鱼源嗜水气单胞菌aopB~- aopD~- aroA~-缺失株构建及其生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜水气单胞菌(Aeromonas hydrophila)是一种人畜共患的病原菌,也是一种食源性病原菌。嗜水气单胞菌引起的水生动物细菌性败血症,是我国水产养殖史上危害水生动物的种类最多且年龄范围最大、流行养殖水域类别最多且地区最广、流行季节最长且发病率和死亡率均高、造成的经济损失最严重的一种急性传染病。在现阶段水产养殖中预防和控制该病的主要措施是使用抗菌药物和利用细菌灭活疫苗免疫接种。但现有的商品化嗜水气单胞菌灭活疫苗和亚单位疫苗能够降低同源血清型菌引起的水生动物死亡率,不能降低发病率,并且对异源血清型菌的感染也不能提供较好的交叉保护。因而迫切需要更安全、高效的新型疫苗来预防和控制该传染病在水生动物中的发生与流行。与细菌灭活疫苗和亚单位疫苗不同,弱毒活疫苗能够重复提呈抗原和诱导机体产生持续性免疫应答和保护,因此,通过缺失毒力因子构建弱毒活疫苗已成为国内外疫苗研究的热点。
     本研究旨在以本地分离的Ah2056菌株为亲本菌,缺失其Ⅲ型蛋白分泌系统中编码嗜水气单胞菌外膜蛋白的aopB/aopD基因构建aopB~-/aopD~-缺失株,进一步缺失aopB~-/aopD~-株编码5-磷酸烯醇式丙酮酸莽草酸-3-磷酸合酶的aroA基因构建毒力丧失和营养缺陷型的aopB~-/aopD~-/aroA~-缺失株。并对aopB~-/aopD~-与aopB~-/aopD~-/aroA~-缺失株生物学特性和免疫保护进行研究。从而使aopB~-/aopD~-/aroA~-缺失株有可能成为一种安全、可靠并能够提供有效地交叉保护的嗜水气单胞菌弱毒活疫苗。本研究主要的工作如下:
     1.aopB~-/aopD~-缺失株的构建
     参照GenBank中嗜水气单胞菌aopB/aopD序列,从Ah2056基因组中扩增aopB/aopD上下游片断,连接到自杀性质粒pRE112上,构建了缺失369bp的aopB/aopD基因并含有蔗糖敏感基因(sacB)的重组自杀性质粒pREaopB/aopD。重组自杀性质粒pREaopB/aopD转化大肠杆菌X7213,以大肠杆菌X7213阳性克隆为供体菌,与受体菌Ah2056进行接合转移,经涂布氯霉素(Cm)抗性平板并转印到含10%蔗糖的平皿,筛选出Cm抗性(Cm~R)蔗糖敏感(Suc~S)的接合子,并用PCR鉴定重组自杀性质粒已经整合到染色体中。阳性接合子在不含NaCl的培养基中培养促使第二次同源重组。再涂布含10%蔗糖的平皿,并转印到Cm平板上,筛选出Cm敏感(Cm~S)蔗糖抗性(Suc~R)的克隆,并用PCR鉴定第二次交换,从而构建aopB~-/aopD~-缺失株。
     2.aopB~-/aopD~-/aroA~-缺失株的构建
     参照GenBank中嗜水气单胞菌aroA序列,从Ah2056基因组中扩增aroA上下游片断,连接到自杀性质粒pSUP202上,构建缺失1290bp的aroA基因并含有庆大霉素抗性基因(aacC1)的重组自杀性质粒pSUParoA。重组自杀性质粒pSUParoA转化大肠杆菌S17-1,以大肠杆菌S17-1阳性克隆为供体菌,与受体菌aopB~-/aopD~-缺失株进行接合转移,经涂布庆大霉素(Gm)和氯霉素(Cm)抗性平板,筛选Gm抗性(Gm~R)Cm抗性(cm~R)的接合子,阳性接合子在不含NaCl的培养基中培养促使第二次同源重组。再经涂布Gm的平板,并转印Cm到平板上进行筛选,筛出Cm敏感(Cm~S)Gm抗性(Gm~R)的克隆用PCR进行鉴定,确定发生第二次交换,从而构建aopB~-/aopD~-/aroA~-缺失株。
     3.aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株生物学特性
     经培养生化检定,aopB~-/aopD~-缺失株与亲本株的生化特性相似,aopB~-/aopD~-/aroA~-缺失株不能利用麦芽糖、甘露醇和蔗糖以及不能产尿酶、精氨酸脱羧酶和赖氨酸脱羧酶。
     aopB~-/aopD~-、aopB~-/aopD~-/aroA~-缺失株产胞外蛋白酶(酪蛋白酶、弹性蛋白酶)、淀粉酶、DNA酶和溶血素的能力都降低,说明同时降低了多个胞外毒力因子的毒力。
     aopB~-/aopD~-、aopB~-/aopD~-/aroA~-缺失株对EPC细胞无毒性作用,亲本株有很强的EPC细胞毒性作用,加入10~(-3)-10~(-4)μL的培养上清滤液即可抑制50%的细胞生长。
     在LB液体培养基中培养,aopB~-/aopD~-/aroA~-缺失株生长速度明显慢于亲本株,培养8-9h后停止生长,aopB~-/aopD~-缺失株生长速度与亲本株一致;在M9液体培养基中培养,aopB~-/aopD~-/aroA~-缺失株不能生长,aopB~-/aopD~-缺失株生长速度与亲本株一致;添加5种氨基酸培养试验说明aopB~-/aopD~-/aroA~-缺失株是依赖芳香族氨基酸生长的营养缺陷株。
     对银鲫的毒力试验,亲本株Ah2056 LD_(50)为1.0×10~5CFU;aopB~-/aopD~-缺失株LD_(50)为9.7×10~7CFU,其毒力比亲本株Ah2056降低了近1000倍;aopB~-/aopD~-/aroA~-缺失株LD_(50)大于10~(10)CFU,其毒力丧失。
     4.注射aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株疫苗对银鲫的免疫和保护试验
     aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株组与Ah2056灭活疫苗组以1.0×10~8CFU/尾,注射免疫100-150g银鲫。以超声波处理的Ah2056抗原包被,进行ELISA检测免疫后不同时间银鲫血清中的抗体效价。结果表明,各免疫组注射免疫7d后可以检测到血清抗体,以后抗体效价逐渐上升,21d后Ah2056灭活疫苗达到最大值,随后逐渐下降;而aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株在免疫7d后可检测到较高的血清抗体,随后抗体效价一直上升,并且能够维持较高的血清抗体水平,aopB~-/aopD~-缺失株组到第35d,仍可达到2~(12)。
     将注射免疫35d后的银鲫,每组再分成2组,以同源株Ah2056剂量为100×LD_(50)和异源血清株AhJ-1剂量为100×LD_(50)进行注射攻毒。结果表明,灭活疫苗组鱼体内血清抗体效价35d后下降迅速,但对同源菌株的免疫保护力达到63.3%,而对异源血清菌株的免疫保护力明显下降仅为30.0%;aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株相对具有较高的免疫保护力,分别达到66.7%和63.3%,两者都显现出对异源血清菌株的免疫保护力,达到60.0%。结果表明注射aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株活疫苗,对同源(O:9)和异源(O:5)血清型菌株的攻毒都能使银鲫产生良好的保护效力,优于传统注射细菌灭活疫苗。
     5.口服aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株疫苗对银鲫的免疫和保护试验aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株组与Ah2056灭活疫苗组以1.0×10~(10)CFU/尾,口服免疫100-150g银鲫。以超声波处理的Ah2056抗原包被,进行ELISA检测免疫后不同时间银鲫血清中的抗体效价。结果表明,各免疫组口服免疫7d后可以检测到血清抗体,以后抗体效价逐渐上升,14d后口服Ah2056灭活疫苗组达到最大值,随后逐渐下降;aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株在免疫7d后可检测到相对较高的血清抗体,随后抗体一直上升,并且能够维持一定的血清抗体水平,aopB~-/aopD~-缺失株到第35d,仍可达到2~7。
     将口服免疫35d后的银鲫,每组再分成2组,以同源株Ah2056剂量为100×LD_(50)和异源血清株AhJ-1剂量为100×LD_(50)进行注射攻毒。结果表明,口服疫苗组比注射免疫组免疫保护力明显降低;口服疫苗组内,aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株对同源和异源血清菌株都具有相似的免疫保护力,在46.7%-50%之间;口服灭活疫苗组对同源和异源血清菌株的免疫保护力分别为23.3%和10%,口服aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株免疫保护力明显高于口服灭活疫苗组。结果说明口服aopB~-/aopD~-,aopB~-/aopD~-/aroA~-缺失株活疫苗,对同源(O:9)和异源(O:5)血清型菌株的攻毒都能使银鲫产生较低的保护效力,但其免疫保护力高于口服灭活疫苗。
     6.嗜水气单胞菌外膜蛋白在枯草芽孢杆菌中的表达
     用PCR方法从枯草芽孢杆菌、鱼源嗜水气单胞菌的基因组DNA中,分别扩增P43启动子和不含信号肽的外膜蛋白基因ompTS。各PCR产物经测序、酶切、连接到大肠杆菌-枯草芽孢杆菌穿梭载体pNW33N相应位点构建穿梭表达载体pNWP430mp。电转枯草芽孢杆菌构建菌株BS01(pNWP430mp),表达的外膜蛋白经SDS-PAGE和western blot检测。结果表明,穿梭表达载体pNWP430mp构建成功,构建的枯草芽孢杆菌在P43启动子的调控下,实现了外膜蛋白基因ompTS的表达。为实现枯草芽孢杆菌表达系统在水产养殖中的应用打下基础。
Aeromonas hydrophila is a zoonotic pathogens,is also a food-bome pathogens.Aquatic bacterial septicemia is caused by Aeromonas hydrophila which induces high incidence of a disease and mortality in aquatic animals each year.It endangers the most aquatic species and scopes and different stage of fish and breed aquatic area.As an acute infectious disease,aquatic bacterial septicemia brings huge economic loss.At present,the extensive use of antibiotics and immunization are main methods to prevent and control it in acquculture.The current dominant commercial vaccines are still killed whole cell bacterins and subunit vaccines,which generally reduce the mortality of A.hydrophila infection.However those vaccines frequently failed to prevent severer morbidity and economic losses.Above all,it's very urgent to develop a safe,effective,inexpensive and convenient vaccine to control A.hydrophila.In contrast,the attenuated live vaccines could re-present protective antigens and stimulate a lasting immune response that may be more efficacious in preventing the disease.Therefore,studies of A.hydrophila vaccines tend to focus on live attenuated vaccines constructed by inactivating virulence-associated genes.
     Based on above considerations,this study was aimed to develop a safer,effective vaccine strain and exploit A.hydrophila as a live vaccine.Ah2056 strain was used as the parent strain.The aopB/aopD(encoding A.hydrophila out membrane protein B,D) gene was deleted in the Ah2056 genome to decrease virulence and remove the risk of virulence return.Then the aroA gene(encoding 5-enolpyruvyl shikimate 3-phosphate synthase) was deleted in the aopB~-/aopD~-to construct the aopB~-/aopD~-/aroA~- strain for removing the risk of virulence return again.This aopB~-/aopD~-/aroA~-strain was lower virulence and aromatic amino acids dependent for removing the risk of virulence diffusion.The main research was described as follows:
     1.Construction of aopB~-/aopD~- mutant
     According to the GenBank sequences of A.hydrophila,the upstream and downstream of aopB/aopD gene were respectively amplified from Ah2056 genome,subcloned into suicide plasmid pRE112.The recombination suicide plasmids were designated as pREaopB /aopD which contained 369bp-deleted aopB/aopD and sucrose sensitive(sacB) gene. The aopB~-/aopD~-mutant,from which aopB/aopD gene was deleted,was constructed first. The E.coil donor strain X7213 transformed with the suicide plasmid pREaopB/aopD was conjugated with the recipient strain,the wide-type Ah2056 strain.After transconjugation,Chloramphenicol-resistant(Cm~R) and sucrose-sensitivity(Suc~S) transconjugants in which the whole plasmid had been incorporated into the recipient chromosome were analyzed by PCR.Colonies with the correct PCR profile were incubated in LB.Aliquots were then plated on to NA plates containing 10%(w/v) sucrose. Sucrose-resistant(Suc~R) colonies were tested for the chloramphenicol-sensitivity(Cm~S) phenotype,which was indicative of loss of plasmid vector sequences.Following this, Sue~R and Cm~S colonies were identified using PCR to determine the presence of the second crossover.
     2.Construction of aopB~-/aopD~-/aroA~- mutant
     The upstream and downstream of aroA gene were respectively amplified from Ah2056 genome according to the GenBank sequences of A.hydrophila,subcloned into suicide plasmid pSUP202.The recombination suicide plasmids were designated as pSUParoA which contained 1290bp-deleted aroA and gentamycin resistance(aacCl) gene.The aopB~-/aopD~-/aroA~- mutant,from which aroA gene was deleted,was constructed first.The E.coil donor strain S17-1 transformed with the suicide plasmid pSUParoA was conjugated with the recipient,the aopB~-/aopD~- mutant.After transconjugation,Chloramphenicolresistant (Cm~R) and gentamycin-resistance(Gm~R) transconjugants were analyzed for the presence of a first crossover event.Colonies were then plated on to NA plates containing gentamycin.Gentamycin-resistance(Gm~R) colonies were tested for the chloramphenicol-sensitivity(Cm~S) phenotype,which was indicative of loss of plasmid vector sequences.Following this,Gm~R and Cm~S colonies were identified using PCR to determine the presence of the second crossover.
     3.Biological characteristic of aopB~-/aopD~-,aopB~-/aopD~-/aroA~- mutant
     Biochemical assays of aopB~-/aopD~- mutant was the same as those of Ah2056,while AhaopB~-/aopD~-/aroA~- mutant failed to ferment maltose,sucrose,xylose and produce urea, arginnine decarboxylase,lysine decarboxylase.
     The exoenzyme activities analysis of revealed that aopB~-/aopD~- and aopB~-/aopD~-/aroA~-mutant could not produce the detectable exoproteases,haemolysin,amylase and Dnase, while Ah2056 had a high level of exoenzyme activities.
     The cultural supematant of aopB~-/aopD~-,aopB~-/aopD~-/aroA~- were inoculated in EPC cell culture,and the result indicating that lost the toxigenicity to EPC cell.The cultural supematant of Ah2056 had highly the toxigenicity to EPC cell,which 10~(-3)-10~(-4)μl cultural supernatant could restrain the growth of 50%EPC cell.
     The growth curve in LB of aopB~-/aopD~-/aroA~- showed that the mutant grew significantly more slowly than aopB~-/aopD~- and Ah2056 did,and didn't grow after incubation for 8-9h.The growth curve in M9 of aopB~-/aopD~-/aroA~- showed that the mutant didn't grow,while aopB~-/aopD~- and Ah2056 did.The results suggest aopB~-/aopD~-/aroA~- was lower virulence and aromatic amino acids dependent.
     The i.p LD_(50) value of Ah2506 and aopB~-/aopD~- mutant were determined to be approximately 1.0×10~5 and 9.7×10~7 CFU,respectively.The virulence of aopB~-/aopD~-mutant in Carassius auratus gibelio reduced about 1000 times than parent strain. The i.p LD_(50) value of AhaopB~-/aopD~-/aroA~- mutant was higher than 1.0×10~(10),which lose its virulence.
     4.The immune and protective assay of the intraperitoneally immunized with aopB~-/aopD~-,aopB~-/aopD~-/aroA~- mutants in Carassius auratus gibelio
     100-150g Carassius auratus gibelio were intraperitoneally immunized with the aopB~-/aopD~-,the aopB~-/aopD~-/aroA~- mutant and the killed cell vaccine at the same dose of 1.0×10~8CFU.ELISA was used to assay serum antibodies tirtre to A.hydrophila by coating with A.hydrophila sonicated antigen.The results showed that the serum antibodies tirtre of all groups were detect at week after intraperitoneally immunization. The antibody level for killed Ah2056 group was the highest at week 3 after intraperitoneally immunization,and then to descent gradually.The antibody level for the aopB~-/aopD~-,aopB~-/aopD~-/aroA~- mutant groups were both higher than those of the killed cell vaccine group at week after oral immunization,and then to increase gradually,which were keeping a highly serum antibodies tirtre.Thirty-five days later,the serum antibodies tirtre of aopB~-/aopD~-mutant group was 2~(12).
     Carassius auratus gibelio were intraperitoneally immunized with the aopB~-/aopD~-, aopB~-/aopD~-/aroA~- mutant and the killed cell vaccine at the same dose of 1.0×10~8CFU. Thirty-five days later,Carassius auratus gibelio were challenged i.p.with 100×LD_(50) of Ah2056(O:9) and AhJ-1(O:5).Relative percent survivals(RPS) of intraperitoneally immunized mutants were higher than those of the killed cell vaccine,and were 66.7%, 63.3%respectively.With the hige dose challeng,still offered Carassius auratus gibelio 63.3%-66.7%protection against homologous serovar and 60%protection against heterogenous serovar.The results suggest that intraperitoneally immunized with aopB~-/aopD~- or aopB~-/aopD~-/aroA~- is better than the killed cell vaccine.
     5.The immune and protective assay of the orally immunized with aopB~-/aopD~-, aopB~-/aopD~-/aroA~- mutants in Carassius auratus gibelio
     100-150g Carassius auratus gibelio were orally immunized with the aopB~-/aopD~-,the aopB~-/aopD~-/aroA~- mutant and the killed cell vaccine at the same dose of 1.0×10~(10)CFU. ELISA was used to assay serum antibodies tirtre to A.hydrophila by coating with A. hydrophila sonicated antigen.The results showed that the serum antibodies tirtre of all groups were detect at week after oral immunization.The antibody level for killed Ah2056 group was the highest at week 2 after oral immunization,and then to descent gradually. The antibody level for the aopB~-/aopD~-,aopB~-/aopD~-/aroA~- mutant groups were both higher than those of the killed cell vaccine group at week after oral immunization,and then to increase gradually,which were keeping a highly serum antibodies tirtre. Thirty-five days later,the serum antibodies tirtre of aopB~-/aopD~- mutant group was 2~7.
     Carassius auratus gibelio were orally immunized with the aopB~-/aopD~-,the aopB~-/aopD~-/aroA~- mutant and the killed cell vaccine at the same dose of 1.0×10~(10)CFU. Thirty-five days later,Carassius auratus gibelio were challenged i.p.with 100×LD_(50) of Ah2056(O:9) and AhJ-1(O:5).Relative percent survivals(RPS) of orally immunized groups were lower than those of intraperitoneally immunized groups respectively.Both aopB~-/aopD~- and aopB~-/aopD~-/aroA~- group had the same of RPS of orally immunized groups.With the hige dose challeng,offered Carassius auratus gibelio only 46.7% protections against homologous serovar and 50%protection against heterogenous serovar. The results suggest that orally immunized with aopB~-/aopD~- or aopB~-/aopD~-/aroA~- is inferior to the killed cell vaccine.
     6.Expression of A.hydrophila out membrane protein in Bacillus subtilis
     With the technology of PCR,the promoter P43 was amplified from B.subtilis total DNA,the outer membrane protein gene ompTS was amplified from A.hydrophila total DNA without its signal peptide-encoding sequence.The PCR productions were sequenced, digested and cloned into the corresponding site of an E.coli-B.subtilis shuttle vector pNW33N to generate the shuttle expression vector pNWP43omp.The recombinant vector was transformed into B.subtilis BS01.BS01 cells harboring pNWP43omp expressed the outer membrane protein,which were confirmed by SDS-PAGE and western blot.In conclusion,the shuttle expression vector pNWP43omp were successful constructed. Under the control of the promoter P43,the ompTS gene were expressed in B. subtilis.There is a good prospect for the application of B.subtilis expression system in aquaculture.
引文
1.陈超然,陈昌福.鱼用疫苗的研究现状.水利渔业,2001,21(5):44-45
    2.陈超然,毛芝娟,陈昌福.鱼用疫苗研制过程中面临的问题与课题.河南水产,2002,(1):9-11
    3.陈光荣,肖克宇,邓时铭.鱼用疫苗基因工程技术及其商品化初探.北京水产,2003,8:28-29
    4.陈怀春,陆承平,袁世山.嗜水气单胞菌HEC毒素基因的克隆及酶谱分析.中国兽医学报,1997,17(4):339-343
    5.陈怀青.鱼类免疫接种的理论与实践.国外水产,1995,(3):7-10
    6.储卫华,陆承平.筛选用转座子Tn916诱变得具有免疫原性的嗜水气单胞菌蛋白酶缺失株.水产学报,2001,25(3):244-248.
    7.储卫华,陆承平.嗜水气单胞菌胞外蛋白酶对鲫鱼的致病性.南京农业大学学报,2000,23(2):80-84
    8.董传甫,林天龙,余伏松,陈日升,龚晖,陈振海.鱼源气单胞菌的分离鉴定及血清学调查.水利渔业,2004,24:78-81
    9.高健编译.免疫激活佐剂在水产养殖中的应用.河北渔业,1994,77(4):20-22
    10.韩文瑜.现代分子细菌学.长春:中国解放军农牧大学出版社,1999:61-62
    11.J.萨母布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).黄培堂等译,北京:科学出版社,2002.
    12.洪义国,孙谧,张云波,李勃生.16S rRNA在海洋微生物系统分子分类鉴定及分子检测中的应用.海洋水产研究,2002,23(1):58-63
    13.黄晓,叶巧真,何建国.嗜水气单胞菌外膜蛋白基因ompTS的克隆与序列分析.水产学报,2001,25(6):552-558
    14.黄琪炎.水产动物疾病学.上海:上海科学技术出版社,1993:76
    15.李爱华。我国鱼类病原菌耐药性、耐药质粒及几种药物抗菌作用的研究.武汉:中国科学院水生生物研究所博士学位论文,1998:108
    16.李瑞芳,罗进贤,张添元.利用枯草杆菌整合表达嗜铬粒蛋白抗真菌片段.中山大学学报(自然科学版),2004,43(1):73-75
    17.陆承平,陈怀青.用PCR检测嗜水气单胞菌毒素基因.中国动物检疫,1995,12(5):5-7
    18.马迪根·马丁克著,杨文博译,微生物学[M],北京:科学出版社,2001:763-767
    19.欧阳岁东,林天龙,陈孝煊等.鳗源嗜水气单胞菌主要外膜蛋白基因克隆及其表达.水产学报,2006,30(4):566-570
    20.钱冬,陈月英,沈锦玉,沈智华.引起鱼类暴发性流行的嗜水气单胞菌的血清型、毒力及溶血性.微生物学报,1995,35(6):460-464
    21.邱茂锋,杨瑞馥.致病性耶尔森菌毒力因子YopM的研究进展.军事医学科学院院刊,2004,28(6):582-585.
    22.沈锦玉,余旭平,KIM THOMP SON.嗜水气单胞菌细胞提取物特性的分析.浙江大学学报:农业与生命科学版,2005,31(5):555-560
    23.沈禹颐.病原性细菌毒力岛的研究进展.中国兽医科技,2003,33(3):41-42
    24.孙建和,严亚贤,陈怀青.嗜水气单胞菌亚单位疫苗的研制.中国兽医学报,1996,16(1):11-14
    25.孙建和,严亚贤,陈怀青.致病性嗜水气单胞菌保护性抗原的研究.中国人畜共患病杂志,1997,13(3):20-23
    26.孙其焕.异育银鲫溶血性腹水病病原的研究.水产学报,1991,15(2):130-139
    27.王健,赵立平.细菌Ⅲ型分泌系统.生命的化学,2001,21(2):147-148
    28.王勇.沙门菌Ⅲ型分泌系统的若干研究.国外医学·行病学传染病分册,2001,28(5):220-222.
    29.王世若,王兴龙,韩文瑜.现代动物免疫学(第二版).吉林:吉林科学技术出版社,2001,430-438
    30.王效义,杨瑞馥.沙门氏菌毒力岛及其Ⅲ型分泌系统.生物技术通讯,2004,15(2):160-161.
    31.夏春.鱼病诊断与防治手册.北京:中国农业大学出版社,1999,21-32
    32.严亚贤,孙建和,陈怀青.嗜水气单胞菌菌毛的提纯及特性分析.南京农业人学学报,1995,18(3):88-93
    33.杨先乐,吴明泉.草鱼出血病细胞培养灭活疫苗的研究:生产性免疫试验.水产科技情报,1992,19(1):10-14
    34.于艳荣,刘希成,张彦民.革兰氏阴性菌外膜蛋白的研究进展.动物医学进展,2000,21(2):35-391
    35.余俊红,沈继红,王祥红.鳗弧菌口服微胶囊疫苗的制备及其对鲈鱼的免疫效.中国水产科学,2001,8(2):76-79
    36.张吉红,陆承平.佐剂对嗜水气单胞菌灭活疫苗免疫效果的作用.中国兽药杂志,2003,37(4):26-27
    37.张元兴,马悦,孙修勤.海洋鱼病疫苗开发与生物反应器大规模生产.高技术通讯,2000,10(2):1-5
    38.郑天伦,王国良.鱼类DNA疫苗的研究进展.宁波大学学报(理工版),2002,15(12):87-90
    39.周德庆.微生物学教程.北京:高等教育出版社,1993:102-103
    40.周永运,徐建国.肠道病原菌的三型分泌系统与侵袭.中国人兽共患病杂志,2003,19(4):102-105.
    41.朱杰清,陆承平.细菌毒力因子的分泌机制.国外医学·微生物学分册,2000,23(4):20-21.
    42.Adams M.R.Moss M.O.Food Microbiology(second ed.).Cambridge:Royal Society of Chemistry,2000
    43.Aguiar A,Merino S,Rubires X.Influence of osmolarity on lipoplysaccharides and virulence of Aeromonas hydrophilia serotype 034 strains grown at 37℃. Infect and Immun, 1997, 65(4): 1245-1250
    
    44. Albert M, Johb A M, Talukdaer K A. Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls and the environment. Clin Microbiology, 2000, 38(10): 3785-3790
    
    45. Altwegg M, Geiss H. K. Aeromonas as a human pathogen. Critical Reviews in Microbiology, 1989,16,253-286
    
    46. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in sinxdetection of individual microbial cells without cultivation. Micro biological Reviews, 1995; 59: 143-169
    
    47. Anderson D P. Adjuvants and immunostimulants for enhacing vaccine potency in fish. Dev Biol Stand, 1997,90 (7): 257-265
    
    48. Ansary A, Haneef RM, Torres JL, Yadav M. Plasmids and antibiotic resistance in Aeromonas hydrophila isolated in Malaysia from healthy and diseased fish. Journal of Fish Diseases, 1992, 15,191-196
    
    49. Aoki S, Kondo T, Ishiura M. A promoter-trap vector for clock-controlled genes in the cyanobacterium Synechocystis sp. PCC 6803. J Microbiol Methods, 2002,49:265-274
    
    50. Aoki T, Egusa S, Ogata Y, Wantanabe T. Detection of resistance factors in fish pathogen Aeromonas. Journal General Microbiology, 1971,65, 333-49
    
    51. Asao T, Kinoshita Y, Kozaki S. Purification and some properties of Aeromonas hydrophila hemolysin. Immun, 1984,46(1):122-127
    
    52. Austin B, Adams C. Fish Pathogens. In B. Austin, M. Altwegg, P. J Gosling, and S. Joseph (Eds.), The Genus Aeromonas. J. Wiley and Sons, Ltd. 1996, 197-244
    
    53. Austin B. Bacterial fish pathogens: Disease in farmed and wild fish (3rd ed.). Chichester: Praxis Publishing Ltd, 1999, 237-251
    
    54. Austin B., Austin DA. Bacterial fish pathogens. Disease of farmed and wild fish. 3rd ed Chichester: Springer Praxis, 1999
    
    55. Bakopoulos V Adama A, Richards R H. The effect of iron limitation growth conditions on the cell and exteacelluar component of the fish pathogen piscicida. Journal of Fish Disease, 1997, 20: 297-305
    
    56. Benyacoub J, Czarnecki-Maulden G L, Cavadini C. Supplementation of food with Enterococcus faecium stimulates immune functions in young dogs. Nutr, 2003, 133 (4): 1158-1162
    
    57. Bi Z.X., Liu Y.J., Lu C.P. Contribution of Ahy R to virulence of Aeromonas hydrophila J-1. Research in Veterinary Science, 2007, 83,150-156
    
    58. Bredmose L, Madsen S M, Vrang A. Recombinant protein production with prokargotic and eukaryotic Cell. Dordrecht: KluwerAcademic Publishing, 2001
    
    59. Bredmose L., Madsen S.M., Vrang A., Ravn P., Johnsen M.G., Glenting J., Israelsen H. Development of a heterologous gene expression system for use in Lactococcus lactis. A novel Gram-positive expression system, in: Merten O.W., Mattanovich D., Lang C, Larsson G, Neubauer P., Porro D., Postma P., Teixeira de Mattos J., Cole J.A. (Eds.), Recombinant protein production with prokaryotic and eukaryotic cells - a Comparative View on Host Physiology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, pp. 269-275.
    
    60. Brown A, Hormaeche CE, Demarco R. An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned β-galactocidase in mice. Journal of Infection Diseases, 1987,155, 86-91
    
    61. Buckley J T, Howard S P. The cytotoxic enterotoxin of Aeromonas hydrophila is aerolysin. Infect Immun, 1999, 67(1): 466-467
    
    62. Buckley J T, Howerd S P. The cytotoxion enterotoxin of Aeromonas hydrphila is Aerolysin. Infect .and Immun, 1999,67(1): 466-467
    
    63. Burr S E, Stuber K, Frey J. The ADP-ribosylating toxin, AexT, from Aeromonas salmonicide sub sp. Salmonicida is translocated via a type HI secretion pathway. J Bacteriol, 2003,185 (22): 6583-6591
    
    64. Carmen Hernanz Moral, Emilio Flaflo del Castillo, Pilar Lopez Fierro. Molecular characterization of the Aeromonas hydrophila aroA gene and potential use of an auxotrophic aroA mutant as a live attenuated vaccine. Iinfection and Immunity, 1998, 66, 1813-1821
    
    65. Caselitz F H, Gunter R. Haemolysin studies mit Aeromonas stamen. Zentralbi Bakteriol. Para sitenkol. Infekionskr. HygAbt Org, 1960,180 (1):30-38
    
    66. Cason A, Fregeneda J, Aller M. Cloning characterization and insertional inaction of a major extra cellular proteases gene with elastolytic acitivity from Aeromonas hydrophila. Fish Diseases, 2000, 23:49-59
    
    67. Chakraborty T., B. Huhle, H. Hof, H. Bergbauer, W. Goebel. Marker exchange mutagenesis of the aerolysin determinant in Aeromonas hydrophila demonstrates the role of aerolysin in A. hydrophila-associated systemic infections. Infect. Immun, 1987, 55,2274-2280
    
    68. Cho H Y, Yukawa H, Inui M. Production of minicellulosomes from clostridium cellulovorans in Bacillus subtilis WB800. Appl Environ Microbiol, 2004, 70: 5704-5707
    
    69. Chou HY. Application of monoclonal antibody against viral nucleo-protein to an aetiological study of infection heom atopoietic necrosis. Fish Diseases, 1993, 16 (2): 149 -153
    
    70. Christopher Y W F, Michael W H, Robert L P F. Inactivation of two haemolytic toxin genes in Aeromonas hydrophila attenuates virulence in a suckling mouse model. Microbiology, 1998, 144: 291-298
    
    71. Chu weihua, Lu chengping. Screening the reduced virulent protease-deficient mutant of Aeromonas hydrophila by Tn916 transposon insertions. Journal of Fisheries of China, 2001, 25, 244-248
    72. Cipriani OR, Starliper CE. Immersion and injection vaccination of salmonids against funtunculosiswith a virulent strain of Aeromonas salmonicida. Prog Fish Cult, 1982, 44 (5): 167—169
    
    73. Corbeil S, Lapatra SE, Anderson ED. Nanogram qualities of DNA vaccine protects rainbow trout fry against heterologous strains of infectious hematoppoietic necosis virus. Vaccine, 2000,18 (25): 2817-2824
    
    74. Dauga C F, Grimont P A D. Nucleotidesequencesof 16S rDNA from ten serratia species. Micro-biology, 1990, 141 (4): 1139-1149.
    
    75. Deuerling E, Paeslack B, Schumann W. The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol, 1995, 177:4105-4112
    
    76. DUCLH, HONG HA, UYEN NQ. Intracellular fate and immunogenicity of B.subtilis spores. Vaccine, 2004,22:1873-1885
    
    77. Duff DCP. The oral immunization of tuout against Bacterium salmaonicida. Immune, 1942,44 (5): 87 -94
    
    78. Dunn A K, Handelsman J. A vector for promoter trapping in Bacillus cereus. Gene, 1999, 226: 297-305
    
    79. Edwards RA, LH Keller, DM Schifferli. Improved allelic exchange vectors and their use to analyze 987p fimbriae gene expression. Gene, 1998,207,149-157
    
    80. Emmenegger E, Huang C, Landolt M. Immune response to syntheic peptides representing antigenic sites on the glycop rotein of infectious hematopoietic necrosis virus. Vet Res, 1995, 26: 374-378
    
    81. Esteve C, Alixia C, Toranzo E. O-Serogrouping and surface components of Aeromonas hydrophila and Aeromonas jandaei pathogenic for eels. FEMS Microbology Letter, 1994, 117: 85-89
    
    82. Fadl AA, Galindo CL, Sha J, Erova TE, Houston CW, Olano JP, Chopra AK. Deletion of the genes encoding the type III secretion system and cytotoxic enterotoxin alters host responses to Aeromonas hydrophila infection. Microbial Pathogenesis, 2006,40, 198-210
    
    83. Fadl AA, Galindo CL, Sha J, Erova TE, Houston CW, Olano JP, Chopra AK. Deletion of the genes encoding the type III secretion system and cytotoxic enterotoxin alters host responses to Aeromonas hydrophila infection. Microbial Pathogenesis, 2006,40, 198-210
    
    84. Fernandez-Alonso M, Alvarez F, Estepa A. A model to study fish DNA immersion vaccination by using the green fluorescent protein. Fish Disease, 1999,22 (7): 237-241
    
    
    85. Fryer J L. Vaccination for control of infectious diseases in Pacific salmon. Fish Pathal, 1976, 10 (2): 155-164
    
    86. Fyfe, L. A study of the pathological effect of isolated Aeromonas salmonicida extracellular pro -teases on Atlantic salmon. Salmosalar, L. Journal of Fish Diseases, 1999,403-409
    87. Garmendia J, Beuzon CR, Ruiz-Albert J. The rolesofSsrA-SsrB and OmpR-EnvZ in the regulation ofgenes encoding theSalmonella typhimuriumSPI-2 typeIIIsecretion system. Micro -biology, 2003, 149(9): 2385-2396.
    
    88. Gauthier A, Puente JL, Finlay BB. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun, 2003,71(6): 3310-3319.
    
    89. Gosling P. J. Aeromonas species in disease of animals. In B. Austin, M. Altwegg, P. J. Gosling, & S. Joseph (Eds.), The Genus Aeromonas J. Wiley & Sons, Ltd. 1996, 175-196.
    
    90. Grangette C, Muller-Alouf H, Goudercourt D. Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus Plantarum. Infect Immun, 2001,69(3): 1547-1553
    
    91. Guinee P A. Serotyping of Aeromonas species using passive haemagglutination. Zentrlbl Bakteriol Mikrobil, Hyt (A), 1987,265: 305-316
    
    92. Hassan JO, Curtiss R 3rd. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli 078 LPS as a vaccine to prevent airsacculitis in chickens. Avian Diseases. 1999,43(3), 429-41
    
    93. HB Yu, PS Srinivasa Rao, HC Lee. A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis. Infect Immun, 2004, 72,1248-1256
    
    94. He SY. Type IE protein secretion system in plant and animal pathogenic bacteria. Annu Rev Phytopatho, 1 1998,36: 363-392.
    
    95. Heppell J, Lonenzen N, Armsrong N K. Development of DNA vaccines for fish: vector design, intramuscular injection and antigen exp ression using viral hemorrhagic septicernia virus genes as model. Fish Shellfish Immune, 1998,66 (8): 271-278
    
    96. Hernanz M C, Flano del Castillo E, Lopez F P. Molecular characterization of the Aeromorans hydrophila aroA gene end potential use of an autotrophic aroA mutant as a live attenuated vaccine. Infect Immun, 1998, 66(5): 1813-1821
    
    97. Ho Y K, Charles M D, Steven A T, Tae H L, Roy Curtiss III. Transduction-mediated transfer of unmarked deletion and point mutations through use of counterselectable suicide vectors. J Bacteri, 2002,1,307-312
    
    98. Howard SP, Meiklejohn HG Effect of mutations in the general secretory pathway on outer membrane protein and surface layer assembly in Aeromonas spp. Canadian journal of microbiology, 1995, (41): 525-532.
    
    99. Idnna. Role of flm in Mesophilic Aeromonas species adherence. Infection and Immunity, 2001, 69(1): 65-74
    
    100. Irene Salinas, Patricia Diaz-Rosales, Alberto Cuesta. Effect of heat-inactivated fish and non-fish derived probiotics on the innate immune parameters of a teleost fish (Sparus aurata L.). Veterinary Immunology and Immunopathology, 2006, 111 (3-4): 279-286
    
    101. Janada J M, Abbott S L, Khashe S, et al. Further studies on biochemical characteristics and serologic properties of the genus Aeromonas. Clin Microlilogy, 1996,34(8): 1930-1933
    
    102. Janda J M, Oshiro L, Abbott S L. Virulence markers of Mesophilic Aeromonads: association of the autoagglugination Phenomenon with mice pathogenicity and the presence of a peripheral cell-associated layer. Infect Immun, 1987, 55 (12): 3070-3077
    
    103. Janda JM, Abbott SL. Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions. Clinical Infectious Diseases, 1998,27,332-344
    
    104. Jeanteur D, Gletsu N. Pattus F, Buckley JT. Purification of as Aeromonas hydrophila major outer-membrane proteins: N-terminal sequence analysis and channel-forming roperties. Mol Microbiol, 1992,6(22): 3355-3363
    
    105.Jian Sha, E. V. Kozlova, A. K. Chopra. Role of various enterotoxins in Aeromonas hydrophila-Induced gastroenteritis: generation of enterotoxin gene-deficient mutants andevaluation of their enterotoxic activity. Infection and Immunity, 2002,70,1924-1935
    
    106. Jones M A, W igley P, Page K L. Salmonella enterica serovar Gallinarumrequires the Salmonella pathogenicity island 2 typeIIIsecretion system butnot the Salmonella pathogenicity island type III secretion system forvirulence in chickens. Infection and Immunity, 2001,69: 5471-5476.
    
    107. Joosten DHW, Tiemersma E, Threels A. Oral vaccination of fish against V ibrio anguillaram using alginate microparticles. Fish and Shellfish Immunology, 1997, 7 (7): 471-485
    
    108. Jose Vivas, Jorge Riano, Begona Carracedo, Blanca E. Razquin, Pilar Lopez-Fierro, German Naharro and Alberto J. Villena. The auxotrophic aroA mutant of Aeromonas hydrophila as a live attenuated vaccine against A. salmonicida infections in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 2004,16,193-206
    
    109. Joseph S.W. Carnahan A.M. Update on the genus Aeromonas. ASM News, 2000, 66,218-223
    
    110. Khashe S, Hill W, Janda M. Characterization of Aeromonas hydrophila strains of clinical animal and environmental origin expressing 034 antigen. Clinical Microbiology, 1996,33: 104-108
    
    111. Kim CH, Johnson MC, Drennan JD. DNA vaccines encoding viral glycoproteins induce nonspecific immunity and Mx protein synthesis in fish. Virol, 2000, 74 (15): 7048-7054
    
    112. Kirov, S. M. Aeromonas and Plesiomonas Species. In M. P.Doyle, L. R Beucha and T. J. Montville (Eds.), Food microbiology: fundamentals and frontiers (second ed.). ASM Press, 2001, 301-328
    
    113. Kirov, S. M. Aeromonas Species. In A. D. Hocking (Ed.), Foodborne microorganisms of public health signi.cance (sixth ed.). AIFST Inc. (NSW Branch).2003,553-575
    
    114. Kokka R P, Vedros N A, Janda J M. Immunochemical analysis and possible biological role of an Aeromonas hydrophila surface array protein in septicemia. J General Microbiology, 1992, 138: 1 229-1236
    
    115. Kubori T, MatsushimaY, Nakamura D. Supramolecular Structure of theSalmonella typhimurium-typeIIIprotein secretion system. Science, 1998,280:602
    
    116. Kuzyk MA, Burian J, MachanderD. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine, 2001,19 (17-19): 2337-2344
    
    117. Lautrop H. 'Aeromonas hydrophila' isolated from human faeces and its possible pathological signicance. Acta Pathol Microbiol Scared, 1961, 51,299-301
    
    118. Lawrence M L, Cooper R K, Thune R L. Attenuation, persistence and vaccine potential of an Edwardsiella ictaluri Pura mutant. Infect lmmun, 1997, 65(11): 4642-4651
    
    119. Leblanc D, Rmuttal K, Olivier G,. Sergrouping of motile Aeromanos species from healthy and moribund fish. Applied and Environmental Microbioligy, 1981,42(1): 56-61
    
    120. Lee K K, Ellis A E. Glycerophospholipid: cholesterol acyltransferase complexed with lipopolysaccharide (LPS) is a major lethal exotoxin and cytolysin of Aeromonas salmonicida: LPS stabilizesand enhances toxicity of the enzymey. J Bacteriol, 1990,172(9): 5382-5393
    
    121. Lenug K Y, Stevenson R M W. Tn5-induced protease-deficient strains of Aeromonas hydrophila with reduced virulence for fish. Infection and Immunity, 1988, 56:2693-2644
    
    122. Leong JC, Anderson E, Bootland LM. Fish vaccine antigens produced or delivered by recombinant DNA technologies. Dev Boil Stand, 1997,90 (7): 267 -277
    
    123. Leong JC, Crippen T, Drennan J. Development of DNA vaccine for fish. Suisanzoshoku, 2000, 48 (2): 285-290
    
    124. Leung K Y, Low K W, Lam T J. Interaction of the fish pathogcn Aeromonas hydrophila with tilapia, Oreochromis aureus (Stetndacheer), phagocytes. Journal of Fish Diseases, 1995, 18 (5):435-477
    
    125. Leung, K Y. Characteristics and distribution of extracellular proteases from Aeromonas hydrophila. Journal of General Microbiology, 1988, 134: 151-160
    
    126. Li X, Yang S H, Yu X C. Construction of transgenic Bacillus mucilaginosus strain with improved phytase secretion. J Appl Microbiol, 2005,99: 878-884
    
    127. Liu yongjie, Bi zhixiang. Potential use of a transposon Tn916-generated mutant of Aeromonas hydrophila J-1 defective in some exoproducts as a live attenuated vaccine. Preventive Veterinary Medicine, 2007, 78, 79-84
    
    128. Liunge A H, Wretlind B, Mollby R. Separation and Characterization of enterotoxin and haemolysins from Aeromonas hydrophila. Acta Pathologicaet Microbiologica Scandinavica, section B. 1981, (89):389-397
    
    129. Lorenzen N, Lorenzen E, Einer J K. Gennetic vaccination of rainbow trout against viral haemorrhagic septicaemia virus: small amounts of plasmid DNA protect against a heterologous serotype. Virus Res, 1999, 63 (1-2): 19-25
    130. Lung, K Y, Javier Y, Alejandro T. A Major Secreted Elastase Is Essential for Pathogenicity of Aeromonas hydrophila. Infect Immun, 2000,68(6): 3233-3241
    
    131. Lung, K Y. Tn5 induced protqase deficient strains of Aeromonas hydrophila with reduced virulence for fish. Infection and Immunity, 1988,9: 2639-2644
    
    132. Lutwyche P, Exner M M, Hancock RE. Trust T.J. A conserved aernmonas salmoiticida porin provides protective immunity to rainbow trout. Infect and Immun, 1995,63(8): 3137-3142
    
    133. M J Marsden, L M Vaughan, T J Foster and C J Secombes. A live (delta aroA) Aeromonas salmonicida vaccine for furunculosis preferentially stimulates T-cell responses relative to B-cell responses in rainbow trout (Oncorhynchus mykiss). Infection and Immunity, 1996,64, 3863-3869
    
    134. Marsden M. J., Vaughan LM, Foster TJ and Secombes CJ. A live (aroA) Aeromonas salmonicida vaccine for furunculosis preferentially stimulates T-cell responses relative to B-cell responses in rainbow trout (Oncorhynchus mykiss). Infection and Immunity, 1996, 64,3863-3869
    
    135. Merino S, Nogueras M M, Aguilar A. Activation of the complement classical pathway (C-q binding) by mesophilic AH outer membrane protein. Infect &Immun, 1998,66(8): 3825-3831
    
    136. Mundy R, Petrovska L, SmollettK. Identification of a no Citrobacter rodentiumtype III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect Immun, 2004,4: 2288-2302.
    
    137. Murray R G E, Ibolcy J S G, Whippcy P W. Structurc of and S-layer on a pathogenic strain of Aeromonas hydrophila. J Bacteriology, 1988,170 (6): 2625-2630
    
    138. Nandapalan N. Production and characterization of monoclonal antibodies to Aeromonas sobria surface antigens. M icrobio Immunol, 1989,47: 515-524
    
    139. Newman SG. Bacterial vaccine for fish. Annual Review of Fish Diseases, 1993,32 (3): 145-185
    
    140. Nieto P T, Ellis A E. Characterization of extracellular metollo and serine proteases of Aeromonas hydrophila. J Gerncral Microbiology, 1986, (132): 1975-1979
    
    141.Noonan B, Enzmann PJ, Trust TJ. Recominant infectious hematopoietic necrosis virus and hemorrhagic septicemia virus glycoprotein epitopes expressed in Aeromonas salmonicida induce protective immunity in rainbow trout (Oncorhynchus mykiss). Appl EnvironMicobiol, 1995, 61 (10): 3586-3591
    
    142. Oberg LA, Wirkkula J, Mourich D. Bacterially expressed nucleoprotein of infectious hematopoietic necrosis virus augments protective immunity induced by the glycop rotein vaccine in fish. Virol, 1991, 65 (8): 4486-4489
    
    143. Olivier G, Lallier R, Lanviere S A. Toxigenic profile of Aeromoeas hydrophila and Aeromonas so bria isolated from fish. Can J Microbiology, 1981(27):330-333
    
    144. Palumbo S. The Aeromonas hydrophila Group in Food. In B. Austin, M. Altwegg, PJ. Gosling and S. Joseph (Eds.), The Genus Aeromonas.John Wiley and Sons, Ltd. Microbiology, 1996, 31:121-131
    145. Paul Williams. Bacillus subtilis: A Shocking Message from a Probiotic. Cell Host & Microbe, 2007,1(4): 248-249
    
    146. Paula S J, Duffey P S, Abbott S L. Surface properties of autoagghutinating mesophilic aeromon ads. Infect Immun, 1988 (56): 2658-2665
    
    147. Popoff M. Aeromonas. In: Krieg NR, editor. Bergy's manual of systematic bacteriology, vol. 1. Baltimore (MD): Williams & Wilkins, 1984,545-548
    
    148. RaRahman MH, Kawai K. Outer membrane proteins of ah induce protective immunity in goldfish. Fish Shellfish Immunol, 2000,10(4): 379-382
    
    149. Reed L J, Muench H. A simple method of estimating fifty percent point. American Journal of Hygiene, 1938,27,493-497
    
    150. Rocio canals, Maria altarriba, Silvia vilches. Analysis of the Lateral Flagellar Gene System of Aeromonas hydrophila AH-3. J Bacteriol, 2006,188(3): 852-862
    
    151. Rodriguez L A, Eilis A E, Nieto T P. Purification and characterization of an extracellular metalloprotease. serineprotease and haemolysin of Aeromoeas hydrophila strain 32: All are lethal for fish. Microbial Pathogenesis, 1992, 14: 57-65
    
    152. Rodriguez L A, Ellis A F, Nieto T P. Effects of the acetylcholinesterase and Aeromonas hydrophila on the central nervous system of fish. Microbial Pathogenesis, 1992b, 13:17-24
    
    153. Rodriguez L A, Femandez A L G, Nieto T P .Production of the lethal acetylcholinesterase toxin by different Aeromonas hydrophila strains. J Fish Diseaese, 1993, (16): 73-78
    
    154. Rose J M, Houston C W, Kurosky A. Bioactive and immunological characterization of a cholera toxin cross-reaction cytolytic enterotoxin from A. hydrophila. Clin Microbiology, 1989, 57(4): 1170-1176
    
    155. Rose, J. M., C. W. Houston, D. H. Coppenhaver, J. D. Dixon, A. Kurosky. Purification and chemical characterization of a cholera toxin-crossreactive cytolytic enterotoxin produced by a human isolate of Aeromonas hydrophila. Infect. Immun, 1989, 57, 1165-1169
    
    156. Sakazaki, R, Shimada T. O-Serogrouping for mesophilic Aeromonas strains. Jpp Medci, 1984, 37: 247-255
    
    157. Salmond GP, PJ Reeves. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci, 1993, 18, 7-12
    
    158. Santos Y, Touanzo E, Barja J L. Virulence properties and enterotoxin production of Aeromonas strains isolated from fish. Infect Immun, 1988, 56 (12): 3285-3293
    
    159. Scholz D, Scharmann W, Blobel H. Leucocidic substance from Aeromoeas hydrophila. Zentral battfur Bacteriologie. Microbiologie and Hygiene, 1974,228: 312-316
    
    160. Sha J, Lu M, Chopra AK. Regulation of the cytotoxic enterotoxin gene in Aeromonas hydrophila: characterization of an iron uptake regulator. Infection and Immunity, 2001, 69, 6370-6381
    
    161. Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK. The type HI secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infection and Immunity, 2005, 73,6446-6457
    
    162. Shimada T, Sakazaki R, Suzuki K. Peritrichous flagella in mesophilic strains of Aeromonas. Jpn. J. Med. Sci. Biol, 1985,38: 141-145
    
    163. Singer J T, Ma C, Boettcher K J. Overcoming a defect in generalized recombination in the marine fish pathogen Vibrio guillarum 775: construction of a recA mutant by marker exchanged. Appl Environ Microbiol, 1996,62(10): 3727-3771
    
    164. Sommerset I, Krossoy B, Biering E, Frost P. Vaccines for fish in aquaculture. Expert Rev Vaccines, 2005,4(1): 89-101
    
    165. Stintzi A, Raymond KN.Amonabactin-mediated iron acquisition from transferrin and lactoferrin by Aenomonas hydrophila: direct measurement of individual microscopic rate constants. J-Biol- Inorg-Chem., 2000, 5(1): 57-66
    
    166. Stuber K, SE Burr, M Braun. Type III secretion genes in Aeromonas salmonicida subsp. salmonicida are located on a large thermolabile virulence plasmid. Journal of Clinical Microbiol, 2003,41,3854-3856
    
    167. Swarm L. D., White M. R. Diagnosis and Treatment of "Aeromonas hydrophila" Infection of Fish. Coop. Ext. Serv. Pardue Univ. 1991, AS-461: 2
    
    168. Tangney M, Mitchell W J. Development of a shuttle vector for screening of strong promoter sequences. Biotechnol Tech, 1999, 13: 141-144
    
    169. Thune R.L., Fernandez D, Batista J. An aroA mutant of Edwardsiella ictaluri is safe and efficacious as live, attenuated vaccine. Journal of Aquatic Animal Health, 1999,11, 358-372.
    
    170. Thune, R. L., L. A. Stanley, K. Cooper. Pathogenesis of gramnegative bacterial infections in warm water fish. Annual review of fish diseases, 1993,3,37-68
    
    171. Traxler GS, Anderson E, Lapatra SE. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Dis Aquat Organ, 1999,38 (3): 183-190
    
    172. Van Gijsegem F, S Genin, C Boucher. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol, 1993,1,175-180
    
    173. Vanderheijden N, Alard D. The attenuated V60 strain of channel catfish virus possesses a deletion in ORF50 coding for a potentially secreted glycoprotein. Virology, 1996,218 (2): 422-426
    
    174. Vaughan L M, Smith P R, Foster T J. An aromatic-dependent mutmit of the fish pathogen Aeromorans.salmoraicida is attenuated in fish and is effective as a live vaccine aginst thesalmonid disease furunculosis.Infect lmmun, 1993,61(5): 2172-2181
    
    175. Vilches S, Urgell C. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol, 2004,70,6914-6919
    
    176. Vipond R. Defined deletion mutants demonstrate that the major secretedtoxin are not essential for the virulence of Aeromonas salmonicida. Infection and Immunity, 1988, 66: 1990-1998
    177. Wu CJ, Wu JJ, Yan JJ, Lee HC, Lee NY, Chang CM, Shih HI, Wu HM, Wang LR, Ko WC. Clinical significance and distribution of putative virulence markers of 116 consecutive clinical Aeromonas isolates in southern Taiwan. Journal of Infection, 2007, 54, 151-158
    
    178. Xue Gong-Ping, Jennifer S. Johnson, Brian P. Dalrymple. High osmolarity improves the electro- transformation efficient of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiological Methods, 1999, 34: 183-191
    
    179. Yansura D G, Henner D J. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci USA, 1984, 81: 439-443
    
    180. Ye R, Kim J H, Kim B G. High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng, 1999, 62: 87-96
    
    181. Yip CK, Kimbrough TG, FeliseHB. Structural characterization of the molecular platform for type III secretion system assembly. Nature, 2005,435(7042): 702-707.
    
    182. Yu H B, Rao, P S, Tomas J M. A type HI secretion system is required for Aeromonas hydrophila AH1 pathogenesis. Infect Immun, 2004, 72 (3): 1248-1256
    
    183. ZHANG XZ, CUI LZ, HONG Q. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol, 2005,71:4101-4103
    
    184. Zhou zhenwen, Xia huimin, Hu xuchu. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine, 2008,43: 10-19