植物线虫的分泌蛋白质及其功能研究进展.长江大学学报(自然版)农学卷,4(3):5-8.
    119.于巧丽.2006.河南省小麦黑胚病病原菌多样性分析和品种生理生化抗性机制研究.河南农业大学硕士学位论文.
    120.余初浪.2007.用蛋白质组学技术筛选水稻抗白叶枯病相关蛋白.浙江师范大学硕士学位论文.
    121.袁翠平,常汝镇,邱丽娟.2006.大豆胞囊线虫抗性基因定位与克隆研究进展.植物学通报,23(1):14-22.
    122.袁虹霞,李洪连,王烨等.2002.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响.植物病理学报,32(2):127-131.
    123.远方.2001.大豆抗胞囊线虫3号生理小种的抗性机制研究.沈阳农业大学硕士学位论文.
    124.岳东霞.2003.水杨酸对黄瓜植株抗病酶系和白粉病抗性的诱导作用.河北农业大学学报,26(4):14-17.
    125.曾任森,苏贻娟,叶茂等.2008.植物的诱导抗性及生化机理.华南农业大学学报,29(2):1-4.
    126.张俊英,王敬国,许永利.2008.大豆根系分泌物中氨基酸对根腐病菌生长的影响.植物营养与肥料学报,14(2):308-315.
    127.张淑珍,徐鹏飞,韩英鹏等.2006.大豆疫霉菌毒素处理大豆品种后几丁质酶活性的变化.作物杂志,3:17-19.
    128.张耀伟.2002.大白菜抗软腐病生理生化指标研究.东北农业大学硕士学位论文.
    129.张颖君,高慧敏,李辉等.2006.蛋白质组学研究中的样品制备.华北农学报,21:7-10.
    130.张玉荣,周显青,张勇等.2008.储存玉米膜脂过氧化与生理指标的研究.中国农业科学,41(10):3410-3414.
    131.郑翠明,滕冰,高风兰等.1998.不同种粒抗性大豆品种感染SMV后可溶性蛋白和游离氨基酸的研究.植物病理学报,28(3):227-231.
    132.郑蕊,喻德跃.2005.适用于蛋白质组研究的大豆种子蛋白双向电泳技术的改进.大豆科学,24(3):166-170
    133.周博如,李永镐,刘太国等.2000.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究.大豆科学,19(2):111-114.
    134.周庭辉,戴小枫.2006.棉花抗黄萎病生理与生化机制研究.分子植物育种,4(4):593-600.
    135.朱宏,张中恒,王同昌等.2004.小麦叶片蛋白质双向电泳的改良方法.东北林业大学学报,32(4):68-69.
    136.朱永生.2007.水稻离体叶鞘受稻瘟病菌侵染后的蛋白质组分析.福建农林大学硕士学位论文.
    137.庄敬华,高增贵,杨长城等.2005.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响.植物病理学报,35(2):179-183.
    138.Agrawal GK,Rakwal R,Saji H et al.2002.Proteome analysis of differentially displayed proteins as a tool forinvestigating ozone stress in rice(Oryza sativa L.)seedings.Proteomics,2(8):947-959.
    139.AlbanA,David SO,Curri I et al.2003.A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internalstandard.Proteomies,3(1):36-44.
    140.Andon NL,Hollingworth S,Haynes PA et al.Proteomic characterization of wheat amyloplasts using identification of proteinsby tandem mass spectrometry.Proteomics,2(9):1156-1168.
    141.Bird A F.1959.The attractiveness of roots to the plant parasitic nematodes Meloidogyne javanica and M.hapla.Nematologica,4:322-335.
    142.Bradford MM.1976.A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein binding.Anal Biochem,72:248-254.
    143.Brener M,Djair S.L.Souza,Joao N.Aguiar.2009.Protective effects of a eysteine proteinase propeptide expressed in transgenic soybean roots.Peptides,1-7.
    144.Buxton w.1962.Exudates from banana and their relationship to strains of the Fusarium causing panama wilt.Annals of Applied Biology,2(50)::269-282.
    145.Carpentier S C,Witters E,Panis B et al.2005.Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electrophoresis analysis.Proteomics,5(10):497-507.
    146.Chang W,Huang L,Shen Met al.2000.Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment,and identification of proteins by mass spectrometry.Plant Physiol,122:295-298.
    147.Clay Carter,Songqin Pan,Jan Zouhar et al.2004.The Vegetative Vacuole Proteome of Arabidopsis thaliana Reveals Predicted and Unexpected Proteins.The plant cell,16:3285-3303.
    148.Costa P,Pionneau C,Bauw G et al.1999.Separation and characterization of needle and xylem maritime pine proteins.Electrophoresis,20:1098-1108.
    149.Dameral,C.and de Vienne,D.1993.Quantifi-cation of dominance for proteins pleiotropically affected by Opaque-2 in maize.Heredity,70:38-51.
    150.Denise I,Jacobs,Marco Gaspari et al.2005.Proteome analysis of the medicinal plant Catharanthus roseus.Planta,221:690-704.
    151.Donbin Lim,Peter Hains Brad Walsh et al.2001.Proteins associated with the cell envelop of Tdchoderma reesei:A proteom approach,Proteomics,1:899-910.
    152.Eric L Davis,Richard S Hussey,Melissa G Mitchum.2008.Parasitism proteins in nematode-plant interactions.Plant Biology,11:360-366.
    153.Figeys D.1997.High sensitivity identification of proteins by electrospray ionization tandem mass spectrometry:initial comparision between an ion trap mass spectrometer and triple quadrupole mass spectrometer.Electrophoresi,18:360-368.
    154.Francisc J.1991.Root exudates of wildoates allelopathic effect Oil springwheat.Phytochem,30:2199-2201.
    155.Frank Hochholdinger,Ling Guo,Patrick S.2004.Lateral roots affect the proteome of the primary root of maize(Zea mays L.).Plant Molecular Biology,56:397-412.
    156.Ganesh Kumar Agrawai.2002.Proteome analysis of differentially displayed proteins as a tool for investigation ozone stress in rice(Oryza sativa L.) seedlings.Proteomics,2:947-959.
    157.Georg F,Michael J,GillesCaraux et al.2002.A specialized proteomics database for comparing matrix-assisted laser desorption/ionization-time of flight mass spectrometry data of tryptic peptides with corresponding sequence database segments.Proteomics,1:1489-1494.
    158.Gevaert K,Vandekerckhove J.2000.Protein identification methods in proteomics.Electrophoresis 21:1145-1154.
    159.Gh.Hosseini Salekodeh.2002.Proteomic analysis of rice leaves during drought stress and recovery.Proteomics,2:1131-1145.
    160.Giuseppe Caruso,Chiara Cavaliere,Riccardo Gubbiotti et al.2008.Identification of changes in Triticum durum L.leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry.Anal Bioanal Chem,391:381-390.
    161.Gorg A,Weiss W,Dunn MJ.2004.Current two-dimensional electrophoresis technology for proteomics.Proteomic ,4(12):3665-3685.
    162.Gutierrez et al.2009.Plant Proteomics.Proteomics,72:283-284.
    163.Herman EM,Helm RM,Kinney AJ et al.2003.Genetic modification removes an immunodominant allergen from soybean.PlantPhysiol,132:36-43.
    164.Hirosato Konishi.2001.A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization.Proteomics,1:1162-1171.
    165.K.Aghaei.A.A.Ehsanpour.A.H.Shah,S.Komatsu.2008.Proteome analysis of soybean hypocotyl and under salt stress.Amino Acids,10.1007/s00726-008-0036-7.
    166.Koenning S R.2000.Density-dependent yield of Heterodera glycines resistant and susceptible cultivars.Supplement to the Journal of Nematology,32 (4s):502-507.
    167.Lijuan Xing,AndreasWestphal.2009.Effects of crop rotation of soybean with corn on severity of sudden death syndrome and population densities of Heterodera glycines innaturally infested soil.Field Crops Research 112 :107-117.
    168.Mender.M.J.1993.Detection of Heterodera glycines on soybean in Brazil.Plant Disease,77:449-450.
    169.Mooney B P,Thelen J J.2004.High-throughput peptide mass finger-printing of soybean seed proteins:automated workflow and utility of UniGene expressed sequence tag database for protein identification.Phytochemistry,120:1-12.
    170.N.Tanaka,H.Konishi,M.M.K.Khan.2004.Proteome analysis of rice tissues by two-dimensional electrophoresis:an approach to the investigation of gibberellin regulated proteins.(11):1106-1112.
    171.Natarajan S,Xu C.Garrett WM et al.2005.Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins.342(2):214-220.172.Nathan W ,Annamraju D,James K.2008.Proteomic analysis of soybean nodule cytosol.Phytochemistry ,69:2426-2438.
    173.Ostergaard O,Finnie C,Laugesen S et al.2004.Proteome analysis of barley seeds:identification of majorProteins from two-dimensional gels(pl 4-7).Porteomics,4(8):2437-2447.174.P.Brian,J.Mooney,Thelen.2004.High-throughput peptide mass fingerprinting of soybean seed proteins:automated workflow and utility of UniGene expressed sequence tag databases for protein identification.Phytochemistry,65:1733-1744.
    175.Panter S.Thomson R,de Bruxelles G et al.2000.Identification with proteomics of novel proteins associated with peribacteroid membrane of soybean root nodules.Mol Plant Microbe Interact,13:325-333.
    176.Randeep Pakwal,Setsuko Komatsu.2004.Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis.Molecular Biology Reports,31:217-230.
    177.Riggs,R,D.,L.Lakes,R.Elkins.1991.Soybean cultivars resistant and susceptible to Heterodera glycines.JournalNematology,23(4s):584-592.
    178.S.Panter,R.Thomson,Gde Bruxelles et al.2000.Identification with Proteomics of Novel Proteins Associated with the Peribacteroid Membrance of Soybean Root Nodules.The American Phytopathological Society,13(3):325-333.
    179.S.T .Kim.2004.Proteomican alysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus.Magnaporthe grisea.Proteomics,4:3569-3578.
    180.Salekdeh Gh.H.,Siopongco J.,Wade L.J et al.2002.Proteomic analysis of rice leaves during drought stress and recovery.Proteomics,2:1131-1145.
    181.Saravanan RS,Rose JK.2004.A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues.Proteomics,4(9):2522-2532.
    182.Savithiry Nataraja,ChenpingXu,ThomasJ.Caperna.2005.Comparison of protein solubilization methods suitable for proteomicanalysis of soybean seed proteins.Analytical Biochemistry ,342 :214-220.
    183.Schmitt,D.P.and R.D.Riggs.1991.Influence of selected plant species on hatching of eggs and development of juveniles of Heterodera glycines.Journal of Nematology.23:1-6.
    184.Setsuko Komatsu.2005.Rice Proteome Database:a step toward functional analysis of the rice genome.Plant Molecular Biology,59:179-190.
    185.Sun Tae Kim,Kyu Seong Cho,Seek Yu,et al.2003.Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells.Proteomics,3:2368-2378.
    186.T.BolIer,A.Gehri,F.Mauch et al.1983.Chitinase in bean leaves:induction by ethylene,purification,properties,and possible function.Planta,l57:22-31.
    187.Tefft,P.M.,Bone L.W.1985.Plant-induced hatching of eggs of soybean cyst nematode Heterodera glycines.Journal of Nematology,17(3):275-279.
    188.Thiellement H,Bahrman N,Damerval C et al.1999.Proteomics for genetic and physiological studies in plants.Electrophoresis,20(10):2013-2026.
    189.UlrikeMathesius.2009.Comparative proteomic studies of root-microbe interactions.Proteomics,72:353-366
    190.Urmila Basu,Jennafer L,Francis et al.2006.Extracellular proteomes of Arabidopsis thaliana and Brassica napus roots:analysis and comparison by MudPITand LC-MS/MS.Plant Soil,286:357-376.
    191.Wang j.,Donald P.A.,Lniblack T.L et al.2000.Soybean cyst nematode reproduction in the North Central United States.Plant Disease,84:77-82.
    192.Wang Y,Yang L,XU H et al.2005.Differential proteomic analysis of protein in wheat spikes induced by Fusarium graminearum.Proteomics,5(17):4496-4503.
    193.Xiaoqin Wang,Pingfang Yang,Qian Gao et al.2008.Proteomie analysis of the response to high-salinity stressin Physcomitrella patens.Planta,228:167-177.
    194.Xu Ch P,Wesley M.,Joseph Sullivan et al.2006.Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.Phytochemistry,(67):2431-2440.
    195.Youichiro Fukao,Makoto Hayashi and Mikio Nishimura.2002.Proteomics analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana.Plant Cell Physiol,43(7):689-696.