青少年特发性脊柱侧凸椎间盘软骨终板蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     青少年特发性脊柱侧凸(AIS)是一种脊柱三维畸形,当青少年脊出现结构性侧凸(冠状面X线平片上Cobb角>10°,合并脊柱的旋转畸形),而无其他器质性疾病时,可以临床上诊断此疾病。AIS是儿童及青少年骨骼肌肉系统最常见的畸形之一。正如它命名中“特发性”所指,尽管学者们做了大量研究,但迄今为止它的病因仍然不明,这就给它的早期干预、早期治疗带来了一定困难。
     尽管AIS的发病原因尚不清楚,但经过多年的研究,一些科学家或科研机构一经提出了可能与脊柱侧凸发生和发展相关的一些假说:如家族遗传因素学说,生长发育学说和结缔组织异常学说等诸多观点问世,但各种论点所得出的结论都不能很好地进行重复性试验。所以大部分学者认为,AIS是一个涉及多遗传易感基因位点和多系统致病环节,引发多种损害效应的蛋白质分子表达异常的疾病。单基因和单一蛋白质分子的研究已经进入了一条无法继续前行的死胡同。从脊柱侧凸病因学的报告文献中可以发现,近五年来已经没有新的观点或发现问世。
     椎间盘不对称是引起AIS畸形产生和进展的结构基础。从解剖学和影像学检查中不难发现,凸侧椎问盘的发育较凹侧明显成熟。从解剖学和影像学检查中不难发现,凸侧椎间盘的发育较凹侧明显成熟。椎间盘由纤维环环绕凝胶状的髓核及覆盖于此结构的上下软骨终板组成。软骨终板通常厚度不到1mm,由透明软骨组成,它将椎体和间盘纤维环及髓核隔开。。椎间盘作为人体内最大的无血管组织,除纤维环外围极少数几层环状纤维板通过临近血管进行营养代谢外,其余椎间盘组织则需要通过软骨终板的弥散作用完成营养获取和代谢物的排出。Driscoll M等研究发现椎间盘的不均衡发育程度和AIS的进展呈正相关;另外,与Lonstein JE的结论相同,并且通过比较凸、凹侧椎间盘差异的大小可以预测AIS患者侧凸畸形的进展速度和畸形所能达到的严重程度。
     研究发现,凸、凹侧脊柱软骨终板的细胞活动和组织成熟度差异有可能影响脊柱侧凸的进展。组织学研究表明,侧弯顶椎凸、凹侧软骨终板的细胞活动和组织成熟度存在明显的差异。在脊柱后凸畸形和侧凸畸形的患者中,能够观察到椎间盘出现形明显的态学上变化。其中最为引人注目的一点就是在脊柱侧凸患者的软骨终板内不同程度异常钙化的出现。这种钙化的通常由细胞的两极开始出现,逐渐环绕整个细胞,进而扩散至到细胞外基质。这种异常钙化影响了椎间盘组织的营养供应和物质代谢,进而可能影响椎间盘的生长和发育。
     AIS脊柱畸形通常开始于青春期患者生长发育起始阶段,而此前并未出现脊柱的侧凸畸形及椎间盘的不对称生长。在由正常-异常的生长发育过程中,侧凸部位的椎间盘和终板的必然发生了某些变化。蛋白质作为生物生理功能过程中最重要的一类分子,必然会在这种变化中发挥重要的作用。近年来蛋白质组学研究技术的发展为AIS的研究带来了新的动力。通过对比不同组织样品中的蛋白质组,我们可以直观地了解二者之间在分子水平上有何不同。
     研究目的:
     1.分别鉴定凸侧和凹侧椎间盘软骨终板的蛋白质组
     2.比较二者之间的差异
     3.尝试寻找引起椎间盘不对称发育的关键蛋白
     研究方法:
     1.研究对象:根据纳入和排除标准确定2006年7月-2007年8月期间北京协和医院脊柱外科收治并确诊的6例青少年脊柱侧凸(AIS)患者。
     2.技术方法:
     (?)侧凸顶点软骨终板组织获取和处理:通过前路脊柱侧凸矫形手术,手术医师在术中完整取得侧凸顶点软骨终板;去除软骨组织表面附着的纤维环和骨组织,充分清洗确保无血细胞残留。
     (?)软骨组织蛋白质提取:使用组织切片、洗脱、蛋白质沉淀技术直接获取软骨组织蛋白质。
     (?)测定蛋白质浓度并进行SDS-PAGE蛋白质样品电泳分析。
     (?)质谱分析:使用二维液相色谱串联电喷雾离子阱质谱(2D-LC-LTQ)技术进行蛋白质质谱分析
     (?)数据处理:质谱数据使用SEQUEST对human ref蛋白质数据库(Version 9.18)进行解读,并用Bioworks3.2将结果进行过滤,分类和显示。由SwissProt和TrEMBL蛋白库的搜索结果给蛋白标注上名称。
     研究结果:
     (?)软骨组织中获得的平均蛋白质浓度为3.02mg/ml(2.20-3.97 mg/ml)。
     (?)聚丙烯酰胺凝胶蛋白电泳(SDS-PAGE)发现,凸侧蛋白质样品在蛋白质总量和种类二方面均较凹侧蛋白样品显著增加。
     (?)凸侧样品鉴定出103种蛋白,凹侧鉴定出55种蛋白,其中凸、凹侧共有的蛋白45种,凸侧特有蛋白58种,凹侧特有蛋白10种。
     (?)在凸侧发现的蛋白质中发现至少3种具有促进细胞和组织成熟、分化功能的蛋白质;而凹侧特有蛋白质中发现一种非常重要的生长抑制因子。
     结论:
     (?)第一次对人类脊柱软骨终板进行蛋白质组分析,得到AIS患者的凸、凹侧蛋白质组
     (?)AIS患者侧凸顶点软骨终板凸、凹侧蛋白质组存在明显差异。
     (?)蛋白质表达差异与其椎间盘的不对称发育密切相关。
     (?)引起椎间盘不对称发育的关键蛋白有待于进一步研究来寻找
Background
     Adolescent idiopathic scoliosis(AIS) is the most common form of spinal deformity of teenagers.The incidence of AIS among adolescents is approximately 3% as identified by a Cobb angle≥10°.AIS falls within the subcategory of "late-onset" idiopathic scoliosis which is defined as diagnosis at age≥10 years of age as opposed to "early onset" which can include infantile and juvenile cases.It is the most common form of idiopathic scoliosis accounting for between 80-85%of cases.
     Diagnostic criteria include:age≥10 years,Cobb angle of≥10°and exclusion of neuromuscular or congenital etiologies.Clinically AIS can be screened for using the Adams forward bend test and quantifying the degree of trunk rotation using a scoliometer,while the radiographic determination of the Cobb angle remains the gold standard.
     AIS may progress to result in pain,cardiopulmonary dysfunction,and dissatisfaction with appearance.More severe curves and progressive curves may require treatment including bracing or surgery.
     AIS has no validated etiology and occurs in otherwise healthy adolescents. Several hypotheses have been brought forward to explain the etiology of AIS, including genetic,biochemical,mechanical,neurological,muscular,hormonal,and even environmental factors.Twin studies have shown a much higher incidence of disease among monozygotic twins compared to dizygotic twins,lending credibility to a genetic component to the disease.
     Controversy,however,exists as to the exact mode of inheritance.Recent research has mapped genetic loci of AIS to chromosomes 9,17 and 19,but the inheritance pattern is not clear.Other research has failed to demonstrate a role for the growth hormone receptor gene as a predisposing gene or disease modifier gene in AIS.
     Asymmetrical interverteberal disc formation and growth is the structural foundation of deformity and disease progression in AIS patients.It has been shown that the convex side of interverteberal discs are found well developed compared to the concave side,both on radiographs and during anterior correction surgery procedures.The difference in histological grades and cellular activity between the convex and concave side indicated that the growth of AIS patients have different growth kinetics in endplate cartilage which may affect the curve progression. Ultimately,the differential growth in the endplates must result from some origin factors leading to differential expression of proteins.New advances in proteomics bio-technology now make it possible to directly analyze those proteins from harvested cartilage tissues.
     The pathogenesis of AIS is still unknown yet.Many different theories exist for the etiology.This study is the first major proteomic investigation of interverteberal disc cartilage.The proteins found with significant asymmetry in expression patterns may be implicated as causative of deformity,or may be the result of differences in the biomechanical environment within the disc,and secondary epiphenomena.
     Objective:
     To identify protein expression in asymmetrically developed intervertebral discs of adolescent idiopathic scoliosis(AIS) patients and try to find out factors that may originate or strengthen the situation.
     Methods:
     The apex intervertebral discs were harvested from 6 AIS patients during anterior correction surgery.Protein extraction were performed and we used shotgun strategy (2D-LC-MS/MS analysis) to achieve proteomics investigation.MS and tandem mass spectra were extracted from the XCalibur data system format(.RAW) into DTA format by Extact_msn.Tandem mass spectra were interpreted by SEQUEST against human ref protein database.CILP and HSP27 were performed Western Blot procedure to testify the mass spectra results.
     Results:
     The consistency of the extracted protein was tested through Bradford procedure[23], and the average concentration is 3.02mg/ml(2.20-3.97mg/ml).SDS-PAGE was performed to collect major complexion of the protein samples.Both quantity and concentration of the proteins from convex side were found to be higher than that from the opposite side.
     One hundred and three proteins were identified from samples of the convex side and fifty-five from the concave side,forty-five proteins were found both in convex side and concave side,while 58 and 10 proteins were found only in the convex side versus the concave side respectively.
     Conclusions:This is the first proteomic characterization of endplate cartilage phenotypes.Different protein expression levels between the convex and concave sides of the intervertebral discs endplate cartilage in AIS patients were indentified by shot-gun proteomics strategy.Though the result is preliminary,and it is still not clear that these differences are original factors of AIS or secondary cellular responses to mechanical compression and tension on the intervertebral disc at the apex of the curve. The study sheds new light on the genetic pathogenesis of adolescent idiopathic scoliosis and other disc related spinal diseases.The future directions identified appear promising.(For example in vitro mutation analysis studies could help in determining how these proteins affect cartilage tissue and AIS progress) Molecular and genetic mediations could help on finding how these proteins affect cartilage tissue and AIS progress.
引文
1.Lonstein JE.Adolescent idiopathic scoliosis.Lancet 1994,344 (8934):1407-1412.
    2.Reamy BV,Slakey JB.Adolescent idiopathic scoliosis:review and current concepts.Am Fam Physician 2001,64 (1):111-116.
    3.De George FV,Fisher RL.Idiopathic scoliosis:genetic and environmental aspects.J Med Genet 1967,4:251-257.
    4.Wynne-Davis R.Genetics and congenital musculoskeletal disorders.Obstet Gynecol Annu 1977,6:247-260.
    5.Hermus JP,Van Rhijn LW,Van Ooij A.Non-genetic expression of adolescent idiopathic scoliosis:a case report and review of the literature.Eur Spine J 2007,16 Suppl 3:338-341.
    6.Kesling KL,Reinker KA.Scoliosis in twins.A meta-analysis of the literature and report of six cases.Spine 1997,22(17):2009-2014;discussion 2015.
    7.Ocaka L,Zhao C,Reed JA,et al.Child AH.Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel.J Med Genet 2008,45(2):87-92.
    8.Chan V,Fong GC,Luk KD,et al.A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3.Am J Hum Genet 2002,71(2):401-406.
    9.Yamada K,Yamamoto H,Nakagawa Y,et al.Etiology of idiopathic scoliosis.Clin Orthop,1984:50~57.
    10.Sahlstrand T,Petruson B,Ortengren R.Vestibulo spinal reflex activity in patients with adolescent idiopathic scoliosis.Postural effects during caloric abyrinthine stimulation recorded by stabilometry.Acta Orthop Scand,1979,50:275~281.
    11.Nette F,Dolynchuk K,Wang X,et al.The effects of exposure to in2 tense,24h light on the development of scoliosis in young chickens.Stud Health Technol Inform,2002,91:1~26.
    12.Bagnall KM,Beuerlein M,Johnson P,et al.Pineal transp lantation after p inealectomy in young chickens has no effect on the development of scoliosis.Spine,2001,26:1022~1027.
    13.YlikoskiM.Height of girls with adolescent idiopathic scoliosis.Eur Spine J.2003,12:288~291.
    14.Lowe T,Lawellin D,Smith D et al.Platelet calmodulin levels in ado2 lescent idiopathic scoliosis:do the levels correlatewith curve p rogres2 sion and severity[J]?Sp ine,2002,27 (7):768~775.
    15.Guo X,Chau WW,Chan YL,et al.Relative anterior sp inal over2 growth in adolescent idiopathic scoliosis.Results of disp roportionate endochondral membranous bone growth.J Bone Joint Surg Br.2003,85:1026~1031.
    16.朱峰,邱勇,郑伟娟,等.青少年特发性脊柱侧凸患者椎间盘纤维环胶原的分布及其意义.中国脊柱脊髓杂志,2004,14:233-236.
    17.Heidari B,FitzPatrick D,Synnott K,et al.Modelling of annulus fi2 brosus imbalance as an aetiological factor in adolescent idiopathic scoliosis.Clin Biomech(Bristol,Avon),2004,19:217 - 224.
    18.Grivas TB,Vasiliadis E,Malakasis M,et al.Intervertebral disc biomechanics in the pathogenesis of idiopathic scoliosis.Stud Health Technol Inform 2006,123:80-83.
    19.Raj PP.Intervertebral disc:anatomy-physiology-pathophysiology-treatment.Pain Pract,2008,8:18-44.
    20.Holm S,Maroudas A,Urban JPG,et al.Nutrition of the intervertebral disc:Solute transport and metabolism.Connect Tiss Res 1981,8:101-119.
    21.Driscoll M,Aubin CE,Moreau A,et.al,The role of spinal concave-convex biases in the progression of idiopathic scoliosis.Eur Spine J.2009 Feb;18:180-7.
    22.Lonstein JE,Carlson JM.The prediction of curve progression in untreated idiopathic scoliosis during growth.J Bone Joint Surg Am 1984,66:061-1071.
    23.Wang S,Qiu Y,Zhu Z,et al.Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis.J Orthop Surg 2007,2:19-28.
    24.Roberts S,Menage J,Eisenstein SM.The cartilage end-plate and intervertebral disc in scoliosis:calcification and other sequelae.J Orthop Res.1993;11:747-57.
    25.Roberts S,Urban JP,Evans H,Eisenstein SM.Transport properties of the human cartilage endplate in relation to its composition and calcification.Spine.1996;21:415-20.
    26.Bibby SR,Fairbank JC,Urban MR,Urban JP.Cell viability in scoliotic discs in relation to disc deformity and nutrient levels.Spine.2002;27:2220-8.
    27.Yu J,Fairbank JC,Roberts S,Urban JP.The elastic fibre network of the annulus fibrosus of the normal and scoliotic human intervertebral disc.Spine.2005;30:1815-20.
    28.Johnson WE,Roberts S.Human intervertebral disc cell morphology and cytoskeletal composition:a preliminary study of regional variations in health and disease.J Anat.2003;203:605-12.
    29.De Ceuninck F,Marcheteau E,Berger S,Caliez A,et al.Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome.J Biomol Tech 2005,16(3):256-265.
    30.Vincourt JB,Lionneton F,Kratassiouk G.,et al.Establishment of a reliable method for direct proteome characterization of human articular cartilage.Mol Cell Proteomics 2006,5(10):1984-1995.31.邱贵兴,仉建国,王以朋,等.特发性脊柱侧凸的 PUMC(协和)分型.中华骨科杂志,2003,23:1-9.
    32.Schnabel M,Marlovits S,Eckhoff G,et al.Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture.Osteoarthritis Cartilage,2002,10:62-70
    33.Wessel D,Flugge UI.A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids.Anal Biochem 1984,138 (1):141-143.
    34.Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 1976,72:248-254
    35.Takao T,Iwaki T.A comparative study of localization of heat shock protein 27 and heat shock protein 72 in the developmental and degenerative intervertebral discs.Spine 2002,27(4):361-368.
    36.Meir A,McNally DS,Fairbank JC,et al.The internal pressure and stress environment of the scoliotic intervertebral disc—a review.Proc Inst Mech Eng[H].2008 Feb;222(2):209-219.
    37.Kusafuka K,Hiraki Y,Shukunami C,et al.Cartilage-specific matrix protein,chondromodulin-I (ChM-I),is a strong angio-inhibitor in endochondral ossification of human neonatal vertebral tissues in vivo:relationship with angiogenic factors in the cartilage.Acta Histochem 2002,104 (2):167-175.
    38.Xu H,Qiu G.,Wu Z,et al.Expression of transforming growth factor and basic fibroblast growth factor and core protein of proteoglycan in human vertebral cartilaginous endplate of adolescent idiopathic scoliosis.Spine 2005,30 (17):1973-1978.
    39.Hirose J,Ryan LM,Masuda I.Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.Arthritis Rheum 2002,46(12):3218-3229.
    40.Zumbrunn J,Trueb B.Primary structure of a putative serine protease specific for IGF-binding proteins.FEBS Lett 1996,398 (2-3):187-192.
    41.Takahashi K,Taira T,Niki T,et al.DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor.J Biol Chem 2001,276 (40):37556-37563.
    42.Van Duijn CM,Dekker MC,Bonifati V,et al.Park7,A novel locus for autosomal recessive early-onset parkinsonism,on chromosome lp36.Am J Hum Genet 2001,69 (3):629-634.
    43.Haas M,Jost E.Functional analysis of phosphorylation sites in human lamin A controlling lamin disassembly,nuclear transport and assembly.Eur J Cell Biol 1993,62(2):237-247.
    44.Scherer SW,Cheung J,MacDonald JR,et al.Human chromosome 7:DNA sequence and biology.Science 2003,300(5620):767-772.
    1.Millner PA,Dickson RA.Idiopathic scoliosis:biomechanics and biology.Eur Spine J 1996;5:362-73.
    2.Murray DW,Bulstrode CJ.The development of adolescent idiopathic scoliosis.Eur Spine J 1996;5:251-7.
    3.Roaf R.The basic anatomy of scoliosis.J Bone Joint Surg Br 1966;48:786-92.
    4.Wynne-Davies R.Familial (idiopathic) scoliosis.A family survey.J Bone Joint Surg Br 1968;50:24-30.
    5.Robin GC,Cohen T.Familial scoliosis.A clinical report.J Bone Joint Surg Br 1975;57:146-8.
    6.De George FV,Fisher RL.Idiopathic scoliosis:genetic and environmental aspects.J Med Genet 1967;4:251-7.
    7.Cowell HR,Hall JN,MacEwen GD.Genetic aspects of idiopathic scoliosis.A Nicholas Andry Award essay,1970.Clin Orthop Relat Res 1972;86:121-31.
    8.Justice CM,Miller NH,Marosy B,et al.Familial idiopathic scoliosis:evidence of an X-linked susceptibility locus.Spine 2003;28:589-94.
    9.Miller NH,Justice CM,Marosy B,et al.Identification of candidate regions for familial idiopathic scoliosis.Spine 2005;30:1181-7.
    10.Alden KJ,Marosy B,Nzegwu N,et al.Idiopathic scoliosis:identification of candidate regions on chromosome 19p13.Spine 2006;31:1815-9.
    11.Chan V,Fong GC,Luk KD,et al.A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3.AmJHum Genet 2002;71:401-6.
    12.Miller NH,Mims B,Child A,et al.Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis.J Orthop Res 1996;14:994-9.
    13.Marosy B,Justice CM,Nzegwu N,et al.Lack of association between the aggrecan gene and familial idiopathic scoliosis.Spine 2006;31:1420-5.
    14.Zaidman AM,Zaidman MN,Korel AV,et al.Aggrecan gene expression disorder as aetiologic factor of idiopathic scoliosis.Stud Health Technol Inform 2006;123:14-7.
    15.Cheung CS,Lee WT,Tse YK,et al.Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis:a study of 598 patients.Spine 2003;28:2152-7.
    16.Nissinen M,Heliovaara M,Seitsamo J,et al.Trunk asymmetry,posture,growth,and risk of scoliosis.A three-year follow-up of Finnish prepubertal school children.Spine 1993;18:8-13.
    17.Nordwall A,Willner S.A study of skeletal age and height in girls with idiopathic scoliosis.Clin Orthop Relat Res 1975;6—10.
    18.Willner S.The proportion of legs to trunk in girls with idiopathic structural scoliosis.Acta Orthop Scand 1975;46:84-9.
    19.Bjure J,Grimby G,Nachemson A.Correction of body height in predicting spirometric values in scoliotic patients.Scand J Clin Lab Invest 1968;21:191-2.
    20.Knutsson F.A contribution to the discussion of the biological cause of idiopathic scoliosis.Acta Orthop Scand 1963;33:98-104.
    21.Roaf R.Vertebral growth and its mechanical control.J Bone Joint Surg Br.1960;42-B:40-59.
    22.Wang S,Qiu Y,Zhu Z,et al.Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis.J Orthop Surg 2007;2:19.
    23.Hueter C.Anatomische Studien an den Extremitaetengelenken Neugeborener und Erwachsener.Virchows Archiv Path Anat Physiol 1862;25:572-99.
    24.Volkmann R.Verletzungen und Krankenheiten der Bewegungsorgane.Pitha-Billroth,Handbuch der allgemeinen und speciellen Chirurgie Bd Ⅱ Teil Ⅱ.Stuttgart:Ferdinand Enke;1882.
    25.Pope MH,Stokes IA,Moreland M.The biomechanics of scoliosis.Crit Rev Biomed Eng 1984;11:157-88.
    26.Stokes IA,Burwell RG,Dangerfield PH.Biomechanical spinal growth modulation and progressive adolescent scoliosis—a test of the 'vicious cycle' pathogenetic hypothesis:summary of an electronic focus group debate of the IBSE.Scoliosis 2006;1:16.
    27.Aronsson DD,Stokes IA,Rosovsky J,et al.Mechanical modulation of calf tail vertebral growth:implications for scoliosis progression.J Spinal Disord 1999;12:141-6.
    28.Mente PL,Stokes IA,Spence H,et al.Progression of vertebral wedging in an asymmetrically loaded rat tail model.Spine 1997;22:1292-6.
    29.Mente PL,Aronsson DD,Stokes IA,et al.Mechanical modulation of growth for the correction of vertebral wedge deformities.J Orthop Res 1999;17:518-24.
    30.Maat GJ,Matricali B,van Persijn van Meerten EL.Postnatal development and structure of the neurocentral junction.Its relevance for spinal surgery.Spine 1996;21:661-6.
    31.Knutsson F.Vertebral genesis of idiopathic scoliosis in children.Acta Radiol Diagn (Stockh) 1966;4:395-402.
    32.Beguiristain JL,De Salis J,Oriaifo A,et al.Experimental scoliosis by epiphysiodesis in pigs.Int Orthop 1980;3:317-21.
    33.Ottander HG.Experimental progressive scoliosis in a pig.Acta Orthop Scand 1963;91-7.
    34.Taylor JR.Scoliosis and growth.Patterns of asymmetry in normal vertebral growth.Acta Orthop Scand 1983;54:596-602.
    35.Rajwani T,Hilang EM,Secretan C,et al.The components of the magnetic resonance image of the neurocentral junction.Stud Health Technol Inform 2002;91:235^10.
    36.Rajwani T,Bhargava R,Moreau M,et al.MRI characteristics of the neurocentralsynchondrosis.Pediatr Radiol 2002;32:811-6.
    37.Schmorl G,Junghans H.The human spine in health and disease.1st ed.New York,NY:Grune & Stratton;1959.
    38.Vital JM,Beguiristain JL,Algara C,et al.The neurocentral vertebral cartilage:anatomy,physiology and physiopathology.Surg Radiol Anat 1989;11:323-8.
    39.Yamazaki A,Mason DE,Caro PA.Age of closure of the neurocentral cartilage in the thoracic spine.J Pediatr Orthop 1998;18:168-72.
    40.Huynh AM,Aubin CE,Rajwani T,et al.Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study.Eur Spine J 2007;16:523-9.
    41.Liljenqvist UR,Link TM,Halm HF.Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis.Spine 2000;25:1247-53.
    42.Liljenqvist UR,Allkemper T,Hackenberg L,et al.Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction.J Bone Joint Surg Am 2002;84-A:359-68.
    43.Parent S,Labelle H,Skalli W,et al.Morphometric analysis of anatomic scoliotic specimens.Spine 2002;27:2305-11.
    44.Smith RM,Pool RD,Butt WP,et al.The transverse plane deformity of structural scoliosis.Spine 1991;16:1126-9.
    45.Deacon P,Berkin CR,Dickson RA.Combined idiopathic kyphosis and scoliosis.An analysis of the lateral spinal curvatures associated with Scheuermann's disease.J Bone Joint Surg Br 1985;67:189-92.
    46.Zhu F,Qiu Y,Yeung HY,et al.Histomorphometric study of the spinal growth plates in idiopathic scoliosis and congenital scoliosis.Pediatrlnt 2006;48:591-8.
    47.Lawton JO,Dickson RA.The experimental basis of idiopathic scoliosis.Clin Orthop 1986;9-17.
    48.Smith RM,Dickson RA.Experimental structural scoliosis.J Bone Joint Surg Br 1987;69:576-81.
    49.Dryden IL,Oxborrow N,Dickson R.Familial relationships of normal spine shape.Stat Med 2008.
    50.Cil A,Yazici M,Uzumcugil A,et al.The evolution of sagittal segmental alignment of the spine during childhood.Spine 2005;30:93-100.
    51.Poussa MS,Heliovaara MM,Seitsamo JT,et al.Development of spinal posture in a cohort of children from the age of 11 to 22 years.Eur Spine J 2005;14:738-42.
    52.Willner S,Johnson B.Thoracic kyphosis and lumbar lordosis during the growth period in children.Acta Paediatr Scand 1983;72:873-8.
    53.Michelsson JE.The development of spinal deformity in experimental scoliosis.Acta Orthop Scand 1965;(suppl 81):1—91.
    54.Stokes IA,Aronsson DD.Disc and vertebral wedging in patients with progressive scoliosis.J Spinal Disord 2001;14:317-22.
    55.Bick EM,Barash ES,Lehman L.Congenital scoliosis without vertebral anomaly;the vertebral histology of two cases.Clin Orthop 1958;12:285-90.
    56.Zaleske DJ,Ehrlich MG,Hall JE.Association of glycosaminoglycan depletion and degradative enzyme activity in scoliosis.Clin Orthop RelatRes 1980;177-81.
    57.Yu J,Fairbank JC,Roberts S,et al.The elastic fiber network of the annulus fibrosus of the normal and scoliotic human intervertebral disc.Spine 2005;30:1815-20.
    58.Akhtar S,Davies JR,Caterson B.Ultrastructural localization and distribution of proteoglycan in normal and scoliotic lumbar disc.Spine.2005 Jun l;30(ll):1303-9.
    59.Antoniou J,Arlet V,Goswami T,Aebi M,Alini M.Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues.Spine.2001 May 15;26(10):E198-206.
    60.Roberts S,Menage J,Eisenstein SM.The cartilage end-plate and intervertebral disc in scoliosis:calcification and other sequelae.J Orthop Res.1993 Sep;ll(5):747-57.
    61.Langenskiold A,Michelsson JE.The pathogenesis of experimental progressive scoliosis.Acta Orthop ScandSuppl 1962;59:1-26.
    62.Ponseti Ⅳ,PedriniⅤ,Wynne-Davies R,et al.Pathogenesis of scoliosis.Clin Orthop Relat Res 1976;268-80.
    63.Venn G,Mehta MH,Mason RM.Solubility of spinal ligament collagen in idiopathic and secondary scoliosis.Clin Orthop Relat Res 1983;294-301.
    64.Waters RL,Morris JM.An in vitro study of normal and scoliotic interspinous ligaments.J Biomech 1973;6:343-8.
    65.Cotterill PC,Kostuik JP,D'Angelo G,et al.An anatomical comparison of the human and bovine thoracolumbar spine.J Orthop Res 1986;4:298-303.
    66.Smit TH.The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations.Eur Spine J 2002;11:137-44.
    67.Wilke HJ,Kettler A,Wenger KH,et al.Anatomy of the sheep spine and its comparison to the human spine.Anat Rec 1997;247:542-55.
    68.Naique SB,Porter R,Cunningham AA,et al.Scoliosis in an Orangutan.Spine 2003;28:E143-5.
    69.D'Aout K,Aerts P,De Clercq D,et al.Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).Am J Phys Anthropol 2002;119:37-51.
    70.Machida M,Murai I,Miyashita Y,et al.Pathogenesis of idiopathic scoliosis.Experimental study in rats.Spine 1999;24:1985-9.
    71.Machida M,Saito M,Dubousset J,et al.Pathological mechanism of idiopathic scoliosis:experimental scoliosis in pinealectomized rats.Eur Spine J 2005;14:843-8.
    72.Castelein RM,van Dieen JH,Smit TH.The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis-a hypothesis.Med Hypotheses 2005;65:501-8.
    73.Takeuchi T,Abumi K,Shono Y,et al.Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine.A canine model study.Spine 1999;24:1414-20.
    74.Wilke HJ,Krischak ST,Wenger KH,et al.Load-displacement properties of the thoracolumbar calf spine:experimental results and comparison to known human data.Eur Spine J 1997;6:129-37.
    75.Zander T,Rohlmann A,Klockner C,et al.Influence of graded facetectomy and laminectomy on spinal biomechanics.Eur Spine J 2003;12:427-34.
    76.Kouwenhoven JW,Smit TH,van der Veen,et al.Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine:a biomechanical porcine and human cadaveric study.Spine 2007;32:2545-50.
    77.Kouwenhoven JW,Vincken KL,Bartels LW,et al.Analysis of preexistent vertebral rotation in the normal spine.Spine 2006;31:1467-72.
    78.Kouwenhoven JW,Vincken KL,Bartels LW,et al.Analysis of preexistent vertebral rotation in the normal quadruped spine.Spine 2006;31:E754-8.
    79.Kouwenhoven JW,Bartels LW,Vincken KL,et al.The relation between organ anatomy and pre-existent vertebral rotation in the normal spine:magnetic resonance imaging study in humans with situs inversus totalis.Spine 2007;32:1123-8.
    80.Castelein RM,Veraart B.Idiopathic scoliosis:prognostic value of the profile.Eur Spine J 1992;1:167-9.
    81.Farkas A.Physiological Scoliosis.J Bone Joint Surg 1941;23:607-27.104.Goldberg CJ,Dowling FE.Handedness and scoliosis convexity:a reappraisal.Spine 1990;61-4.
    82.Goldberg CJ,Dowling FE.Handedness and scoliosis convexity:a reappraisal.Spine 1990;61-4.
    83.Goldberg CJ,Moore DP,Fogarty EE,et al.Left thoracic curve patterns and their association with disease.Spine 1999;24:1228-33.
    84.Burwell RG,James NJ,Johnson F,et al.Standardised trunk asymmetry scores.A study of back contour in healthy school children.J Bone Joint Surg Br.1983;65:452-63.
    85.Goldberg CJ,Dowling FE,Fogarty EE.Left thoracic scoliosis configurations.Why so different?Spine 1994;19:1385-9.
    86.Gray H.Anatomy of the Human Body.23rd ed.Philadelphia,PA:Lea & Febiger;1936.
    87.Grivas TB,Michas K,Vasiliadis E,et al.Handedness and laterality of trunk rotation in children screened for scoliosis.J Bone Joint Surg Br 2004;86-B:172.
    88.Sahlstrand T.Ananalysis of lateral predominance in adolescent idiopathic scoliosis with special reference to convexity of the curve.Spine 1980;5:512-8.
    89.Spiegler BJ,Yeni-Komshian GH.Incidence of left-handed writing in a college population with reference to family patterns of hand preference.Neuropsychologia 1983;21:651-9.
    90.Del Bigio MR.Are pulmonary factors responsible for the direction of the spinal curvature in idiopathic scoliosis?Med Hypotheses 1989;28:217-8.
    91.Popesko P.Atlas of Topographical Anatomy of the Domestic Animals.2~(nd) ed.Toronto,Canada:W.B.Saunders Company;1977:1-194.
    92.Fisk JR,Bunch WH.Scoliosis in neuromuscular disease.Orthop Clin North Am 1979;10:863-75.
    93.James JI.Paralytic scoliosis.J Bone Joint Surg Br.1956;38-B:660-85.116.Lonstein JE,Renshaw TS.Neuromuscular spine deformities.Instr Course Lect 1987;36:285-304.
    94.Lonstein JE,Renshaw TS.Neuromuscular spine deformities.Instr Course Lect 1987;36:285-304.
    95.Aprin H,Bowen JR,MacEwen GD,et al.Spine fusion in patients with spinal muscular atrophy.J Bone Joint Surg Am.1982;64:1179-87.
    96.Colonna PC,Vom Saal F.A study of paralytic scoliosis based on five hundred cases of poliomyelitis.J Bone Joint Surg Am 1941;335-353.
    97.Hsu JD.The natural history of spine curvature progression in the nonambulatory Duchenne muscular dystrophy patient.Spine 1983;8:771-5.
    98.MacEwen GD.Cerebral palsy and scoliosis.In:Spinal Deformity in Neurological and Muscular Disorders.New York,NY:Mosby;1974:191-9.
    99.Madigan RR,Wallace SL.Scoliosis in the institutionalized cerebral palsy population.Spine 1981;6:583-90.
    100.Piggott H.The natural history of scoliosis in myelodysplasia.J Bone Joint Surg Br1980;62-B:54-8.
    101.Robin GC.Scoliosis of spina bifida and infantile paraplegia.Isr J Med Sci 1972;8:1823-9.
    102.Pincott JR,Taffs LF.Experimental scoliosis in primates:a neurological cause.J Bone Joint Surg Br 1982;64:503-7.
    103.Alexander MA,Bunch WH,Ebbesson SO.Can experimental dorsal rhizotomy produce scoliosis?J Bone Joint Surg Am 1972;54:1509-13.
    104.Liszka O.Spinal cord mechanisms leading to scoliosis in animal experiments. Acta Med Pol 1961;2:45-63.
    105.MacEwen GD.Experimental scoliosis.IsrJ Med Sci 1973;9:714-8.
    106.Pincott JR,Davies JS,Taffs LF.Scoliosis caused by section of dorsal spinal nerve roots.J Bone Joint Surg Br 1984;66:27-9.
    107.Suk SI,Song HS,Lee CK.Scoliosis induced by anterior and posterior rhizotomy.Spine 1989;14:692-7.
    108.Cheng JC,Guo X,Sher AH,et al.Correlation between curve severity,somatosensory evoked potentials,and magnetic resonance imaging in adolescent idiopathic scoliosis.Spine 1999;24:1679-84.
    109.Guo X,Chau WW,Hui-Chan CW,et al.Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function.Spine 2006;31:E437-40.
    110.Petersen I,Sahlstrand T,Sellden U.Electroencephalographic investigation of patients with adolescent idiopathic scoliosis.Acta Orthop Scand 1979;50:283-93.
    111.Sahlstrand T,Ortengren R,Nachemson A.Postural equilibrium in adolescent idiopathic scoliosis.Acta Orthop Scand 1978;49:354-65.
    112.Sahlstrand T,Petruson B,Ortengren R.Vestibulospinal reflex activity in patients with adolescent idiopathic scoliosis.Postural effects during caloric labyrinthine stimulation recorded by stabilometry.Acta Orthop Scand 1979;50:275-81.
    113.Sahlstrand T,Petruson B.A study of labyrinthine function in patients with adolescent idiopathic scoliosis.I.An electro-nystagmographic study.Acta Orthop Scand 1979;50:759-69.
    114.Liu T,Chu WC,Young G,et al.MR analysis of regional brain volume in adolescent idiopathic scoliosis:neurological manifestation of a systemic disease.J Magn Reson Imaging 2008;27:732-6.
    115.Roth M.Idiopathic scoliosis caused by a short spinal cord.Acta Radiol Diagn (Stockh) 1968;7:257-71.
    116.Porter RW.Idiopathic scoliosis:the relation between the vertebral canal and the vertebral bodies.Spine 2000;25:1360-6.
    117.Porter RW.The pathogenesis of idiopathic scoliosis:uncoupled neuroosseous growth?Eur Spine J 2001;10:473-81.
    118.Porter RW.Can a short spinal cord produce scoliosis?Eur Spine J 2001;10:2-9.
    119.Chu WC,Lam WW,Chan YL,et al.Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?:study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential.Spine 2006;31:E19-25.
    120.Chu WC,Man GC,Lam WW,et al.Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis.Spine 2008;33:673-80.
    121.Diab M,Smith AR,Kuklo TR.Neural complications in the surgical treatment of adolescent idiopathic scoliosis.Spine 2007;32:2759-63.
    122.Burwell RG.Comment to“The pathogenesis of idiopathic scoliosis:uncoupled neuro-osseous growth?”by R.W.Porter.Eur Spine J 2001;10:482-7.
    123.Hosman AJF.Idiopathic Thoracic Spinal Deformities and Compensatory Mechanisms[thesis].Utrecht,The Netherlands:Utrecht University;2003.
    124.Lucas DB,Bresler B.Stability of the ligamentous spine.Vol 40.San Francisco,CA:University of California,Biomechanics Laboratory;1961.
    125.Duval-Beaupere G,Lespargot A,Grossiord A.Scoliosis and trunk muscles.J Pediatr Orthop 1984;4:195-200.
    126.Fidler MW,Jowett RL.Muscle imbalance in the aetiology of scoliosis.J Bone Joint Surg Br 1976;58:200-1.
    127.Ford DM,Bagnall KM,McFadden KD,et al.Paraspinal muscle imbalance in adolescent idiopathic scoliosis.Spine 1984;9:373-6.
    128.Riddle HF,Roaf R.Muscle imbalance in the causation of scoliosis.Lancet 1955;268:1245-7.
    129.Alexander MA,Season EH.Idiopathic scoliosis:an electromyographic study.Arch Phys Med Rehabil 1978;59:314-5.
    130.Cheung J.Prediction of Curve Progression in Idiopathic Scoliosis.2004.
    131.Cheung J,Halbertsma JP,Veldhuizen AG,et al.A preliminary study on electromyographic analysis of the paraspinal musculature in idiopathic scoliosis.Eur Spine J 2005;14:130-7.
    132.Zetterberg C,Bjork R,Ortengren R,et al.Electromyography of the paravertebral muscles in idiopathic scoliosis.Measurements of amplitude and spectral changes under load.Acta Orthop Scand 1984;55:304-9.
    133.Kouwenhoven JW,Van Ommeren PM,Pruijs HE,et al.Spinal decompensation in neuromuscular disease.Spine 2006;31:E188-91.
    134.Sevastikoglou JA,Aaro S,Lindholm TS,et al.Experimental scoliosis in growing rabbits by operations on the rib cage.Clin Orthop 1978;282-6.
    135.Langenskiold,Michelsson JE.Experimental progressive scoliosis in the rabbit.J Bone Joint Surg Br 1961;43-B:116-20.
    136.Agadir M,Sevastik B,Sevastik JA,et al.Effects of intercostal nerve resection on the longitudinal rib growth in the growing rabbit.J Orthop Res 1989;7:690-5.
    137.Agadir M,Sevastik B,Sevastik JA,et al.Induction of scoliosis in the growing rabbit by unilateral rib-growth stimulation.Spine 1988;13:1065-9.
    138.Sevastik J,Agadir M,Sevastik B.Effects of rib elongation on the spine.Ⅱ.Correction of scoliosis in the rabbit.Spine 1990;15:826-9.
    139.Pal GP.Mechanism of production of scoliosis.A hypothesis.Spine 1991;16:288-92.
    140.Piggott H.Posterior rib resection in scoliosis.A preliminary report.J Bone Joint Surg Br 1971;53:663-71.
    141.Sevastik JA,Aaro.S,Normelli H.Scoliosis.Experimental and clinical studies.Clin Orthop 1984;27-34.
    142.Burner WL III,Badger VM,Sherman FC.Osteoporosis and acquired back deformities.J Pediatr Orthop 1982;2:383-5.
    143.Runge H,Fengler F,Franke J,et al.[Evaluation of the mineral content of peripheral bones (radius) by photon-absorption technique in normals as well as in patients with various types of bone diseases (author's transl)].Radiologe 1980;20:505-14.
    144.Sevastik JA.Right convex thoracic female adolescent scoliosis in the light of the thoracospinal concept.Stud Health Technol Inform 2006;123:552-8.
    145.Thomas KA,Cook SD,Skalley TC,et al.Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis:a follow-up study.J Pediatr Orthop 1992;12:235-40.
    146.Cheng JC,Guo X.Osteopenia in adolescent idiopathic scoliosis.A primary problem or secondary to the spinal deformity?Spine 1997;22:1716-21.
    147.Hung VW,Qin L,Cheung CS,et al.Osteopenia:a new prognostic factor of curve progression in adolescent idiopathic scoliosis.J Bone Joint Surg Am 2005;87:2709-16.
    148.Lee WT,Cheung CS,Tse YK,et al.Association of osteopenia with curve severity in adolescent idiopathic scoliosis:a study of 919 girls.Osteoporos Int 2005;16:1924-32.
    149.Lee WT,Cheung CS,Tse YK,et al.Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period.Osteoporos Int 2005;16:1024-35.
    150.Cheung CS,Lee WT,Tse YK,et al.Generalized osteopenia in adolescent idiopathic scoliosis-association with abnormal pubertal growth,bone turnover,and calcium intake?Spine 2006;31:330-8.
    151.Cheng JC,Tang SP,Guo X,et al.Osteopenia in adolescent idiopathic scoliosis:a histomorphometric study.Spine 2001;26:E 19-23.
    152.Cheng JC,Hung VW,Lee WT,et al.Persistent osteopenia in adolescent idiopathic scoliosis-longitudinal monitoring of bone mineral density until skeletal maturity.Stud Health Technol Inform 2006;123:47-51.
    153.Cheng JC,Guo X,Sher AH.Persistent osteopenia in adolescent idiopathic scoliosis.A longitudinal follow-up study.Spine 1999;24:1218-22.
    154.Floman Y,Liebergall M,Robin GC,et al.Abnormalities of aggregation,thromboxane A2 synthesis,and 14C serotonin release in platelets of patients with idiopathic scoliosis.Spine 1983;8:236-41.
    155.Muhlrad A,Yarom R.Contractile protein studies on platelets from patients with idiopathic scoliosis.Haemostasis 1982;11:154-60.
    156.Peleg I,Eldor A,Kahane I,et al.Altered structural and functional properties of myosins,from platelets of idiopathic scoliosis patients.J Orthop Res 1989;7:260-5.
    157.Sabato S,Rotman A,Robin GC,et al.Platelet aggregation abnormalities in idiopathic scoliosis.J Pediatr Orthop 1985;5:558-63.
    158.Yarom R,Blatt J,Gorodetsky R,et al.Microanalysis and X-ray fluorescence spectrometry of platelets in diseases with elevated muscle calcium.Eur J Clin Invest 1980;10:143-7.
    159.Lowe TG,Edgar M,Margulies JY,et al.Etiology of idiopathic scoliosis:current trends in research.J Bone Joint Surg Am 2000;82-A:1157-68.
    160.Kindsfater K,Lowe T,Lawellin D,et al.Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis.J Bone Joint Surg Am 1994;76:1186-92.
    161.Lowe T,Lawellin D,Smith D,et al.Platelet calmodulin levels in adolescent idiopathic scoliosis:do the levels correlate with curve progression and severity? Spine 2002;27:768-75.
    162.Coue M,Landon F,Olomucki A.Comparison of the properties of two kinds of preparations of human blood platelet actin with sarcomeric actin.Biochimie 1982;64:219-26.
    163.Landon F,Hue C,Thome F,et al.Human platelet actin.Evidence of beta and gamma forms and similarity of properties with sarcomeric actin.Eur J Biochem 1977;81:571-7.
    164.Thillard MJ.Deformation de la colonne vertebrale consecutives a l'epiphysectomie chez le poussin.Extrait des Comptes Rendus de l'Association des Anatomistes XLVI.1959:22-6.
    165.Dubousset J,Queneau P,Thillard MJ.Experimental scoliosis induced by pineal and diecephalic lesions in young chickens:its relation with clinical findings in idiopathic scoliosis.Orthop Trans 1983;7:7.
    166.Machida M,Dubousset J,Imamura Y,et al.An experimental study in chickens for the pathogenesis of idiopathic scoliosis.Spine 1993;18:1609-15.
    167.Machida M,Dubousset J,Imamura Y,et al.Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens.J Bone Joint Surg Br 1995;77:134-8.
    168.Machida M,Dubousset J,Satoh T,et al.Pathologic mechanism of experimental scoliosis in pinealectomized chickens.Spine 2001;26:E385-91.
    169.Bagnall K,Raso VJ,Moreau M,et al.The effects of melatonin therapy on the development of scoliosis after pinealectomy in the chicken.J Bone Joint Surg Am 1999;81:191-9.
    170.Inoh H,Kawakami N,Matsuyama Y,et al.Correlation between the age of pinealectomy and the development of scoliosis in chickens.Spine 2001;26:1014-21.
    171.O'Kelly C,Wang X,Raso J,et al.The production of scoliosis after pinealectomy in young chickens,rats,and hamsters.Spine 1999;24:35-43.
    172.Turgut M,Yenisey C,Uysal A,et al.The effects of pineal gland transplantation on the production of spinal deformity and serum melatonin level following pinealectomy in the chicken.Eur Spine J 2003;12:487-94.
    173.Cheung KM,Lu DS,Poon AM,et al.Effect of melatonin suppression on scoliosis development in chickens by either constant light or surgical pinealectomy.Spine 2003;28:1941-4.
    174.Oyama J,Murai I,Kanazawa K,et al.Bipedal ambulation induces experimental scoliosis in C57BL/6J mice with reduced plasma and pineal melatonin levels.J Pineal Res 2006;40:219-24.
    175.Machida M,Dubousset J,Yamada T,et al.Experimental scoliosis in melatonindeficient C57BL/6J mice without pinealectomy.J Pineal Res 2006;41:1-7.
    176.Cheung KM,Wang T,Poon AM,et al.The effect of pinealectomy on scoliosis development in young nonhuman primates.Spine 2005;30:2009-13.
    177.Machida M,Dubousset J,Imamura Y,et al.Melatonin.A possible role in pathogenesis of adolescent idiopathic scoliosis.Spine 1996;21:1147-52.
    178.Bagnall KM,Raso VJ,Hill DL,et al.Melatonin levels in idiopathic scoliosis.Diurnal and nocturnal serum melatonin levels in girls with adolescent idiopathic scoliosis.Spine 1996;21:1974-8.
    179.Fagan AB,Kennaway DJ,Sutherland AD.Total 24-hour melatonin secretion in adolescent idiopathic scoliosis.A case-control study.Spine 1998;23:41-6.
    180.Hilibrand AS,Blakemore LC,Loder RT,et al.The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis.Spine 1996;21:1140-6.
    181.Suh KT,Lee SS,Kim SJ,et al.Pineal gland metabolism in patients with adolescent idiopathic scoliosis.J Bone Joint Surg Br 2007;89:66-71.
    182.Poon AM,Cheung KM,Lu DS,et al.Changes in melatonin receptors in relation to the development of scoliosis in pinealectomized chickens.Spine 2006;31:2043-7.
    183.Qiu XS,Tang NL,Yeung HY,et al.Melatonin receptor IB (MTNRIB) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis.Spine 2007;32:1748-53.
    184.Wu L,Qiu Y,Wang B,et al.Asymmetric expression of melatonin receptor mRNA in bilateral paravertebral muscles in adolescent idiopathic scoliosis.Stud Health Technol Inform 2006;123:129-34.
    185.Moreau A,Wang DS,Forget S,et al.Melatonin signaling dysfunction in adolescent idiopathic scoliosis.Spine 2004;29:1772-81.
    45.Roberts S,Menage J,Urban JPG.Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc.Spine.1989;14:166-174.
    46.Yu J,Winlove CP,Roberts S,Urban JP.Elastic fibre organization in the intervertebral discs of the bovine tail.JAnat.2002;201:465-475.
    47.Maroudas A,Nachemson A,Stockwell R,Urban J.Some factors involved in the nutrition of the intervertebral disc.JAnat.1975;120:113-130.
    48.Inoue H.Three-dimensional architecture of lumbar intervertebral discs.Spine.1981;6:139-146.
    49.Marchand F,Ahmed AM.Investigation of the laminate structure of lumbar disc anulus fibrosus.Spine.1990;15:402-410.
    50.Enington RJ,Puustjarvi K,White IR,Roberts S,Urban JP.Characterisation of cytoplasm-filled processes in cells of the intervertebral disc.J Anat.1998;192:369-378.
    51.Bruehlmann SB,Rattner JB,Matyas JR,Duncan NA.Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc.J Anat.2002;201:159-171.
    52.Roberts S,Eisenstein SM,Menage J,Evans EH,Ashton IK.Mechanoreceptors in intervertebral discs.Morphology,distribution,and neuropeptides.Spine.1995;20:2645-2651.
    53.Crock HV,Goldwasser M,Yoshizawa H.Vascular anatomy related to the intervertebral disc.In:Ghosh P,ed.Biology of the Intervertebral Disc.Boca Raton,FL:CRC Press;1991:109-133.
    54.Rufai A,Benjamin M,Ralphs JR.The development of fibrocartilage in the rat intervertebrl disc.Anat Embryol (Berl).1995;192:53-62.
    55.Taylor JR,Twomey LT (1988) Growth of human intervertebral discs and vertebral bodies.J Anat 120:49-68
    56.Holm S,Maroudas A,Urban JPG et al (1981) Nutrition of the intervertebral disc:Solute transport and metabolism.Connect Tiss Res 8:101-119
    57.Nachemson A,Lewin T,Maroudas A,Freeman MAR 1970) In vitro diffusion of dye through the endplate and the annulus fibrosus of human intervertebral discs.Acta Orthop Scand 41:589-607
    58.Bernick S,Caillet R (1982) Vertebral end-plate changes with aging of human vertebrae.Spine 7:97-102
    59.Roberts S,McCall IW,Menage J et al (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc?.Eur Spine J 6:385-389
    60.Eyre DR,Muir H.Quantitative analysis of types I and II collagens in the human intervertebral disc at various ages.Biochimica Biophysica Acta.1977;492:29-42.
    61.Urban JP,Maroudas A,Bayliss MT,Dillon J.Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues.Biorheology.1979;16:447-464.
    62.Donohue PJ,Jahnke MR,Blaha JD,Caterson B.Characterization of link protein(s) from human intervertebraldisc tissues.Biochem J.1988;251:739-747.
    63.Ishihara H,Urban JP.Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc.J OrthopRes.1999;17:829-835.
    64.Ohshima H,Urban JPG.Effect of lactate concentrations and pH on matrix synthesis rates in the intervertebral disc.Spine.1992;17:1079-1082.
    65.Horner HA,Urban JP.Volvo Award Winner in Basic Science Studies:effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc.Spine 2001.2001;26:2543-2549.
    66.Urban JP,Holm S,Maroudas A.Diffusion of small solutes into the intervertebral disc:as in vivo study.Biorheology.1978;15:203-221.
    67.Aigner T,Gresk-Otter KR,Fairbank JC et al (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs.CalcifTissue hit 63:263-268
    68.Pearce RH,Grimmer BJ,Adams ME (1987) Degeneration and the chemical composition of the human intervertebral disc.J Orthop Res 5:198-205
    69.Antoniou J,Arlet V,Goswami T et al (2001) Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues.Spine 26:198-206
    70.Antoniou J,Arlet V,Goswami T et al (2001) Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues.Spine 26:198-206
    71.Pedrini-Mille A,Pedrini VA,Tudisio C et al (1983) Proteoglycans of human scoliotic intervertebral disc.J Bone Joint Surg 65 A:815-823
    72.Roberts S,Menage J,Eisenstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis:calcification and other sequelae.J Orthop Res 11:747-757
    73.Vernon-Roberts B (1992) Age-related and degenerative pathology of intervertebral discs and apophyseal joints.In:Jayson MIV (ed) The lumbar spine and back pain,4th edn.Edinburgh,Churchill Livingstone,pp 17-41
    74.Cruickshank JL,Koike M,Dickson RA.Curve patterns in idiopathic scoliosis:a clinical and radiographic study.J Bone Joint Surg[Br]1989;71:259-63.
    75.Taylor JR.Growth of human intervertebral discs and vertebral bodies.J Anat 1975;120:49-68.
    76.Taylor TK,Ghosh P,Bushell GR.The contribution of the intervertebral disk to the scoliotic deformity.Clin Orthop 1981;156:79-90.
    77.Stokes LAF,Aronsson DD,Urban JPG.Biomechanical factors influencing progression of angular skeletal deformities during growth.Eur J Exp Musculoskel Res 1994;3:51-60.
    78.Nachemson A,Lewin T,Maroudas A,Freeman MAF.In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs.Acta Orthop Scand.1970;41:589-607.
    79.Roberts S,Urban JPG,Evans H,Eisenstein SM.Transport properties of the human cartilage end-plate in relation to its composition and calcification.Spine.1996;21:415-420.
    80.Bibby SR,Fairbank JC,Urban MR,Urban JP.Cell viability in scoliotic discs in relation to disc deformity and nutrient levels.Spine.2002;27:2220-2228.
    81.Yu J,Fairbank JC,Roberts S,Urban JP.The elastic fibre network of the annulus fibrosus of the normal and scoliotic human intervertebral disc.Spine.2005;30:1815-20.
    82.Johnson WE,Roberts S.Human intervertebral disc cell morphology and cytoskeletal composition:a preliminary study of regional variations in health and disease.J Anat.2003;203:605-12.
    83.Hiraki Y,Shukunami C.Chondromodulin-I as a novel cartilage-specific growth-modulating factor.Pediatr Nephrol.2000,14:602-605.
    84.Hayami T,Shukunami C,Mitsui K,et al.Specific loss of chondromodulin-I gene expression in chondrosarcoma and the suppression of tumor angiogenesis and growth by its recombinant protein in vivo.FEBS Lett.1999,24:436-440.
    85.Takao T,Iwaki T.A comparative study of localization of heat shock protein 27 and heat shock protein 72 in the developmental and degenerative intervertebral discs.Spine.2002,27:361-368.
    86.Masuda K,An HS (2004) Growth factors and the intervertebral disc.Spine J 4:330-340
    87.Yoon TS (2005) Molecular therapy of the intervertebral disc.Spine J 5:280-286
    88.Anderson DG,Risbud MV,Shapiro IM,Vaccaro AR,Albert TJ (2005) Cell-based therapy for disc repair.Spine J 5:297-303
    89.Wallach CJ,Gilbertson LG,Kang JD (2003) Gene therapy applications for intervertebral disc degeneration.Spine 28:93-9