薄壁圆钢管再生混合柱及其节点的试验研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何科学利用旧有建筑物拆除产生的固体废弃物,以尽量减少新建建筑物对新鲜水泥、石子、河砂等材料的消耗,是实现建筑业可持续发展、发展循环经济、践行“环保、节能、减排”国家战略目标所亟待解决的内容之一。本文针对混凝土废弃物的回收利用问题,就采用大尺度废弃混凝土的圆钢管再生混合柱及其节点的力学性能进行了较系统的试验研究和计算分析,并对钢管再生混合柱的工程应用进行了初步探讨。本文的主要工作和结论如下:
     1.通过36根薄壁圆钢管再生混合中长柱的轴压与偏压试验,考察了废弃混凝土取代率、钢管壁厚、荷载偏心距等因素对试件受压性能的影响。基于新、旧混凝土的组合强度,根据国内外钢管混凝土结构设计标准,对试件的受压承载力进行了计算对比。试验和分析结果发现:(1)采用25%或40%的废弃混凝土替换新混凝土后,钢管再生混合中长柱的受压承载力分别比全现浇钢管混凝土中长柱降低5.77%~9.71%和10.65%~15.63%,但前者的初始刚度、屈服性能和延性特征与后者基本相当;(2)为使钢管再生混合中长柱的计算受压承载力具有与全现浇钢管混凝土中长柱相近的安全性,可对前者计算结果乘以调整系数0.95;(3)总体来看,设计标准DBJ13-51-2003和ANSI/AISC360-05对轴压试件受压承载力的预测结果相对较好,JCJ01-89对偏压试件受压承载力的预测结果相对较好。
     2.基于纤维梁单元的计算框架,在积分点截面引入随机生成和投放废弃混凝土块体的技术,建议了钢管再生混合柱受压承载力的一种随机数值分析方法,并据此编写了相应的纤维梁单元计算程序。通过程序计算结果与试验结果的对比,初步验证了该方法的有效性。运用该方法考察了柱子长径比、钢管壁厚、废弃混凝土取代率,以及新、旧混凝土强度差等参数对圆钢管再生混合柱受压承载力的影响。研究表明:(1)废弃混凝土取代率不大于40%且新、旧混凝土强度差不大于15MPa时,二者变化对再生混合柱的受压承载力影响不显著;(2)偏心距较小时,随着钢管壁厚或长径比减小,废弃混凝土不均匀分布对再生混合柱受压承载力的影响有所增大;(3)随着偏心距增加,废弃混凝土随机分布对再生混合柱受压承载力的影响呈减小趋势。
     3.完成了15根试件在定常轴力和水平往复荷载作用下的拟静力试验,考察了废弃混凝土取代率、钢管壁厚、轴压比等因素对试件抗震性能的影响。基于新、旧混凝土的组合强度,根据国内外钢管混凝土结构设计标准以及基于ABAQUS的纤维梁单元数值模型,对试件的水平承载力进行了计算分析,同时还将试件的水平承载力和极限位移实测值与螺旋箍筋钢筋混凝土柱的OpenSEES计算值进行了对比。研究表明:(1)废弃混凝土取代率在0~40%之间变化对试件的初始抗侧刚度、钢管局部屈曲、极限位移、负刚度段行为、刚度退化效应、等效粘滞阻尼系数、滞回曲线形状都影响有限,但再生混合柱的水平承载力总体上比全现浇柱有所降低;(2)在钢管壁厚仅1.78mm(径厚比168.5)的情况下,轴压比0.4的再生混合柱的极限位移角可达4%,展示了良好的变形能力;(3)为使薄壁圆钢管再生混合柱的计算水平承载力具有与全现浇钢管混凝土柱相近的安全性,可对前者计算结果乘以调整系数0.95;(4)横截面积和总用钢量相同时,薄壁圆钢管再生混合柱的水平承载力大多优于螺旋箍筋柱。研究发现,薄壁圆钢管再生混合柱应用于地震区中、低轴压比情况是可行的。
     4.发明了一种连接薄壁圆钢管再生混合柱与钢筋混凝土梁的加强环筋节点,开展了6个加强环筋节点和2个内加强环节点的抗震试验,考察了废弃混凝土取代率和近节点域构造参数对试件抗震性能的影响。采用ABAQUS和OpenSEES程序,分别建立了加强环筋节点的微观和宏观单元模型,对试件进行了单调和往复荷载作用下的数值模拟。研究表明:(1)废弃混凝土取代率为33.3%时,试件的破坏形态和滞回曲线形状等与全现浇试件差别很小,但前者的初始刚度比后者略低;(2)废弃混凝土在钢管内的填筑区域改变对加强环筋节点的力学性能影响有限;(3)实际工程中厚壁钢管出节点域长度可取为钢管外径的一半;(4)在设置4根加强环筋的情况下,加强环筋节点具有不低于内加强环节点的初始刚度;(5)加强环筋节点为半刚性节点,厚壁钢管厚度和加强环筋直径对节点刚度影响较大。
     5.对钢管再生混合柱的可行性及实现流程进行了积极探索,完成了采用大尺度废弃混凝土的钢管再生混合柱的首例工程应用。通过2个现场浇注的足尺圆钢管再生混合柱轴压试验,验证了钢管再生混合柱的设计方法及其施工可行性。工程应用初步表明钢管再生混合柱应用于低层和多层建筑是完全可行的。
Recycling and reusing of construction and demolision waste (CDW) is capable ofcontributing to the sustainable development in construction industry, the circular economyand the national strategic goals of saving energy, reducing emissions, and protectingenviroment. A systematic research is presented in this dissertation concerning the mechanicalproperties of the circular thin-walled steel tubular columns filled with demolished concreteblocks (DCBs) and fresh concrete (FC) and novel joints connecting RC beams to suchcolumns. The enginnering applications of the proposed columns are either reported herein.The main work and conclusions are as follows:
     1. Tests of36slender circular thin-walled steel tubular columns filled with DCBs and FCunder concentrically or eccentrically compressive loadings were conducted, and influences ofsome parameters (i.e., replacement ratio of DCBs, steel wall thickness, and load eccentricity)on mechanical properties of the specimens were investigated. Based on the concept ofcombined strength of the new and the old concrete, and using the domestic and foreign designcodes, compressive strengths of the specimens were compared with the test results. It can beseen that:(1) when25%or40%of the new concrete were replaced by the demolishedconcrete, the compressive strengths of the specimens filled with DCBs and FC were,respectively,5.77%~9.71%and10.65%~15.63%lower than those filled with FC alone, butthe initial stiffness, yield behavior and ductile performance of the former were similar to thelatter;(2) to ensure that the safety margin of the calculated compressive strength for columnsfilled with DCBs and FC is similar to those filled with FC alone, an adjusting factor of0.95issuggested; and (3) overall DBJ13-51-2003and ANSI/AISC360-05provid better predictionsfor axially loaded specimens and eccentrically loaded specimens, respectively.
     2. Based on the framework of fiber beam element model, a stochastic numerical method,applicable to analyzing compressive strength of circular steel tubular columns filled withDCBs and FC, was proposed by introducing the technique of generating random particles (i.e.a representation of DCBs) and then placing them randomly in the sections on integrationpoints of a fiber beam element. A computer program in accordance with the proposed method was implemented. The validity of the proposed method was prelimilarily verified bycomparing the numerical results with the test results. By using this method, the effects ofsome parameters, including length-to-diameter ratio, steel wall thickness, replacement ratio ofDCBs, and strength difference of the new and the old concrete, on the compressive strength ofthe columns studied are clarified. The findings show that:(1) in the case that the replacementratio of DCBs and the strength difference of the new and the old concrete are, respectively,not larger than40%and15MPa, these two factors have insignificant effects on thecompressive strength of the columns studied;(2) when the eccentricity is smaller, theinfluence of the non-uniform distribution of DCBs on the compressive strength of thecolumns studied increases with an decrease of the steel wall thickness or thelength-to-diameter ratio; and (3) the effect of the non-uniform distribution of DCBs on thecompressive strength of the columns studied decreases with increasing the eccentricity.
     3. Tests of fifteen circular thin-walled steel tubular columns filled with DCBs and FCunder constant axial load and cyclic load reversals were conducted, and influences of someparameters (i.e., replacement ratio of demolished concrete, steel wall thickness, and axial loadratio) on seismic behaviors of the specimens were investigated. Using the domestic andforeign design provisions and the fiber beam element model based on ABAQUS, lateralstrengths of the specimens were calculated and compared with the test results. In addition, themeasured lateral strengths and ultimate displacements of the specimens were compared withthe numerical results generated by OpenSEES for circular concrete columns reinforced withspiral and longitudinal reinforcements. Research findings indicate that:(1) the influences ofthe replacement ratio of demolished concrete within a range of0~40%on the specimens’initial lateral stiffness, local buckling of steel tube, ultimate displacement, post-peak behavior,stiffness degradation, equivalent viscous damping coefficient, and shape of hysteretic curveare all limited, but the lateral strengths of the specimens filled with DCBs and FC aregenerally lower than those filled with FC alone;(2) in the case that the thickness of steel tubeis only1.78mm (i.e., diameter-to-thickness ratio=168.5), the ultimate drift ratio of aspecimen filled with DCBs and FC with an axial load ratio of0.4can reach4%, showing good deformation capacity;(3) to ensure that the safety margin of the calculated lateralstrength for columns filled with DCBs and FC is similar to those filled with FC alone, anadjusting factor of0.95is suggested; and (4) with equivalent sectional area and steel ratio, thelateral strengths of the circular thin-walled steel tubular columns filled with DCBs and FC arelargely higher than those of the spirally reinforced concrete columns.
     4. A through-column-type joint, connecting RC beam to thin-walled circular steel tubularcolumn filled with DCBs and FC, is proposed herein. Seismic tests of8joints with stiffeningrings (JSR) and2joints with internal diagrams (JID) were conducted. The influences of boththe replacement ratio of DCBs and the local details adjacent to panel zone on seismicperformances of the specimens were investigated. The microelement and macroelementmodeling through ABAQUS and OpenSEES were, respectively, utilized to simulate themonotonic and cyclic behaviors of the JSR specimens. It is found that:(1) the failure modeand profile of hysteretic curve of the specimen with33.3%replacement ratio of DCBs aresimilar to those of the specimen with FC alone, while the initial stiffness of the former isslightly lower than the latter;(2) the mechanical properties of the specimens are not sensitiveto the filling zone of DCBs in the tube;(3) the protruded length of the thick tube out of thepanel zone is suggested to be a half of the tube outer diameter;(4) the initial stiffness of theJSR specimen with4stiffening rings is comparable to that of the JID specimen; and (5) as asemi-rigid connection, the moment stiffness of the JSR specimen is significantly influencedby the thickness of the thick tube and the diameter of the stiffening rings.
     5. The feasibility and implementation process of the steel tubular columns filled withDCBs and FC was positively explored. The first application of such columns was achieved.Through two axial tests of full-scale, field-cast circular steel tubular columns filled withDCBs and FC, design method and construction workbility of the proposed columns wereexamined and verified. The actural applications preliminarily showed that the steel tubularcolumns filled with DCBs and FC are feasible and dependable in low-and mid-rise buildings.
引文
[1] Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials [M].3rdEdition.New York: McGraw-Hill Professional,2006
    [2] International Cement Review. The global cement report [R].9thEdition. London: TradeshipPublications Ltd.,2011
    [3]中华人民共和国国家统计局.中国统计年鉴(2011)[M].北京:中国统计出版社,2011
    [4]王罗春,赵由才.建筑垃圾处理与资源化[M].北京:化学工业出版社,2004
    [5]朱红兵,王顺林,熊汉林,等.混凝土废弃物的再生利用[J].公路交通技术,2005(1):52-53
    [6]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008
    [7]肖建庄,李佳彬,兰阳.再生混凝土技术研究最新进展与评述[J].混凝土,2003(10):17-20
    [8] Xiao J Z, Li J B, Zhang C. On relationships between the mechanical properties of recycled aggregateconcrete: An overview [J]. Materials and Structures,2006,39(6):655-664
    [9] Li X P. Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycledaggregate concrete [J]. Resources, Conservation and Recycling,2008,53(1-2):36-44
    [10] Li X P. Recycling and reuse of waste concrete in China: Part II. Structural behaviour of recycledaggregate concrete and engineering applications [J]. Resources, Conservation and Recycling,2009,53(3):107-112
    [11] Xiao J Z, Li W G, Fan Y H, et al. An overview of study on recycled aggregate concrete in China(1996–2011)[J]. Construction and Building Materials,2012,31(6):364-383
    [12] Buck A D. Recycled concrete as a source of aggregate [J]. ACI Journal Proceedings,1977,74(5):212-219
    [13] Frondistou-Yannas S. Waste concrete as aggregate for new concrete [J]. ACI Journal Proceedings,1977,74(8):373-376
    [14] Nixon P J. Recycled concrete as an aggregate for concrete-a review [J]. Materials and Structures,1978,11(6):371-378
    [15] Hansen T C, Boegh E. Elasticity and drying shrinkage of recycled-aggregate concrete [J]. ACIJournal Proceedings,1985,82(5):648-652
    [16] Hansen T C. Recycled aggregate and recycled aggregate concrete [J]. Material and Structures,1986,19(5):201-246
    [17] Hansen T C. Recycling of demolished concrete and masonry [R]. RILEM Report No.6, E&FN SPON,London,1992
    [18] Tavakoli M, Soroushian P. Strengths of recycled aggregate concrete made using field-demolishedconcrete as aggregate [J]. ACI Materials Journal,1996,93(2):178-181
    [19] Topcu I B. Physical and mechanical properties of concretes produced with waste concrete [J].Cement and Concrete Research,1997,27(12):1817-1823
    [20] Limbachiya M C, Leelawat T, Dhir R K. Use of recycled concrete aggregate in high-strengthconcrete [J]. Materials and Structures,2000,33(9):574-580
    [21] Sagoe-Crentsil K K, Performance of concrete made with commercially produced coarse recycledconcrete aggregate [J]. Cement and Concrete Research,2001,31(5):707-712
    [22] ACI Committee555. ACI555-01: Removal and reuse of hardened concrete [S]. Detroit: AmericanConcrete Institute,2001
    [23] Katz A. Properties of concrete made with recycled aggregate from partially hydrated old concrete [J].Cement and Concrete Research,2003,33(5):703-711
    [24] Topcu I B. Sengel S. Properties of concretes produced with waste concrete aggregate [J]. Cement andConcrete Research,2004,34(8):1307-1312
    [25] Khatib J M. Properties of concrete incorporating fine recycled aggregate [J]. Cement and ConcreteResearch,2005,35(4):763-769
    [26] Poon C S, Chan D. The use of recycled aggregate in concrete in Hong Kong [J]. Resources,Conservation and Recycling,2007,50(3):293-305
    [27] Eguchi K, Teranishi K, Nakagome A, et al. Application of recycled coarse aggregate by mixture toconcrete construction [J]. Construction and Building Materials,2007,21(7):1542-1551
    [28] Evangelista L, Brito J. Mechanical behaviour of concrete made with fine recycled concreteaggregates [J]. Cement and Composites,2007,29(5):397-401
    [29] Yang K H, Chung H S, Ashour A F. Influence of type and replacement level of recycled aggregateson concrete properties [J]. ACI Materials Journal,2008,105(3):289-296
    [30] Sánchez de Juan M, Alaejos Gutiérrez P. Study on the influence of attached mortar content on theproperties of recycled concrete aggregate [J]. Construction and Building Materials,2009,23(2):872-877
    [31] Kou S C, Poon C S, Etxeberria M. Influence of recycled aggregates on long term mechanicalproperties and pore size distribution of concrete [J]. Cement and Composites,2011,33(2):286-291
    [32] Butler L, West J S, Tighe S L. The effect of recycled concrete aggregate properties on the bondstrength between RCA concrete and steel reinforcement [J]. Cement and Concrete Research,2011,41(10):1037-1049
    [33] Mas B, Cladera A, Olmo T, et al. Influence of the amount of mixed recycled aggregates on theproperties of concrete for non-structural use [J]. Construction and Building Materials,2012,27(1):612-622
    [34] Kou S C, Poon C S. Enhancing the durability properties of concrete prepared with coarse recycledaggregate [J]. Construction and Building Materials,2012,35(10):69-76
    [35]吴波,刘琼祥,刘伟,等.钢管再生混合构件初探[J].工程抗震与加固改造,2008,30(10):120-124
    [36]肖建庄,孙振平,李佳彬,等.废弃混凝土破碎及再生工艺研究[J].建筑技术,2005,36(2):141-144
    [37]史巍,侯景鹏.再生混凝土技术及其配合比设计方法[J].建筑技术开发,2001,28(8):18-20
    [38]李惠强,杜亭.建筑垃圾资源化循环再生骨料混凝土研究[J].华中科技大学学报(自然科学版),2001,29(6):84-85
    [39]孙跃东,肖建庄.再生混凝土骨料[J].混凝土,2004(6):33-36
    [40]徐亦冬,周士琼,肖佳.再生混凝土骨料试验研究[J].建筑材料学报,2004,7(4):447-450
    [41]李佳彬,肖建庄.再生粗集料特性及其对再生混凝土性能的影响[J].粉煤灰,2005(5):14-17
    [42]户恩增,艾长发,李俊,等.再生混凝土粗集料性能的试验研究[J].四川建筑,2006,26(4):149-151
    [43]李佳彬,肖建庄,黄健.再生粗骨料取代率对混凝土抗压强度的影响[J].建筑材料学报,2006,9(3):297-301
    [44] Kawano H. The state of using by-products in concrete in Japan and outline of JIS/TR on "recycledconcrete using recycled aggregate"[C].//Proceedings of the first fib congress,2002
    [45] Levy S M, Helene P. Durability of recycled aggregates concrete: a safe way to sustainabledevelopment [J]. Cement and Concrete Research,2004,34(11):1975-1980
    [46] Winter M G, Henderson C. Estimates of the quantities of recycled aggregates in Scotland [J].Engineering Geology,2003,70(3-4):205-215
    [47] Rao A, Jha K N, Misra S. Use of aggregates from recycled construction and demolition waste inconcrete [J]. Resources, Conservation and Recycling,2007,50(1):71-81
    [48] Otsuki N, Miyazato S, Yodsudjai W. Influence of recycled aggregate on interfacial transition zone,strength, chloride penetration and carbonation [J]. Journal of Materials in Civil Engineering, ASCE,2003,15(5):443-451
    [49]邱怀中,何雄伟,万惠文,等.改善再生混凝土工作性能的研究[J].武汉理工大学学报,2003,25(12):34-37
    [50]程海丽,王彩彦.水玻璃对混凝土再生骨料的强化试验研究[J].新型建筑材料,2004(12):12-14
    [51] Zega C J, Villagran-Zaccardi Y A, Di Maio A A. Effect of natural coarse aggregate type on thephysical and mechanical properties of recycled coarse aggregates [J]. Materials and Structures,2010,43(1-2):195-202
    [52]杜婷,李慧强,吴贤国.混凝土再生骨料强化试验研究[J].建筑石膏与胶凝材料,2002(3):6-8
    [53]张亚梅,秦鸿根,孙伟,等.再生混凝土配合比设计初探[J].混凝土与水泥制品,2002(1):7-9
    [54]沈建生,徐亦冬,周士琼等.再生混凝土配合比试验研究[J].新型建筑材料,2007(8):18-20
    [55] Kou S C, Poon C S, Chan D. Influence of fly ash as cement replacement on the properties of recyclesaggregate concrete [J]. Journal of Materials in Civil Engineering, ASCE,2007,19(9):709-717
    [56]邢振贤,周日农.再生混凝土性能研究与开发思路[J].新型建筑材料,1999(7):29-31
    [57]李佳彬,肖建庄,孙振平.再生粗骨料特性及其对再生混凝土性能的影响[J].建筑材料学报,2004,7(4):390-395
    [58]柯国军,张育霖,贺涛,等.再生混凝土的实用性研究[J].混凝土,2002(4):47-48
    [59]肖建庄,李佳彬,孙振平.再生混凝土的抗压强度研究[J].同济大学学报(自然科学版),2004,32(12):1558-1561
    [60] Tabsh S W, Abdelfatah A S. Influence of recycled concrete aggregates on strength properties ofconcrete [J]. Construction and Building Materials,2009,23(2):1163-1167
    [61] Ravindrarajah R, Tam C T. Properties of concrete made with crushed concrete as coarse aggregate [J].Magazine of Concrete Research,1985,37(130):29-38
    [62] Zilch K, Roos F. An equation to estimate the modulus of elasticity of concrete with recycledaggregates [J]. Civil Engineers,2001,76(4):187-191
    [63] Mellmann G. Processed concrete rubble for the reuse as aggregate [C].//Proceeding of theInternational Seminar on Exploiting Waste in Concrete,1999
    [64] Rasheeduzzafar K. Recycled concrete-a source of new aggregate [J]. Cement, Concrete andAggregates (ASTM),1984,69(1):17-27
    [65] Mandal S, Chakraborty S, Gupta A. Some studies on durability of recycled aggregate concrete [J].The Indian Concrete Journal,2002,76(6):385-388
    [66] Nishibayashi S, Yamura K. Mechanical properties and durability of concrete from recycled coarseaggregate prepared by crushing concrete [C].//Proceedings of the2ndInternational RILEMSymposium on Demolition and Reuse of Concrete and Masonry,1988
    [67] Oliveira M B, Vazquez E. The influence of restrained moisture in aggregates from recycling on theproperties of new hardened concrete [J]. Waste Management,1996,16(1):113-117
    [68] Salem R M, Burdette E G, Jackson N M. Resistance to freezing and thawing of recycled aggregateconcrete [J]. ACI Materials Journal,2003,100(3):216-221
    [69] Dhir R K, Limbachiya M C, Leelawat T. Suitability of recycled aggregate for use in BS5328designate mixes [J]. Proceedings of the ICE: Structures&Buildings,1999,134(3):257-274
    [70]肖建庄,黄运标.高温后再生混凝土残余抗压强度[J].建筑材料学报,2006,9(3):255-259
    [71] Tam Vivian W Y, Gao X F, Tam C M. Environmental enhancement through use of recycledaggregate concrete in a two-stage mixing approach [J]. Human Ecological Risk Assess,2006,12(2):277-288
    [72] Li J S, Xiao H N, Zhou Y. Influence of coating recycled aggregate surface with pozzolanic powderon properties of recycled aggregate concrete [J]. Construction and Building Materials,2009,23(3):1287-1291
    [73] Gonzalez-Fonteboa B, Martinez-Abella F. Concretes with aggregates from demolition waste andsilica fume. Materials and mechanical properties [J]. Building and Environment,2008,43(4):429-437
    [74] Gonzalez-Fonteboa B, Martinez-Abella F, Martinez-Lage I, et al. Structural shear behaviour ofrecycled concrete with silica fume [J]. Construction and Building Materials,2009,23(11):3406-3410
    [75] Corinaldesi V, Moriconi G. Influence of mineral additions on the performance of100%recycledaggregate concrete [J]. Construction and Building Materials,2009,23(8):2869-2876
    [76]肖建庄,沈宏波,黄运标.再生混凝土柱受压性能试验[J].结构工程师,2006,22(6):73-77
    [77]胡小柱.再生混凝土柱静力性能研究[D].南京:南京航空航天大学,2008
    [78] Ajdukiewicz A, Kliszczewicz A. Comparative tests of beams and columns made of recycledaggregate concrete and natural aggregate concrete [J]. Journal of Advanced Concrete Technology,2007,5(2):259-273
    [79]周静海,杨永生,焦霞.再生混凝土柱轴心受压承载力研究[J].沈阳建筑大学学报(自然科学版),2008,24(4):572-576
    [80] Breccolotti M, Materazzi A L. Structural reliability of eccentrically-loaded sections in RC columnsmade of recycled aggregate concrete [J]. Engineering Structure,2010,32(3):704-712
    [81] Choi W C, Yun H D. Compressive behavior of reinforced concrete columns with recycled aggregateunder uniaxial loading [J]. Engineering Structure,2012,41(8):285-293
    [82]尹海鹏,曹万林,张亚齐,等.不同再生骨料取代率再生混凝土柱抗震试验研究[J].世界地震工程,2010,26(1):57-63
    [83]张亚齐,曹万林,张建伟,等.再生混凝土短柱抗震性能试验研究[J].震灾防御技术,2010,5(1):89-98
    [84] Konno K, Sato Y, Kakuta Y, et al. Property of recycled concrete column encased by steel tubesubjected to axial compression [J]. Transactions of the Japan Concrete Institute,1997,19(2):231-238
    [85] Konno K, Sato Y, Ueda T, et al. Mechanical property of recycled concrete under lateral confinement[J]. Transactions of the Japan Concrete Institute,1998,20(3):287-292
    [86]吴凤英.钢管再生混凝土轴压短柱静力性能研究[D].福州:福州大学,2007
    [87]邱昌龙.再生混凝土研究及钢管再生混凝土短柱力学性能分析[D].成都:西南交通大学,2009
    [88] Yang Y F, Han L H. Experimental behavior of recycled aggregate concrete filled steel tubularcolumns [J]. Journal of Constructional Steel Research,2006,62(12):1310-1324
    [89]叶欣.方钢管再生混凝土压弯构件力学性能研究[D].福州:福州大学,2007
    [90]张波.圆钢管再生混凝土压弯构件力学性能研究[D].福州:福州大学,2007
    [91]肖建庄,杨洁,黄一杰,等.钢管约束再生混凝土轴压试验研究[J].建筑结构学报,2011,32(6):92-98
    [92] Xiao J Z, Huang Y J, Yang J, et al. Mechanical properties of confined recycled aggregate concreteunder axial compression [J]. Construction and Building Materials,2011,26(1):591-603
    [93] Huang Y J, Xiao J Z, Zhang C. Theoretical study on mechanical behavior of steel confined recycledaggregate concrete [J]. Journal of Constructional Steel Research,2012,76(9):100-111
    [94] Liu Y X, Zha X Y, Gong G B. Study on recycled-concrete-filled steel tube and recycled concretebased on damage mechanics [J]. Journal of Constructional Steel Research,2012,71(4):143-148
    [95]石宵爽.地聚物再生混凝土及其钢管结构的力学性能研究[D].成都:四川大学,2011
    [96] Yang Y F, Han L H, Zhu L T. Experimental performance of recycled aggregate concrete-filledcircular steel tubular columns subjected to cyclic flexural loadings [J]. Advances in StructuralEngineering,2009,12(2):183-194
    [97] Yang Y F, Zhu L T. Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclicloading [J]. Steel and Composite Structures,2009,9(1):19-38
    [98] Fathifazl G, Razaqpur A G, Isgor O B, et al. Flexural Performance of Steel-Reinforced RecycledConcrete Beams [J]. ACI Structural Journal,2009,106(6):858-867
    [99]肖建庄,兰阳.再生粗骨料混凝土梁抗弯性能试验研究[J].特种结构,2006,23(1):9-12
    [100]宋新伟.再生混凝土梁受弯性能试验研究[D].郑州:郑州大学,2006
    [101]周静海,张微,刘爱霞.再生粗骨料混凝土梁抗弯性能研究[J].沈阳建筑大学学报(自然科学版),2008,24(5):761-767
    [102] Han B C, Yun H D, Chung S Y. Shear capacity of reinforced concrete beams made with recycledaggregate [J]. ACI Special Publication,2001,200:503-516
    [103] González-Fonteboa B, Martínez-Abella F. Shear strength of recycled concrete beams [J].Construction and Building Materials,2007,21(4):887-893
    [104] Fathifazl G, Razaqpur A G, Isgor O B, et al. Shear capacity evaluation of steel reinforced recycledconcrete (RRC) beams [J]. Engineering Structures,2011,33(3):1025-1033
    [105]肖建庄,兰阳.再生混凝土梁抗剪性能试验研究[J].结构工程师,2004,20(6):54-58
    [106]张雷顺,张晓磊,闫国新.再生混凝土无腹筋梁斜截面受力性能试验研究[J].郑州大学学报(工学版),2006,27(2):18-23
    [107]罗延明.再生混凝土剪切性能和梁抗剪性能试验研究[D].南宁:广西大学,2008
    [108] Corinaldesi V, Moriconi G. Behavior of beam-column joints made of sustainable concrete undercyclic loading [J]. Journal of Materials in Civil Engineering, ASCE,2006,18(5),650-658
    [109] Corinaldesi V, Letelier V, Moriconi G. Behaviour of beam-column joints made of recycled-aggregateconcrete under cyclic loading [J]. Construction and Building Materials,2011,25(4):1877-1882.
    [110]肖建庄,朱晓晖.再生混凝土框架节点抗震性能研究[J].同济大学学报(自然科学版),2005,33(4):436-440
    [111]孙跃东,肖建庄,周德源,等.再生混凝土框架抗震性能的试验研究[J].土木工程学报,2006,39(5):9-15
    [112] Xiao J Z, Sun Y D, Falknerb H. Seismic performance of frame structures with recycled aggregateconcrete [J]. Engineering Structures,2006,28(1):1-8
    [113] Reiji T, Seiji M, Yoshiki O. Experimental study on the possibility of using permanently recycledconcrete for reinforced concrete structures [J]. Journal of the Society Materials Science,2002:51(8):948-957
    [114]李南,李湘洲.发达国家建筑垃圾再生利用经验及借鉴[J].再生资源与循环经济,2009,2(6):41-44
    [115]全洪珠.国外再生混凝土的应用概述及技术标准[J].青岛理工大学学报,2009,30(4):87-92
    [116]吴波,刘伟,刘琼祥,等.钢管再生混合短柱的轴压性能试验[J].土木工程学报,2010,43(2):32-38
    [117]吴波,刘伟,刘琼祥,等.薄壁钢管再生混合短柱轴压性能试验研究[J].建筑结构学报,2010,31(8):22-28
    [118]吴波,许喆,刘琼祥,等.薄壁钢管再生混合柱的抗剪性能试验[J].土木工程学报,2010,43(9):12-21
    [119]张金锁.薄壁方钢管再生混合柱的轴压和抗震性能试验研究[D].广州:华南理工大学,2011
    [120]吴波,刘春晖,赵新宇,等.外置薄钢板再生混合墙抗震性能试验研究[J].建筑结构学报,2011,32(11):116-125
    [121]骆志成.再生混合组合楼板的力学性能研究[D].广州:华南理工大学,2012
    [122]段静.一种防火涂料的研发及再生混合组合楼板的耐火性能试验[D].广州:华南理工大学,2012
    [123]吴波,刘伟,刘琼祥,等.再生混合钢筋混凝土短柱的轴压性能试验[J].工程抗震与加固改造,2010,32(3):81-85
    [124]吴波,许喆,刘琼祥,等.再生混合钢筋混凝土梁的受弯性能试验[J].工程抗震与加固改造,2010,32(1):70-74
    [125]吴波,许喆,刘琼祥,等.再生混合钢筋混凝土梁受剪性能试验研究[J].建筑结构学报,2011,32(6):99-106
    [126] GB/T50081—2002.普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003
    [127] CECS03∶2007.钻芯法检测混凝土强度技术规程[S].北京:中国建筑工业出版社,2007
    [128] Park R. Ductility Evaluation from Laboratory and Analytical Testing [C].//Proceedings of9thWorldConference on Earthquake Engineering,1988
    [129] Liu D M, Liu J L, Yen T. Experimental study on rectangular CFT columns with high-strengthconcrete [J]. Journal of Constructional Steel Research,2007,63(1):37-44
    [130] JCJ01—89.钢管混凝土结构设计与施工规程[S].上海:同济大学出版社,1989
    [131] CECS28∶90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992
    [132] DL/T5085—1999.钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999
    [133] DBJ13-51-2003.钢管混凝土结构技术规程[S].福州:福建省建设厅,2003
    [134] ACI Committee318(ACI318-08). Building code requirements for structural concrete andcommentary [S]. Detroit: American Concrete Institute,2008
    [135] ANSI/AISC360-05. Specification for structural steel buildings [S]. Chicago: American Institute ofSteel Construction,2005
    [136] EN1994-1-1:2004(EC4). Design of steel and concrete structures. Part1: general rules and rules forbuilding [S]. Brussels: European Committee for Standardization,2004
    [137] Rangan B V, Matthew J. Strength of eccentrically loaded slender steel tubular columns filled withhigh-strength concrete [J]. ACI Structural Journal,1992,89(6):676-681
    [138] Schneider S P, Kramer D L, Sarkkinen D L. The design and construction of concrete-filled steel tubecolumn frames [C].//Proceedings of13thWorld Conference on Earthquake Engineering,2004
    [139] Liu D L. Behaviour of high strength rectangular concrete-filled steel hollow section columns undereccentric loading [J]. Thin-Walled Structures,2004,42(12):1631-1644
    [140] Roeder C W, Lehman D E, Bishop E. Strength and stiffness of circular concrete-filled tubes [J].Journal of Structural Engineering, ASCE,2010,136(12):1545-1553
    [141] Choi Y H, Foutch D A, LaFave J M. New approach to AISC P-M interaction curve for squareconcrete filled tube (CFT) beam–columns [J]. Engineering Structures,2006,28(11):1586-1598
    [142] Zhang W Z, Shahrooz B M. Comparison between ACI and AISC for concrete-filled tubular columns[J]. Journal of Structural Engineering, ASCE,1999,125(11):1213-1223
    [143] Kim D K. A database for composite columns [D]. Atlanta: Georgia Institute of Technology,2004
    [144] Choi Y H. A modified AISC P-M interaction curve for square concrete filled tube beam-columns [D].Urbana, Illinois: University of Illinois at Urbana-Champaign,2004
    [145]陈冠宇.梁柱钢管混凝土构件之ACI设计强度-数值解法[D].台中:台湾中兴大学,2006
    [146]韩林海.现代钢管混凝土结构技术[M].第2版.北京:中国建筑工业出版社,2007
    [147] Spacone E, El-Tawil E. Nonlinear analysis of steel-concrete composite structures: State of the art [J].Journal of Structural Engineering, ASCE,2004,130(2):159-168
    [148] Portolés J M, Romero M L, Filippou F C, et al. Simulation and design recommendations ofeccentrically loaded slender concrete-filled tubular columns [J]. Engineering Structures,2011,33(5):1576-1593
    [149]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆:重庆大学,2003
    [150] McKenna F, Scott M H, Fenves G L, et al. Open System for Earthquake Engineering Simulation[EB/OL]. Berkeley: University of California, PEER Center,2006. http://opensees.berkeley.edu
    [151] Spacone E, Filippou F C, Taucer F F. Fibre beam-column model for non-linear analysis of R/Cframes: Part I. Formulation [J]. Earthquake Engineering and Structural Dynamics,1996,25(7):711-725
    [152] Spacone E, Filippou F C, Taucer F F. Fibre beam-column model for non-linear analysis of R/Cframes: Part I. Application [J]. Earthquake Engineering and Structural Dynamics,1996,25(7):727-742
    [153] Neuenhofer A, Filippou F C. Evaluation of nonlinear frame finite-element models [J]. Journal ofStructural Engineering, ASCE,1997,123(7):958-966
    [154] Neuenhofer A, Filippou F C. Geometrically nonlinear flexibility-based frame finite element [J].Journal of Structural Engineering, ASCE,1998,124(6):704-711
    [155] JBM de Sousa Jr, Caldas R B. Numerical analysis of composite steel-concrete columns of arbitrarycross section [J]. Journal of Structural Engineering, ASCE,2005,131(11):1721-1730
    [156] Pi Y L, Bradford M A, Uy B. Second order nonlinear inelastic analysis of composite steel–concretemembers. I: Theory [J]. Journal of Structural Engineering, ASCE,2006,132(5):751-761
    [157] Pi Y L, Bradford M A, Uy B. Second order nonlinear inelastic analysis of composite steel–concretemembers. II: Applications [J]. Journal of Structural Engineering, ASCE,2006,132(5):762-771
    [158] Valipour H R, Foster S J. Nonlocal damage formulation for a flexibility-based frame element [J].Journal of Structural Engineering, ASCE,2009,135(10):1212-1221
    [159] Valipour H R, Foster S J. Nonlinear static and cyclic analysis of concrete-filled steel columns [J].Journal of Constructional Steel Research,2010,66(6):793-802
    [160] Tort C, Hajjar J F. Mixed finite-element modeling of rectangular concrete-filled steel tube membersand frames under static and dynamic loads [J]. Journal of Structural Engineering, ASCE,2010,136(6):654-664
    [161] Thai H T, Kim S E. Nonlinear inelastic analysis of concrete-filled steel tubular frames [J]. Journal ofConstructional Steel Research,2011,67(12):1797-1805
    [162] Lee T H, Mosalam K M. Probabilistic fiber element modeling of reinforced concrete structures [J].Computers&Structures,2004,82(27):2285-2299
    [163]李杰,范文亮.钢筋混凝土框架结构体系可靠度分析[J].土木工程学报,2008,41(11):7-12
    [164] El-Tawil S, Deierlein G G. Nonlinear analysis of mixed steel-concrete frames. I: Elementformulation [J]. Journal of Structural Engineering, ASCE,2001,127(6):647-655
    [165] El-Tawil S, Deierlein G G. Nonlinear analysis of mixed steel-concrete frames. II: Implementationand verification [J]. Journal of Structural Engineering, ASCE,2001,127(6):656-665
    [166] Limkatanyu S, Spacone E. Reinforced concrete frame element with bond interfaces. I:Displacement-based, force-based, and mixed formulations [J]. Journal of Structural Engineering,ASCE,2002,128(3):346-355
    [167] Limkatanyu S, Spacone E. Reinforced concrete frame element with bond interfaces. II: Statedeterminations and numerical validation [J]. Journal of Structural Engineering, ASCE,2002,128(3):356-364
    [168] Souza de R M. Force-based finite element for large displacement inelastic analysis of frames [D].Berkeley: University of California, Berkeley,2000
    [169]韩林海.钢管混凝土结构——理论与实践[M].第2版.北京:科学出版社,2007
    [170] Ba ant Z P, Tabbara M R, Kazemi M T, et al. Random particle model for fracture of aggregate orfiber composites [J]. Journal of Engineering Mechanics, ASCE,1990,116(8):1686-1705
    [171]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89
    [172]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002
    [173]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,10:27-35
    [174] Josuttis N M著,侯捷、孟岩译. C++标准程序库——自修教程与参考手册[M].武汉:华中科技大学出版社,2002
    [175]罗剑锋. Boost程序库完全开发指南——深入C++“准”标准模板库[M].北京:电子工业出版社,2010
    [176] Scott M H, Fenves G L. Plastic hinge integration methods for force-based beam-column elements [J].Journal of Structural Engineering, ASCE,2002,132(2):244-252
    [177] Mirza S A, Skrabek B W. Statistical analysis of slender composite beam-column strength [J]. Journalof Structural Engineering, ASCE,1992,118(5):1312-1332
    [178] Zhang G W, Xiao Y, Kunnath S. Low-Cycle fatigue damage of circular concrete-filled-tube columns[J]. ACI Structural Journal,2009,106(2):151-159
    [179] JGJ101-96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997
    [180] ACI-ASCE Committee441. High strength concrete columns: state of the art [J]. ACI StructuralJournal,1997,94(3):323-335
    [181] Kowalsky M J. Deformation limit states for circular reinforced concrete bridge columns [J]. Journalof Structural Engineering, ASCE,2000,126(8):869-878
    [182] Crisfield M A. Non-linear finite element analysis of solids and structures. Volume1: Essentials [M].Chichester: John Wiley&Sons Ltd.,1991
    [183] Simo J C, Hughes T J R. Computational inelasticity [M]. New York: Springer-Verlag Ltd.,1998
    [184] Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continua and structures [M].Chichester: John Wiley&Sons Ltd.,2000
    [185] Susantha K A S, Ge H B, Usami T. A capacity prediction procedure for concrete-filled steel columns[J]. Journal of Earthquake Engineering,2001,5(4):483-520
    [186] Hajjar J F, Gourley B C. Representation of concrete-filled steel tube cross-section strength [J].Journal of Structural Engineering, ASCE,1996,122(11):1327-1336
    [187] Varma A H, Ricles J M, Sause R, et al. Seismic behavior and modeling of high-strength compositeconcrete-filled steel tube (CFT) beam–columns [J]. Journal of Constructional Steel Research,2002,58(5-8):725-758
    [188]中原浩之,蜷川利彦,崎野健治.コンクリート充填鋼管柱の一定軸力下における繰り返し曲げ性状[J].日本建築學會構造系論文集,2003,568:139-146
    [189] Yassin M H M. Nonlinear analysis of prestressed concrete structures under monotonic and cyclicloads [D]. Berkeley: University of California,1994
    [190] Chung K. Prediction of pre-and post-peak behavior of concrete-filled circular steel tube columnsunder cyclic loads using fiber element method [J]. Thin-Walled Structures,2010,48(2):169-178
    [191]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2007
    [192] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J].Journal of Structural Engineering, ASCE,1988,114(8):1804-1826
    [193] Saatcioglu M, Razvi S R. Strength and ductility of confined concrete [J]. Journal of StructuralEngineering, ASCE,1992,118(6):1590-1607
    [194] Hoshikuma J, Kawashima K, Nagaya K, et al. Stress-strain model for confined reinforced concrete inbridge piers [J]. Journal of Structural Engineering, ASCE,1997,123(5):624-633
    [195] Vidot-Vega A L, Kowalsky M J. Relationship between strain, curvature, and drift in reinforcedconcrete moment frames in support of performance-based seismic design [J]. ACI Structural Journal,2010,107(3):291-299
    [196] Alostaz Y M, Schneider S P. Analytical behavior of connections to concrete-filled steel tubes [J].Journal of Constructional Steel Research,1996,40(2):95-127
    [197] Schneider S P, Alostaz Y M. Experimental behavior of connections to concrete-filled steel tubes [J].Journal of Constructional Steel Research,1998,45(3):321-352
    [198]付功義,森田耕次,江波戸和正.コンクリート充填円形鋼管柱-鉄骨梁立体部分骨組架橋における柱梁接合部の力学的挙動に関する研究[J].日本建築學會構造系論文集,1998,508:157-164
    [199] Beutel J, Thambiratnam D, Perera N. Monotonic behaviour of composite column to beamconnections [J]. Engineering Structures,2001,23(9):1152-1161
    [200] Azizinamini A, Schneider S P. Moment connections to circular concrete-filled steel tube columns [J].Journal of Structural Engineering, ASCE,2004,130(2):213-222
    [201] Nishiyama I, Fujimoto T, Fukumoto T, Yoshioka K. Inelastic force-deformation response of jointshear panels in beam-column moment connections to concrete-filled tubes [J]. Journal of StructuralEngineering, ASCE,2004,130(2):244-252
    [202] Wu L Y, Chung L L, Tsai S F, et al. Seismic behavior of bolted beam-to-column connections forconcrete filled steel tube [J]. Journal of Constructional Steel Research,2005,61(10):1387-1410
    [203] Fukumoto T. Steel-beam-to-concrete-filled-steel-tube-column moment connections in Japan [J]. SteelStructures,2005,5(4):357-365
    [204] Cheng C T, Chan C F, Chung L L. Seismic behavior of steel beams and CFT columnmoment-resisting connections with floor slabs [J]. Journal of Constructional Steel Research,2007,63(11):1479-1493
    [205] Wang W D, Han L H, Uy B. Experimental behaviour of steel reduced beam section to concrete-filledcircular hollow section column connections [J]. Journal of Constructional Steel Research,2008,64(5):493-504
    [206] Zhang Y F, Zhao J H, Cai C S. Seismic behavior of ring beam joints between concrete-filled twinsteel tubes columns and reinforced concrete beams [J]. Engineering Structures,2012,39(7):1-10
    [207]钟善桐,白国良.高层建筑组合结构框架梁柱节点分析与设计[M].北京:人民交通出版社,2006
    [208]方小丹,黄圣钧,李少云,等. RC梁-圆钢管混凝土柱节点环梁承载力设计方法[J].建筑结构学报,2008,29(5):20-33
    [209]陈庆军,蔡健,杨平,等.节点区柱钢管不贯通式钢管混凝土柱-梁节点抗震性能[J].土木工程学报,2009,42(12):33-42
    [210]王静峰,郭水平,陈莉萍.带肋薄壁钢管混凝土框架梁柱端板连接节点试验研究[J].建筑结构学报,2011,32(8):69-78
    [211]唐九如.钢筋混凝土框架结构抗震[M].南京:东南大学出版社,1989
    [212] Elremaily A, Azizinamini A. Experimental behavior of steel beam to CFT column connections [J].Journal of Constructional Steel Research,2001,57(10):1099-1119
    [213] Bing L, Tran C, Pan T. Experimental and numerical investigations on the seismic behavior of lightlyreinforced concrete beam-column joints [J]. Journal of Structural Engineering, ASCE,2009,135(9):1007-1018
    [214]石启印,丁芳,轩元,等.外包钢-混凝土组合梁与钢管混凝土柱连接节点试验研究[J].工程力学,2011,28(4):109-115
    [215] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal ofEngineering Mechanics, ASCE,1998,124(8):892-900
    [216] Li W, Han L H. Seismic performance of CFST column to steel beam joints with RC slab: analysis [J].Journal of Constructional Steel Research,2010,66(11):1374-1386
    [217] Gil B, Bayo E. An alternative design for internal and external semi-rigid composite joints. Part II:Finite element modelling and analytical study [J]. Engineering Structures,2008,30(1):232-246
    [218]王中强,余志武.基于能量损失的混凝土损伤模型[J].建筑材料学报,2004,7(4):365-369
    [219] Nie J G, Qin K, Cai C S. Seismic behavior of connections composed of CFSSTCs and steel-concretecomposite beams—finite element analysis [J]. Journal of Constructional Steel Research,2008,64(6):680-688
    [220] Chiew S P, Lie S T, Dai S W. Moment resistance of steel I-beam to CFT column connections [J].Journal of Structural Engineering, ASCE,2001,127(10):1164-1172
    [221] Herrera R. Seismic behavior of concrete filled tube column-wide flange beam frames [D].Pennsylvania: Lehigh University,2005
    [222]李贤.端板螺栓连接钢―混凝土组合节点的抗震性能研究[D].长沙:湖南大学,2009
    [223] Hu J W, Leon R T, Park T. Mechanical modeling of bolted T-stub connections under cyclic loadspart I: stiffness modeling [J]. Journal of Constructional Steel Research,2011,67(11):1710-1718
    [224] Li W, Han L H. Seismic performance of CFST column to steel beam joint with RC slab: joint model[J]. Journal of Constructional Steel Research,2012,73(7):66-79
    [225] Fukumoto T, Morita K. Elastoplastic behavior of panel zone in steel beam-to-concrete filled steeltube column moment connections [J]. Journal of Structural Engineering, ASCE,2005,131(12):1841-1853
    [226] Altoontash A. Simulation and damage models for performance assessment of reinforced concretebeam-column joints [D]. California: Stanford University,2004
    [227] Han L H, Wang W D, Tao Z. Performance of circular CFST column to steel beam frames underlateral cyclic loading [J]. Journal of Constructional Steel Research,2011,67(5):876-890
    [228] Lee D H, Elnashai A S. Seismic analysis of RC bridge columns with flexure-shear interaction [J].Journal of Structural Engineering, ASCE,2001,127(5):546-553
    [229] Bentz E C. Sectional analysis of reinforced concrete members [D]. Toronto: University of Toronto,2000
    [230] Xu S Y, Zhang J. Hysteretic shear-flexure interaction model of reinforced concrete columns forseismic response assessment of bridges [J]. Earthquake Engineering and Structural Dynamics,2011,40(3):315-337
    [231] Schneider S P. Axially loaded concrete-filled steel tubes [J]. Journal of Structural Engineering,ASCE,1998,124(10):1125-1238