前交叉韧带断裂对髌骨影响的生物力学和组织学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前交叉韧带(anterior curciate ligament,ACL)损伤是临床上的常见运动损伤,严重影响膝关节稳定性。是继发膝关节软骨退变的原因之一。然而,ACL损伤是否对髌骨也产生影响,目前尚未见文献报道。本研究采用生物力学测定的方法,观察ACL完全断裂和部分断裂对髌骨上、下极,髌骨内、外侧应变的影响;并用组织学方法,观察ACL完全断裂后髌骨组织病理改变,同时检测IL-1β及MMP-13的表达,以了解其继发髌骨病变中的作用机制,为ACL损伤是否对髌骨产生影响提供理论依据。
     第一章前交叉韧带功能性分束的生物力学研究
     目的探讨前交叉韧带功能性分束为后续研究奠定基础。
     方法6具新鲜成人正常膝关节标本,取ACL胫骨止点前方两侧、股骨止点后方两侧作为应变测量点,分别对应:前内侧区纤维束(前内侧束)、前外侧区纤维束(前外侧束)、后内侧区纤维束(后内侧束)、后外侧区纤维束(后外侧束)。在800N轴向载荷下,测试膝关节0°、30°、60°、90°状态下ACL各纤维束应变,采用样本聚类方法进行功能性分束。
     结果1、膝关节0°位,ACL后外侧束、前外侧束应变均大于后内侧束、前内侧束应变,均有显著性差异,均P<0.05;后外侧束与前外侧束应变无显著性差异,P>0.05;后内侧束与前内侧束应变无显著性差异,P>0.05。30°位和90°位,ACL后内侧束、前内侧束应变均大于后外侧束、前外侧束应变,均有显著性差异,均P<0.05;后内侧束与前内侧束应变无显著性差异,P>0.05;后外侧束与前外侧束应变无显著性差异,P>0.05。60°位,应变大小依次为:后内侧束、前内侧束、后外侧束、前外侧束,束间应变比较均有显著性差异,均P<0.05。2、前内侧束与后内侧束应变变化一致,依序0°、30°、60°、90°逐渐增大,均有显著性差异,均P<0.05;前外侧束应变在膝0°、30°、60°、90°均无显著性差异,均P>0.05。后外侧束应变在膝关节60°位大于0°、30°、90°,均有显著性差异,均P<0.05;0°与90°应变无显著性差异,P>0.05;0°、90°应变均大于30°,差异均有显著性,均P<0.05。3、聚类分析:后外侧束与前外侧束归为一类,后内侧束与前内侧束归为一类。
     结论ACL后外侧区纤维束和前外侧区纤维束应变在膝0°位大于后内侧区纤维束和前内侧区纤维束,30°、60°、90°小于后内侧区纤维束和前内侧区纤维束应变,说明后外侧区纤维束和前外侧区纤维束主要维持膝关节伸直稳定性,后内侧区纤维束和前内侧区纤维束主要维持膝关节屈曲稳定性,结合聚类结果,可将ACL分为前内、后外两功能性纤维束。
     第二章前交叉韧带断裂对髌骨生物力学影响的实验研究
     目的探讨ACL完全断裂和部分断裂对髌骨的生物力学影响。
     方法新鲜成人尸体膝关节标本10具,依ACL完整(10具)、AMB切断(5具)、PLB切断(5具)和ACL完全切断(10具)分别在膝关节0°、30°、60°、90°位轴向加载200~800N,测量髌骨上、下极,髌骨内、外侧关节面的应变并对数据进行统计分析。
     结果1.ACL完整组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时,髌骨下极为压应变,髌骨上极为拉应变,应变绝对值随载荷增加而增加;60°位时,髌骨上、下极均为拉应变,90°位时,髌骨上极为压应变,髌骨下极为拉应变,应变绝对值随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,应变绝对值随载荷增加而增加,各角度间应变值均有统计学差异,P<0.05,髌骨内侧与外侧应变值间无统计学差异,P>0.05。2.AMB切断组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时,髌骨上极下极为均压应变,髌骨上极应变绝对值随载荷增加而增加,髌骨下极应变绝对值随载荷增加而减小;60°位时,髌骨上极为压应变,髌骨下极为拉应变,应变绝对值均随载荷增加而增加。90°位时,髌骨上极为压应变,髌骨下极为拉应变,应变绝对值随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,应变绝对值随载荷增加而减小,各角度间应变值均有统计学差异,P<0.05,髌骨内侧与外侧应变值间有统计学差异,P<0.05。3.PLB切断组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时,髌骨上极为拉应变,下极为压应变,髌骨上、下极应变绝对值随载荷增加而增加,髌骨下极应变绝对值随载荷增加先增加后减小;60°位时,髌骨上极为压应变,髌骨下极为拉应变,应变绝对值均随载荷增加而增加。90°位时,髌骨上极为压应变,髌骨下极为拉应变,应变绝对值随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,30°时应变绝对值随载荷增加先增加后减小,60°、90°时应变绝对值随载荷增加而减小,各角度间应变值均有统计学差异,P<0.05。髌骨内侧与外侧应变值间有统计学差异,P<0.05。4.ACL切断组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°、60°、90°位时,髌骨下极为拉应变,髌骨上极为压应变,应变绝对值随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,应变绝对值随载荷增加而减小,各角度间应变值均有统计学差异,P<0.05,髌骨内侧与外侧应变值间有统计学差异,P<0.05。
     结论1、ACL完全切断,在不同载荷和角度下,对髌骨各部的应变均有影响。2、AMB切断在膝关节屈曲30°、60°、90°位各载荷下可引起髌骨各部生物力学改变。3、PLB切断在膝关节0°位及30°200N、400N载荷下对髌骨各部应变无影响。4、ACL完全断裂,髌骨外侧应变高于髌骨内侧应变,其意义尚需进一步探讨。
     第三章前交叉韧带断裂对髌骨软骨组织学的影响
     目的通过观察兔膝关节ACL断裂后髌骨软骨组织结构的变化及IL-1β、MMP-13的表达,了解前交叉韧带断裂对髌骨组织学的影响。
     方法48只雄性家兔随机分为四组,实验侧行后腿单侧ACL切断,自身对照。造模后于第1、3、6、8周各随机处死12只。观察各时间点髌骨软骨组织结构HE染色与IL-1β、MMP-13表达的变化。
     结果1.大体观察:随着ACL断裂时间的推移,髌骨软骨逐渐出现色泽改变、光泽减退、表面磨损甚至软骨表面的溃疡。2.HE染色:自第三周开始出现软骨表面及软骨细胞排列的异常。Mankin评分实验组随时间推移而增高,各实验组间比较均有显著性差异,均P<0.01;第1周实验组与对照组比较无显著性差异,P>0.05,其他各实验组均大于对照组,差异均具有显著性,均P<0.01。3.IL-1β表达情况:第1、3、6、8周实验组均高于正常对照组,均有显著性差异,均P<0.05。实验组第1周低于3、6、8周,均有显著性差异,均P<0.05;第6周表达高于第3、8周,均有显著性差异,均P<0.01;第8周表达高于第3周,有显著性差异,P<0.01。正常对照组各周间比较均无显著性差异,均P>0.05。4.MMP-13表达情况:第1、3、6、8周实验组均高于正常对照组,均有显著性差异,均P<0.01。实验组第1周低于第3、6、8周,均有显著性差异,均P<0.01;第6周表达高于第3、8周,均有显著性差异,均P<0.01;第8周表达与第3周比较无显著性差异,P>0.05。正常对照组各周间比较均无显著性差异,均P>0.05。
     结论1、证实ACL断裂可引起髌骨软骨退变。2、ACL断裂后IL-1β、MMP-13表达增高提示IL-1β、MMP-13可能参与了ACL断裂后髌骨软骨的退变过程。
The injuries of Anterior Curciate Ligament are very common in sport injuries.The injuries mainly effect the stabilization of knee joint,it also is the reason of the degeneration of cartilage in knee joint after ACL injury.However,the ACL injury did effect the patella or not is unknown, there is few literature report it too.This research intend to use biomechanic method observe the biomechanic change of patella after ACL complete rupture or incomplete rupture,further more,use histological methods to observe the pathological change of patella after ACL complete rupture,detect the expression of IL-1β、MMP-13. Through the reaserch to investigate the effect mechanism of pathological changes in patella after ACL rupture,provide the theory evidence of pathological changes in patella after ACL rupture.
     Chapter1 The biomechanical study of ACL bundles' functional classification
     Objective:To investigate the biomechanical function of the ACL bundles for subsequent research.
     Methods:6 fresh cadaveric knees from adult human beings were used. Selected the bilateral anterior part of the ACL tibial insertion and the bilateral posterior part of the ACL femoral insertion as the measure parts correspond to:anteromedial area fiber bundle(anteromedial bundle)、anterolateral area fiber bundle(anterolateral bundle)、posteromedial area bundle(posteromedial bundle) and posterolateral area bundle (posterolateral bundle).The strain on the ACL bundles was measured when the knees were applied with 800N axial loading force in 0°、30°、60°、90°positions.The bundles were functional classified by cluster analysis.
     Results:1.In 0°position,the strain on the posterolateral and anterolateral bundles was significantly larger than the posteromedial and anteromedial bundles(P<0.05),There were no significant diference between the posterolateral and anterolateral bundles(P>0.05) and so did the posteromedial and anteromedial bundles(P>0.05);In 30°and 90°position,the strain on the posteromedial and anteromedial bundles was significantly larger than the posterolateral and anterolateral bundles (P<0.05),There were no significant difference between the posteromedial and anteromedial bundles(P>0.05) and so did the posterolateral and anterolateral bundles(P>0.05);In 60°position,the strain on the posteromedial bundle was the largest,and then the anteromedial、posterolateral、anterolateral bundle,the differences among bundles were all significant(P<0.05).2.The strain on the posteromedial and anteromedial bundles was increased by degrees when the knee flexed 0°、30°、60°、90°,and all the difference were significant (P<0.01);There were no significant changes of the strain on the anterolateral bundle among different angles(P>0.05).The strain on the posterolateral bundle in 60°position was larger than 0°、30°、90°positions,the differences were significant(P<0.05);The strain in 30°position was significantly smaller than 0°and 90°positions (P<0.05),but the difference of strain between 0°and 90°positions was not significant(P>0.05).3.Cluster analysis classfied the anteromedial bundle and the posteromedial bundle as one class and the anterolateral and posterolateral bundles as the other class.
     Conclusion:Compared with the posteromedial area and anteromedial area fiber bundles,the strain on the posterolateral area and anterolateral area fiber bundles was significantly larger in 0°position and smaller in 30°、60°、90°positions,means the posterolateral area and anterolateral area fiber bundles mainly maintain stability of the knee in extended positions,the posteromedial area and anteromedial area fiber bundles mainly maintain stability of the knee in flexed positions.Combined with the cluster analysis results,ACL may be classified into the anteromedial functional fiber bundle and the posterolateral functional fiber bundle.
     Chapter 2 The biomechanical influence of ACL rupture on the patella
     Objective:To investigate the biomechanical influences of partial and total ACL rupture on the patella.
     Methods:10 fresh cadaveric knees from adult human beings were divided into ACL intact group(10 samples)、AMB broken group(5 samples)、PLB broken group(5 samples)and ACL total broken group(10 samples).The knees were applied with 200N~800N axial loading force when they flexed 0°、30°、60°、90°.The strain on the patella was measured and analysed.
     Results:1.In ACL intact group:①In 0°position,the strain of all 4 test place of patellar were the smallest,and the differences among the parts were not significant(P>0.05).②In 30°positions,the inferior of patellar was compressive strain,the superior of patellar was tensile strain,the absolute value of strain was increased with the load increased.In 60°positions,the strain of inferior and superior of patellar were tensile strain, the absolute value of strain was increased with the load increased.In 90°positions,the superior of patellar was compressive strain,the inferior of patellar was tensile strain,the absolute value of strain was increased with the load increased.The differences among the parts were all significant(P<0.05).③In 30°、60°、90°positions,the medial and lateral of patellar were compressive strain,the absolute value of strain was increased with the load increased.The differences among the parts were all significant(P<0.05).There were no significant differences among the medial and lateral of patellar(P>0.05).2.In AMB broken group:①In 0°position,the strain of all 4 test place of patellar were the smallest,and the differences among the parts were not significant(P>0.05).②In 30°positions,the strain of inferior and superior of patellar were compressive strain,the absolute value of strain on the superior of patellar was increased with the load increased.The absolute value of strain on the inferior of patellar was decreased with the load increased.In 60°positions,the superior of patellar was compressive strain,the inferior of patellar was tensile strain,and the absolute value of strain was increased with the load increased.In 90°positions,the superior of patellar was compressive strain,the inferior of patellar was tensile strain,and the absolute value of strain was increased with the load increased.The differences among the parts were all significant(P<0.05).③In 30°、60°、90°positions,the medial and lateral of patellar were compressive strain,the absolute value of strain was decreased with the load increased. The differences among the parts were all significant(P<0.05).There were significant differences among the medial and lateral of patellar (P<0.05).3.In PLB broken group:①In 0°position,the strain of all 4 test place of patellar were the smallest,and the differences among the parts were not significant(P>0.05).②In 30°positions,the strain of superior of patellar were tensile strain,the inferior of patellar was compressive strain,the absolute value of strain on the superior of patellar was increased with the load increased.The absolute value of strain on the inferior of patellar was increased in first,and then decreased with the load increased.In 60°positions,the superior of patellar was compressive strain,the inferior of patellar was tensile strain, the absolute value of strain was increased with the load increased.In 90°positions,the superior of patellar was compressive strain,the inferior of patellar was tensile strain,and the absolute value of strain was increased with the load increased.The differences among the parts were all significant(P<0.05).③In 30°、60°、90°positions,the medial and lateral of patellar were compressive strain,In 30°positions,the absolute value of strain was increased in first,then decreased with the load increased. In 60°、90°positions,the absolute value of strain was decreased with the load increased.The differences among the parts were all significant (P<0.05).There were significant differences among the medial and lateral of patellar(P<0.05).4.In ACL total broken group:①In 0°position,the strain of all 4 test place of patellar were the smallest,and the differences among the parts were not significant(P>0.05).②In 30°、60°、90°positions,the inferior of patellar was tensile strain,the superior of patellar was compressive strain,the absolute value of strain was increased with the load increased.The differences among the parts were all significant(P<0.05).③In 30°、60°、90°positions,the medial and lateral of patellar were compressive strain,the absolute value of strain was decreased with the load increased.The differences among the parts were all significant(P<0.05).There were significant differences among the medial and lateral of patellar(P<0.05).
     Conclusion:1.ACL total rupture may cause abnormal load on the patellar in all the positions.2.AMB rupture may cause abnormal load on the patellar in 30°、60°、90°positions.3.PLB rupture not cause abnormal biomechanical change on patella in 0°position and 200N、400N loaded in 30°position.4.ACL total rupture can cause the strain of lateral of patellar was larger than medial of patellar,which need to be further explored.
     Chapter 3 The histological influence of ACL rupture on the patellar cartilage
     Objective:To investigate the tissue construction changes and IL-1、MMP-13 express in the patellar cartilage,to further explore the influence of ACL rupture on the patellar cartilage.
     Methods:48 male rabbits were randomly divided into four groups,and all were under one side posterior leg ACL cut and the opposite side as the control.HE staining and immunohistochemical methods were used. Tissue construction and IL-1β、MMP-13 expression changes of the lateral tibial plateau cartilage were observed 1、3、6、8 weeks later.
     Results:1.Gross observation:As the time lasted,the patellar cartilage had the color changed、the gloss decreased、the surface abrased and even had ulcer on the cartilage.2.Routine HE staining:There are abnormal cartilage surface and cell disposition after 3 weeks.The Mankin scores in experimental groups increased as the time lasted,the differences among the groups were all significant(P<0.01);there was no significant difference between 1-week group and control group(P>0.05),the Mankin scores in the other experimental groups were significantly higher than that in control group(P<0.01).3.IL-1βexpression:All the experimental groups had higher IL-1βexpression than that in control groups(P<0.01).In experimental groups,IL-1βexpressed significantly lower in 1-week group than that in 3、6、8-week groups(p<0.05);In 6-week group,IL-1βexpressed higher than that in 3-week group and 8-week group(P<0.01).IL-1βexpressed higher in 8-week group than that in 3-week group(P<0.01).There were no signifigant differences among the control groups(P>0.05).4.MMP-13 expression:All the experimental groups had higher IL-1βexpression than that in control groups(P<0.01).In experimental groups,MMP-13 expressed significantly lower in 1-week group than that in 3、6、8-week groups (p<0.01);In 6-week group,MMP-13 expressed higher than that in 3-week group and 8-week group(P<0.01).There was no significant difference between 3-week group and 8-week group(P>0.05).There were no signifigant differences among the control groups(P>0.05).
     Conclusion:1.The reaserch confirmed ACL rupture may cause cartilage degeneration on the patellar cartilage.2.The increased IL-1βand MMP-13 expression suggest that IL-1β、MMP-13 may participate in cartilage degeneration on the patellar after ACL rupture.
引文
[1]Lai WM,Hou JS,Mow VC.A triphasic theory for the swelling and deformation behaviors of articular cartilage[J].J Biomech Eng,1991,113:245-258.
    [2]Azangwe G,Mathias KJ,Marshall D.Macro and microscopic examination of the ruptured surface of anterior cruciate ligaments of rabbits[J].J Bone Joint Surg,2000,28:32-39.
    [3]Amis AA,Jakob RP.Anterior cruciate ligament graft positioning,tensioning and twisting[J].Knee Surg Sports Traumatol Arthrosc,1998,6 Suppl 1:S2-12.
    [4]Musahl V,Burkart A,Debski RE,et al.Anterior cruciate ligament tunnel placement:Comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system[J].Arthroscopy,2003,19:154-160.
    [5]Anderson AF,Dome DC,Gautam S,et al.Correlation of anthropometric measurements,strength,anterior cruciate ligament size,and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates[J].Am J Sports Med,2001,29(1):58-66.
    [6]姚作宾,任国良,陈明法.前交叉韧带的应用解剖[J].中国临床解剖学杂志,1989,7(3):141-143.
    [7]Brantigan OC,Voshell AF.The mechanics of the ligaments and menisci of the knee joint[J].J Bone Joint Surg,1941,23:44-66.
    [8]Girgis FG,Marshall JL,Monajem A.The cruciate ligaments of the knee joint.Anatomical,functional and experimental analysis[J].Clin Orthop Relat Res,1975:216-231.
    [9]Mae T,Shino K,Miyama T,et al.Single- versus two-femoral socket anterior cruciate ligament reconstruction technique:Biomechanical analysis using a robotic simulator[J].Arthroscopy,2001,17:708-716.
    [10]Kurosawa H,Yamakoshi K,Yasuda K,et al.Simultaneous measurement of changes in length of the cruciate ligaments during knee motion[J].Clin Orthop Relat Res,1991:233-240.
    [11]Fineberg MS,Zarins B,Sherman OH.Practical considerations in anterior cruciate ligament replacement surgery[J].Arthroscopy,2000,16:715-724.
    [12]Takahashi M,Doi M,Abe M,et al.Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament[J].Am J Sports Med,2006,34:787-792.
    [13]Hirokawa S,Yamamoto K,Kawada T.Circumferential measurement and analysis of strain distribution in the human ACL using a photoelastic coating method[J].J Biomech,2001,34:1135-1143.
    [14]郭林,杨柳,杨昌棋,等.四象限分区法用于前交叉韧带多纤维束动态受力分析[J].医用生物力学,2007,22:356-360.
    [15]Odensten M,Gillquist J.Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction[J].J Bone Joint Surg Am,1985,67:257-262.
    [16]刘秀梅,陶澄,肖东民.人膝关节前、后交叉韧带解剖研究及临床意义[J].医学临床研究,2006,23:1085-1087.
    [17]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究[J].中国运动医学杂志,2007,26(3):266-270.
    [18]高士濂主编.实用解剖图谱(下肢分册)[M].第2版.上海:上海科学技术出版社,2004.179-180.
    [19]Zaffagnini S,Martelli S,Acquaroli F.Computer investigation of ACL orientation during passive range of motion[J].Comput Biol Med,2004,34(2):153-163.
    [20]李昶,于赛华,张琪,闫明.前交叉韧带的功能解剖研究[J].内蒙古医学院学报,2000,22(4):230-232.
    [21]管于宁,Butl,DL.前交叉韧带纤维束力学性质的本构方程[J].中国生物医学工程学报,1996,15:27-33.
    [22]Loh JC,Fukuda Y,Tsuda E,et al.Knee stability and graft function following anterior cruciate ligament reconstruction:Comparison between 11 o'clock and 10 o'clock femoral tunnel placement[A].2002 Richard O'Connor Award paper.Arthroscopy,2003,19(3):297-304.
    [23]国人ACL起止点解剖与多纤维束动态生物力学相关性研究.郭林.(博士论文);第三军医大学;2006.
    [24]韩雪松,杨柳,郭林,等.ACL对膝关节胫骨内、外旋转稳定性控制作用的初步研究[J].现代生物医学进展,2007,7(11):1692-1695.
    [25]徐卿荣,朱振安.负荷条件下前交叉韧带胫骨重建位置的等距特性[J].医学临床研究,2004,21(1):33-36.
    [26]Boisgard S,Levai JP,Geiger B,et al.Study of the variations in length of the anterior cruciate ligament during flexion of the knee:use of a 3D model reconstructed from MRI sections[J].Surg Radiol Anat,1999,21:313-317
    [27]Gabriel MT,Wong EK,Woo SL,et al.Distribution of in situ forces in the anterio cruciate ligament in response to rotatory loads[J].J Orthop Res.2004, 22:85-89.
    [28]Amis AA,Dawkins GP,Functional anatomy of the anterior cruciate ligament.Fibre bundle actions related to ligament replacements and injuries[J].J Bone Joint Surg Br,1991,73:260-267.
    [29]冯华,洪雷,耿向苏,等。前十字韧带损伤合并内侧半月板ramp损伤[J]。中华骨科杂志,2005,25:651-655.
    [30]Getelman MH,Friedman MJ.Revision anterior cruciate ligament reconstruction surgery[J].J Am Acad Orthop Surg,1999,7:189-198.
    [31]Vergis A,Gillquist J.Graft failure in intra-articular anterior cruciate ligament reconstructions:a review of literature[J].Arthroscopy,1995,11:312-321.
    [32]Furia JP,Lintner DM,Saiz P,et al.Isometry measurements in the knee with the anterior cruciate ligament intact,sectioned,and reconstructed[J].Am J Sports Med,1997,25:346-352.
    [33]Frank CB,Jackson DW.The science of reconstrction of the anterior cruciate ligament[J].J Bone Joint Surg Am,1997,79:1556-1576.
    [34]Yagi M,Wong EK,Kanamori A,et al.Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction[J].Am J Sports Med,2002,30:660-666.
    [35]Takeuchi R,Saito T,Mituhashi S,et al.Double-bundle anatomic anterior cruciate ligament reconstruction using bone-hamstring-bone composite graft[J].Arthroscopy,2002,18:550-555.
    [1]单大卯.髌骨运动轨迹的实验性研究[J]。北京体育大学学报.2004,8,27:1057-1059,1101.
    [2]Huberti HH,Ha yes WC.Patellofemoral contact pressure[J].J Bone Joint Surg,1984,66A:715-724
    [3]王健,敖英芳.青少年前交叉韧带损伤流行病学研究[J].中国运动医学杂志,2002,21(5).
    [4]徐雁,敖英芳.前交叉韧带断裂继发软骨损伤的临床研究[J].中国运动医学杂志,2002,21(1).
    [5]王建,敖英芳.前交叉韧带损伤的临床流行病学研究[J].中国运动医学杂志,2001,20(4).
    [6]谷贵山,孙大辉,车明学,创伤性关节炎[J].中国临床康复,2002,6(1):20.
    [7]李放,关节炎和力学因素[J].中国临床康复,2002,6(1):10-12.
    [8]吕厚山,主译.膝关节外科学[M].第3版,北京:人民卫生出版社,2006.47:13-16.
    [9]Kelly MA,Insall JN.Historical perspectives of chondromalacia patellae[J].Orthop clin North Am,1992,23(4):517-521
    [10]Black burnels,Peel TE.A new method of measuring patellar hight[J].J Bone Joint Surg,1977,59(A):241.
    [11]Hayes WC,Huberti H,Lewallen D.Patellofemoralcontact pressure and the effects of surgical reconstructive procedures[M],NewYork,1990,RavenPress,pp57-771
    [12]Seedhom BB,Takeda T,Tsubuku M,et al.Mechanical factors and patellof emoral osteoarthritis[J].Am Rheumat Dis,1997,3:307-316
    [13]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志[J],2007,26(3):266-270.
    [14]Gabriel MT,Wong EK,Woo SL,et al.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads[J].J Orthop Res,2004,22(1):85-89.
    [15]Musahl V,Lehner A,Watanabe Y,et al.Biology and biomechanics[J].Current Opinion in Rheumatology,2002.14(2):127-133.
    [16]Facit RP.et al Disorders of Patellofemoral Joint[M].Baltimore,Williams,1977:30-50.
    [17]Goodfellow J,Patello-femoral joint machanics and pathology[J],J Bone Joint Surg.1976:58B(3):287-260.
    [18]周维江,屠开元,徐印坎等,髌股关节的生物力学实验研究[J].第二军医大学学报,1987,8(1):4-8.
    [19]汪爱媛,卢世璧,马志鹏等.压敏片成像分析系统的研制及生物力学应用[J].北京生物医学工程,2001,20(4):282-284.
    [20]Warner JJP,Bowen MK,Deng XH,et al.Articular contact patterns of the normal glenohumeral joint[J].J Shoulder Elbow Surg,1998,7(4):381-388.
    [21]Thambyah A,Goh JCH,Das De S.Contact stresses in the knee joint in deep flexion[J].Med Eng Phys,2005,27:329-335.
    [22]王凤臣,膝关节的生物力学分析与计算[J],四川体育科学学报,1987,3,21-25.
    [23]Donahue TLH,Hull ML,Rashid MM,et al.A finite element model of the human knee joint for the study of tibio-femoral contact[J].J Biomech Eng,2002,124(3):273-280.
    [24]国家体育总局群体司.2000年国民体质监测报告[A].北京:北京体育大学出版社(第1版),2002:89-91.
    [25]Hirokawa S,Yamamoto K,Kawada T.Circumferential measurement and anslysis of strain distribution in the human ACL using a photoelastic coating method[J].J Biomech,2001,34:1135-1143.
    [26]Zantop T,Herbort M,Raschke MJ,et al.The role of the anteromedial and posteralateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation[J].Am J Sports Med,2007,35(2):223-227.
    [27]张文强,王成琪,唐胜建,等,单束单隧道与双束双隧道重建膝前交叉韧带的生物力学对比研究[J],中国矫形外科杂志,2006,14(10):757-759.
    [28]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究[J].中国运动医学杂志,2007,26(3):266-270.
    [29]Lie DT,Bull AM,Amis AA,Persistence of the mini pivot shift after anatomically placed anterior cruciate ligament reconstruction[J].Clin Orthop,2007;457:203-209.
    [30]Ristanis S,Stergiou N,Patras K,et al,Follow-up evaluation 2 years after ACL reconstruction with bone-patellar tendon-bone graft shows that excessive tibial rotation persists[J].Clin J Sport Med,2006;16(2):111-116.
    [31]Hogervorst T,Rijcken THP,Rucker D,et al.Changes in bone scans after anterior cruciate ligament reconstruction-A prospective study[J].Am J Sports Med,2002,30:823-833.
    [32]Frank CB,Jackson DW.Current concepts review-The science of reconstruction of the anterior cruciate ligament[J].J Bone Joint Surg Am,1997,79:1556-1576.
    [33]Wiberg G.Roentgenographic and anatomic studies on the femoro-patellar joint[J].Acta Orthop Scand,1941;12:319-410.
    [34]Ahmed A,Burke D,Hyder A.Force analysis of the patellar mechanism[J].J Orthop Res.1987;5(1):69-85.
    [35]Huberti HH,Hayes WC.Patellofemoral contact pressure[J].J Bone Joint Surg,1984,66A:715-724.
    [36]顾志华,高瑞亭.骨伤生物力学基础[M]。第一版,天津大学出版社,1990;181-188.
    [37]van Eijden TM,Kouwenhoven E,Weijs WA.Mechanics of the patellar articulation:effects of patellar ligament length studied with a mathematical model [J].Acta Orthop Scand.1987;58(5):560-566.
    [38]Yeou-Fang Hsieh,Louis F,Sherwin H.Ho,The Effects of Removal and Reconstruction of the Anterior Cruciate Ligament on Patellofemoral Kinematics[J],American J Sport Med,1998,26,2:201-209.
    [39]Samuel K,Thomas J,Louis E.The Effect of Anterior Cruciate Ligament Deficiency and Reconstruction on the Patellofemoral Joint[J].American J Sport Med,2008,36,6:1151-1159.
    [40]Li G,Papannagari R,Nha KW,DeFrate LE,Gill TJ,Rubash HE.The coupled motion of the femur and patella during in-vivo weightbearing knee flexion[J].J Biomech Eng.2007;129(6):937.
    [41]Huberti HH,Hayes WC,Massachasetts B.Patellofemoral contact pressure,the influence of Q angle and tendofemoral contact[J].J Bone Joint Surg,1984,66 A (5):715-724.
    [1]杨桂通、吴文周编著.骨力学[M].北京:科学出版社1989:95
    [2]Freeman-pm,Natarajan-RN,Kimura JH,et al.Chondrocyte cells respond mechanically to compressive loads[J].J Orthopres,1994,12(3):311-320.
    [3]李振宇,马洪顺,姜洪志.关节软骨力学性能实验研究[J].试验技术与试验机,1989,(2):7-9.
    [4]初日德,程永春,马洪顺,等.股骨头软骨应力松弛实验研究[J].中国生物学工程学报.1994.13(2):188-191.
    [5]翁习生,仉建国.髌骨软骨粘弹性的实验研究[J].中国医学科学院学报.1999,21(1):53-56.
    [6]冯元桢著.生物力学[M].北京:科学出版社1983:176.
    [7]Moos V,Rudwaleit M,Herzog V,et al.Association of genotypes affecting the expression of interleukin-lbeta or interleukin-1 receptor antagonist with osteoarthritis[J].Arthritis Rheum,2000,43(11):2417-22.
    [8]贺石林,李元建.医学科研方法学[M].人民军医出版社,第一版,2001;229-232.
    [9]毕五禅,王亦骢.膝关节载荷传导紊乱所致关节炎关节软骨退变[J].中华骨科杂志,1991,11:303-305.
    [10]Morrey MA.A longitudinal examination of athletes'emotional and cognitive responses to anterior cruciate ligament injury[J].Clin J Sport Med,1999,9:632-639.
    [11]Andersson C,Odensten M,Good L,et al.Surgical or nonsurgical treatment of acute rupture of the anterior cruciate ligament:a randomized study with longterm follow up[J].J Bone Joint Surg,1989,71A:965-974.
    [12]Frank CB,Jackson DW.Current concepts review:the science of reconstruction of the anterior cruciate ligament[J].J Bone Joint Surg,1997;79A:1556-1576.
    [13]Michael GE.Biochemical confirmation of an experimental osteoarthritis model [J].J Bone and Joint Surg,1975,57(a):392.
    [14]Korhonen RK,Julkunen P,Rieppo J,et al.Collagen network of articular cartilage modulates fluid flow and mechanical stresses in chondrocyte[J].Biomech Model Mechanobiol,2006,5:150-159.
    [15]Pingguan-Murphy B,Lee DA,Bader DL,et al.Activation of chondrocytes calcium signaling by dynamic compression is independent of number of cycles [J].Arch Biochem Biophys,2005,444:45-51.
    [16]Wheaton AJ,Dodge GR,Elliott DM,et al.Quantification of cartilage biomechanical and biochemical properties via T1 rhomagnetic resonance imaging[J].Magn Resort Med,2005,54:1087-1093.
    [17]顾延,戴尅戎,裘世静等,应力降低导致关节软骨退变的形态学研究[J]。中华骨科杂志,1995,15:631-633.
    [18]邱贵兴,王桂生。兔膝关节制动引起关节软骨退变的实验研究[J]。中华外科杂志,1987,25:175-177.
    [19]Korhonen RK,Laasanen MS,Togas J,et al.Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal proteoglycan depleted and collagen degraded atricular cartilage[J].J Biomech,2003,36:1373-1379.
    [20]Fell HB,Jubb RW.The effect of synovial tissue on the breakdown of articular cartilage in organ culture[J].Arthritis Rheum,1977,20:1359-1371.
    [21]Schwab W,Schulze-Tanzil G,Mobasheri A,et al.Intedeukin-1beta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes[J].Histol Histopathol,2004,19:105-112.
    [22]Iannone F,Lapadula G.The pathophysiology of osteoarthritis[J],Aging Clin Exp Res,2003,15:364-372.
    [23]Arner EC,Tortorella MD.Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1[J].Arthritis Rheum,1995,38:1304-1314.
    [24]Pelletier JP,Roughley PJ,DiBattista JA,et al.Are cytokines involved in osteoarthritic pathophysiology[J].Biorheology,2002,39:237-246.
    [25]Fernandes JC,Martel-Pelletier J,Pelletier JP.The role of cytokines in osteoarthritis pathophysiology[J].Biorheology,2002,39:237-246.
    [26]Dayer JM.The saga of the discovery of IL-1 and TNF and their specific inhibitors in the pathogenesis and treatment of rheumatoid arthritis[J].Joint Bone Spine,2002,69:123-32.
    [27]Vuolteenaho K,Moilanen T,Hamalainen M,et al.Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage.Role of endogenous IL-1inhibitors[J].Scand J Rheumatol,2003,32:19-24.
    [28]Pelletier JP,Faure MP,DiBattista JA,et al.Coordinate synthesis of stromelysin,interleukin-1,and oncogene proteins in experimental osteoarthritis,An immunohistochemical study[J].Am J Pathol,1993,142:95-105.
    [29]刘斌,瞿东滨,金大地,等.兔软骨终板退变过程中超微结构的观察[J].中国临床解剖学杂志,2004,22(4):398-401。
    [30]Eyre D,Wu J.Collagen's structure and cartilage matrix integrity[J].J Rheumatol,1995,22:82-85.
    [31]Knauper V,Lopez-Otin C,Smith B,et al.Biochemical characterization of human collagnease-3[J].J Biochem,1996,271:1544-1550.
    [32]Kozaci LD,Buttle DJ,Hollander AP.Degradation of type Ⅱ collagen,but notproteoglycan correlates with matrix metalloproteinase activity in cartilage explants cultures[J].Arthritis Rheum,1997,40:164-174.
    [33]Cawston TE,Billington C.Metalloproteinases in the rheumatic diseases[J].J Pathol,1996,180(2):115-117.
    [34]刘智敏,周总光.基质金属蛋白酶的结构、功能和调节[J].生物医学工程学杂志,2002,19(4):680-683。
    [35]Nagase H,Woessner JF Jr.Matrix metalloprote in ases[J].J Biol Chem,1999,274(31):1491-1494.
    [36]Gomez DE,Alonso DF,Yoshiji H,et al.Tissue inhibitors of metalloproteinases:structure,regulation and biological functions[J].Eur J Cell Biol,1997,74(2):111-122.
    [37]Ishiguro N,Ito T,Oguchi T,et al.Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed by analyses of synovial fluids from patients with rheumatoid arthritis[J].Arthritis Rheum,2001,44(11):2503-2511.
    [38]Ogata Y,Miura K,Ohkita A,et al.Imbalance between matrix metalloproteinase 9 and tissue inhibitor of metalloproteinases 1 expression by tumor cells implicated in liver metastasis from colorectal carcinoma[J].Kurume Med J,2001,48(3):211-218.
    [39]Close DR.Matrix metalloproteinase inhibitors in rheumatic diseases[J].Ann Rheum Dis,2001,60,Suppl 3:62-67.
    [40]Lafleur MA,Hollenberg MD,Atkinson SJ,et al.Activation of pro-(matrix metalloproteinase-2)(pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species[J].Biochem J,2001,357(Pt 1):107-115.
    [41]Murphy G,Stanton H,Cowell S,et al.Mechanisms for pro matrix metalloproteinase activation[A].APMIS,1999,107(1):38-44.
    [42]姚如愚,张晓.基质金属蛋白酶与骨关节炎[J].国外医学.内科学分册,2001,28(4):159-162.
    [43]Freemont AJ,Byers RJ,taiwo YO,et al.In situ zymographic localization of type Ⅱ collagen degrading activity in osteoarthritic human articular cartilage[J].Ann Rheum Dis,1999,58(6):357-363.
    [44]Ushmorov A,Ratter F,Lehman V,et al.Selective inhibition of inducible nitric oxide syntheses reduces progression of experiment ostroarthritis in vito[J].Arthritis Rheum,2000,43:1290-1299.
    [45]Aida Y,Maeno M,Suzuki N,et al.The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes[J].Life Sci,2005,77:3210-3221.
    [46]吴宏斌,张景辉,等。兔前交叉韧带切断骨关节炎模型中MMP-1、MMP-13及TIMP-1的mRNA表达研究[J].中华风湿病学杂志,2002,6:169-173,1001.
    [47]Fernandes JC,Martel-Pelletier J,Lascau-Coman V,et al.Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage:an immunohistochemical study[J].J Rheumatol,1998,25:1585-1594.
    [1] Kwak SD, Colman WW, Ateshian GA, et al, Anatomy of the human patellofemoral joint articular cartilage: Surface curvature analysis [J]. J Orthop Res, 1997, 15:468-472.
    [2] Staubli HU, Durrenmatt U, Porcellini B, et al. Anatomy and surface geometry of the patellofemoral joint in the axial plane[J]. J Bone Joint Surg, 1999, 81B:452-458.
    [3] Fulkerson JP, Gossling HR. Anatomy of the knee joint lateral retinaculum [J]. Clin Orthop 1980; 153:183-188.
    [4] Kaplan E. Some aspects of functional anatomy of the human knee joint [J]. Clin Orthop. 1962; 23:18.
    [5] Reider B, Marshall L, Koslin B, Girgis FG. The anterior aspect of the knee joint [J]. J Bone Joint Surg 1981; 63A(3):351-356.
    [6] Huberti HH, Hayes WC, Stone JL, et al. Force Ratio in the quadriceps tendon and ligament umpatellae [J]. J Orthop Res, 1984,2 (l):49-54.
    [7] Grelsamer RP, Weinstein CH. Applied biomechanics of the patella [J]. Clin Orthop Rel Res, 2001, 389:9-14.
    [8] Huberti HH, Hayes WC. Patellofemoral contact pressure [J]. J Bone Joint Surg, 1984, 66A:715-724.
    [9] Csintalan RP, Schulz MM, Jonathan Woo, et al. Gender difference in patellofemoral joint biomechanics [J]. Clin Orthop Rel Res,2002,402:260-269.
    [10]Bull AMJ, Katchburian MV, Shih YF, et al, Standard station of the description of patellofemoral motion and comparison between different techniques [J]. Knee Surg, Sports Traumatol, Arthrosc, 2002, 10:184-193.
    [11]Takaaki M, Shuichi M, Hiromasa M, et al, Patellar track in gand patellofemoral geometry in deep knee flexion [J]. Clin Orthop Rel Res, 2002, 401:161-168.
    [12] Lin F, Makhsons M, Chang AH, et al, In vivo and noninvasive de gree of freedom patellar tracking during voluntary knee movement[J]. Clin Biomechanics, 2003, 18 (5), 401-409.
    [13]Garth WP, Christina DG, Holt G, Delayed proximal repair and distalrelignment after patellar dislocation [J]. Clin Orthop, 2000, 377:132-144.
    [14]Grelsamer RP, Patellar malalignment: current concepts review [J]. J Bone and Joint Surg, 2000, 82A: 1639-1650.
    [15]Kampen AV,Huiskes R.The three-dimensional tracking pattern of the human patella[J].J Orthop Res,1990;8(3):372-382.
    [16]陈世益,袁旬华,丁祖泉等,膝关节Q角变化规律的实验研究[J].中国运动医学杂志,1997,16:91-94.
    [17]陈世益,袁旬华,Wang Hc.人类髌股关节三维运动规律的研究[J].中国运动医学杂志,1997,16:107-113.
    [18]Dye S,Boil D.Radionuclide imaging of the patellofemoral joint inyoung adults with anterior knee pain[J].Ortho Clin North Am1986,17(2):249-262.
    [19]Fulkerson J.Disorders of the patellofemoral joint[M].Baltimore:Williams &Wilkins,1997.
    [20]De Andrade JR,Grant C,Dixon A St J.Joint distension and reflex muscle inhibition in the knee[J].J Bone Joint Surg,1965;47(A):313-322.
    [21]Kennedy JC,Alexander IJ,Hayes KC.Nerve supply of the human knee and its function importance[J].Am J Sports Med 1982;10:329-335.
    [22]Spencer JD,Hayes KC,Alexander IJ,Knee joint effusion and quadriceps inhibition in man[J].Arch Phys Med Rehabil 1984;65:171-177.
    [23]Wood L,Ferrell WR,Baxendale RH.Pressures in normal and acutely distended human knee joints and effects on quadriceps maximal voluntary contractions[J].J Exp Phsiol,1988;73:305-314.
    [24]Woodland LH,Francis RS.Parameters and comprarisons of the quadriceps angle of college-aged men and women in the supine and standing position[J].Am J Sport Med 1992;20(2):208-211.
    [25]Olerud C,Berg P.The variation of the Q angle with different positions of the foot [J].Clin Orthop,1984;191:162-165.
    [26]Insall J,Falvo KA,Wise DW,Chondromalacia patellae:A prospective study[J].J Bone Joint Surg 1976;58A:1-8.
    [27]Perry J,Gait Analysis Normal and Pathological Gait.NJ:Slack Incorporated,1992.
    [28]Bonamo JJ,Fay C,Firestone T,The conservatively treated anterior cruciate deficient knee[J].Am J Sports Med 1990;18(6):618-623.
    [29]Buss DD,Min R,Skyhar MJ,et al.Conservatively treated anterior cruciate ligament injuries[J].Orthop Trans 1990;14:561.
    [30]Keller PM,Shelbourne KD,McCarroll JR,Rettig AC.Nonoperativly treated isolated posterior cruciate ligament injuries[J].Am J Sports Med 1993; 21(1):132-136.
    [31]Parolie JM,Bergfeld JA.Long-term result of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete[J].Am J Sports Med 1986;14:35-38.
    [32]Berg EE,Mason SL,Lucas MJ,Patellar height ratios:a comparison of four measurement methods[J].Am J sports med,1996;24(2):218-221.
    [33]Murray TF,Dupont JY,Fulkerson JP.Axial and lateral radiographs in evaluating patellofemoral malalignment[J].Am J Sport Med,1999;27(5):580-584.
    [34]Davies AP,Costa ML,Donnell ST,et al.The sulcus angle and malalignment of the extensor mechanism of the knee[J].J Bone Joint Surg Br,2000;82(8):1162-1166.
    [35]张峻,侯筱魁.髌股关节紊乱的影像学诊断进展[J].国外医学·骨科学分册,2004,25(1):9-12.
    [36]Merchant AC,Mercer RL,Jacobsen RH,et al.Roentgeno graphic analysis of patellofemoral congruence.[J].J Bone Joint Surg(Am) 1974,56:1391.
    [37]Schutzer SF,Ram sby GR,Fulkerson JP.The evaluation of patellofemoral pain using computerized tomography:a prelim inary study[J].Clin Orthop Relat Res,1986,(204):286-293.
    [38]Delgado,Martinez AD,Rodriguez Merchan EC,Ballesteros R,et al.Reproducibility of patellofemoral CT scan measurements[J].IntOrthop,2000,24(1):528.
    [39]董光,张孔源.不稳定髌骨外移度测量方法的探讨[J].中国中西医结合影像学杂志,2004,9(3):1892-1893.
    [40]Powers CM.Patellar kinematics,part Ⅰ:the influence of vastus muscle activity in subjects with and without patellofemoral pain[J].Physical Therapy,2000,80(10):956-964.
    [41]Sasaki T,Yagi T.Subluxation of the patella:investigation by computerized tomography[J].IntOrthop,1986,10(2):115-120.
    [42]Harman M,Dogan A,Arslan H,et al.Evaluation of the patellofemoral joint with kinematic MR fluoroscopy[J].Clinical Imaging,2002,26(2):1362139.
    [43]Laprade J,Culham E.Radiographic measures in subjects who are asymptomatic and subjects with patellofemoral pain syndrome[J].Clin Orthop,2003,(414):172.
    [44]Schutzer SF,Ramsby GR,Fulkerson JP.Computed tomographic classification of patellofemoral pain patients[J].Orthop Clin North Am,1986,17(2):235-248.
    [45]Dandy DJ.Chronic patellofemoral instability[J].J Bone Joint Surg(Br),996,78:328-335.
    [46]Shellock FG,Mink JH,Fox JM.Patellofemoral joint:kinematic MR imaging to assess tracking abnormalities[J].Radiology,1988,168(2):551-553.
    [47]Kujala UM,Osterman K,Kormano M,et al.Patellofemoral relationships in recurrent patellar dislocation[J].J Bone Joint Surg Br,1989,71(5):788-792.
    [48]Brossmann J,Muhle C,Schroder C,et al.Patellar tracking patterns during active and passive knee extension:evaluation with motion triggered cine MR imaging[J].Radiology,1993,87(1):205-212.
    [49]Witonski D,Goraj B.Patellar motion analyzed by kinematic and dynamic axial magnetic resonance imaging in patients with anterior knee pain syndrome[J].Arch Orthop Trauma Surg,1999,119(1-2):46-49.
    [50]Powers CM,Shellock FG,Pfaff M.Quantification of patellar tracking using kinematic MRI[J].J Magn Reson Imaging,1998,8(3):724-732.
    [51]Ward SR,Shellock FG,Terk MR,et al.Assessment of patellofemoral relationships using kinematic MRI:comparison between qualitative and quantitative methods[J].J Magn Reson Imaging,2002,16(1):69-74.
    [52]Jensen DB,Albrektsen SB,The natural history of chondromalacia patellae,A 12-year follow-up[J].Acata Orthop Belg 1990;56(2):503-506.
    [53]Natri A,Kannus P,Jarvinen M.Which factors predict the long-term outcome in chronic patellofemoral pain syndrome? A 7-year prospective study[J].Med Sci Sports Exerc 1998;30:1572-1577.
    [54]Cherf J,Paulos LE,Bracing for patellar instability[J].Clin Sports Med 1990;9(4):813-821.
    [55]Litchfield RB.Crosley R.Physical therapy was effective for patellofemoral pain [J].J Bone Joint Surg(Am),2003,85(8):1625.
    [56]Richmond JC,McGinty JR.Segmental arthroscopic resection of the hypertrophic mediopatellar plica[J].Clin Orthop 1983;178:185-189.
    [57]张卫平,刘长安,钱宇航.膝关节镜下治疗髌股关节退行性变的方法探讨[J].中国矫形外科杂志,2004,12;NO.1.2:28-29.
    [58]Buuck D,Fulkerson J,Anteromedialization of the tibial tubercle:a 4 to 12 year follows up[J].Op Tech Sports Med.2000;8(2):131-137.
    [59]John P Fulkerson,et al.Disorders of the Patellofemoral Joint[M],4~(th),Lippincott Williams&Wilkins,2004.
    [60]McKeever DC, Patellar prosthesis [J]. J Bone Joint Surg (Am), 1955, 37A:1074-1084.
    [61]Blazina ME, Fox JM, Del Pizzo W, et al. Patellofemoral replacement [J]. Clin Orthop Relat Res, 1979, (144):98-102.
    [62]Merchant AC, A Modular prosthesis for patellofemoral arthroplasty [J]. Clin Orthop Relat Res, 2006, (436):40-46.
    [63]Leadbetter WB, Ragland PS, Mout MA. The appropriate use of patellofemoral arthroplasty [J]. Clin Orthop Relat Res, 2006, (436):7-13.